
ID Name Description C
at

eg
or

y

1 Abstraction Level Classes in the same package must be of the same abstraction level Abstraction 

2 Unique Names Classes, packages and use cases must have unique names Abstraction 

3 Size of Use Cases All use cases should cover a similar amount of functionality Abstraction 

4 Homogenity of Accessor Usage When you specify getters/setters/constructors for a class, specify them for all classes Balance

5 Homogenity of Visibility Usage When you specify visibility somewhere, specify it everywhere Balance

6 Homogenity of Method Specification Specify methods for the classes that have methods! Don't make a difference in whether you specify or don't
specify methods as long as there is not a strong difference between the classes.

Balance

7 Homogenity of Attribute Specification Specify attributes for the classes that have attributes! Don't make a difference in whether you specify or 
don't specify attributes as long as there is not a strong difference between the classes.

Balance

8 Dynamic Classes For classes with a complex internal behaviour, specify the internal behaviour using a state diagram Completeness

9 Model Class Interaction All classes that interact with other classes should be described in a sequence diagram Completeness

10 Use Case Instantiation Each Use Case must be described by at least one Sequence Diagram Completeness

11 Specify Object Types The type of ClassifierRoles (Objects) must be specified. (Which class in represented by the object?) Completeness

12 Call Methods A method that is relevant for interaction between classes should be called in a Sequence Diagram to 
describe how it is used for interaction.

Completeness

13 Role Names ClassifierRoles (Objects) should have a role name Completeness

14 Specify Message Types Each message must correspond to a method (operation) Consistency

15 No Abstract Leafs Abstract classes should not be leafs (i.e. child classes should inherit from abstract classes) Design

16 DIT at most 7 Inheritance trees should have no more than 7 levels Design

17 Abstract-Concrete Abstract classes should not have concrete superclasses Design

18 High Cohesion Classes should have high cohesion. Don't overload classes with unrelated functionality. Design

19 Low Coupling Your classes should have low coupling. (The number of relations between each class and other classes 
should be small)

Design

20 No Diagram Overload Don't overload diagrams. Each diagram should focus on a specific concept/problem/functionality/… Layout

21 No X-ing Lines Diagrams should not contain crossed lines (relations) Layout

22 Use Names Classes, use cases, operations, attributes, packages, etc must have a name Naming

23 Meaningful Names Naming should use commonly accepted terminology, be non-ambigious and precisely express the function /
role / characteristic of an element.

Naming

Modeling Standards
For the assignment of the course "Software Architecting" (2II10) 2005/2006


