Guidelines for Writing Requirements

There is no formulaic way to write excellent requirements; the best teacher is experience. The problems you have encountered in the past will teach you much. Excellent requirements documents follow effective technical-writing style guidelines and employ user terminology rather than computer jargon.
Kovitz (1999) presents many recommendations and examples for writing good requirements. Keep the following suggestions in mind:

· Write complete sentences hat have proper grammar, spelling, and punctuation. Keep sentences and paragraphs short and direct.

· Use the active voice (For example: "The system shall do something", not "Something shall happen".)

· Use terms consistently and as defined in the glossary. Watch out for synonyms and near-synonyms. The SRS is not a place to creatively vary your language in an attempt to keep the reader's interest.

· Decompose a vague top-level requirement into sufficient detail to clarify it and remove ambiguity.
· State requirements in a consistent fashion, such as "The system shall" or "The user shall", followed by an action verb, followed by the observable result. Specify the trigger condition or action that causes the system to perform the specified behavior. For example, "If the requested chemical is found in the chemical stockroom, the system shall display a list of all containers of the chemical that are currently in the stockroom". You must use "must" as a synonym for "shall", but avoid "should", "may", "might", and similar words that don't clarify whether the function is required.

· When stating a requirement in the form "The user shall...,"identify the specific actor whenever possible (for example, "The Buyer shall...").

· Use lists, figures, graphs, and tables to present information visually.

Readers glaze over when confronting a dense mass of turgid text.

· Emphasize the most important bits of information. Techniques for emphasis include graphics, sequence (the first item is emphasized), repetition, use of white space, and use of visual contrast such as shading (Kovitz 1999)

· Ambiguous language leads to unverifiable requirements, so avoid using vague and subjective terms. Table 10-1 lists several such terms, along with some suggestions for how to remove the ambiguity
Table 10-1 Ambiguous Terms to Avoid in Requirements Specifications

Ambiguous Terms

Ways to Improve Them

acceptable, adequate

Define what constitutes acceptability and

how the system can judge this.

as much as practicable

Don't leave it up to the developers to

determine what's practicable. Make it a

TBD and set a date to find out.
at least, at a minimum, not more than,
Specify the minimum and maximum
not to exceed

acceptable values.

between

Define whether the end points are

included in the range.

depends on

Describe the nature of the dependency.

Does another system provide input to

this system, must other software be

installed before your software can run, or

does your system rely on another one to

perform some calculations or services?

efficient

Define how efficiently the system uses

resources, how quickly it performs

specific operations, or how easy it is for

people to use.

fast, rapid

Specify the minimum acceptable speed at

which the system performs some action.
flexible

Describe the ways in which the system

must change in response to changing

conditions or business needs.

improved, better, faster, superior

Quantify how much better or faster

constitutes adequate improvement in a

specific functional area.

including, including but not limited to,
The list of items should include all
and so on, etc., such as

possibilities. Otherwise, it can't be used

for design or testing.

maximize, minimize, optimize

State the maximum and minimum

acceptable values of some parameter.

normally, ideally

Also describe the system's behavior

under abnormal or non-ideal conditions.

optionally

Clarify whether this means a system

choice, a user choice, or a developer

choice.
reasonable, when necessary,

Explain how to make this judgment.

where appropriate

robust

Define how the system is to handle

exceptions and respond to unexpected

operating conditions.

seamless, transparent, graceful

Translate the user's expectations into

specific observable product

characteristics.

several

State how many, or provide the

minimum and maximum bounds of a

range.

shouldn't

Try to state requirements as positives,

describing what the system will do.

state-of-the-art

Define what this means.

sufficient

Specify how much of something

constitutes sufficiently.

support, enable

Define exactly what functions the

system will perform that constitute

supporting some capability.
user-friendly, simple, easy

Describe system characteristics that will

achieve the customer's usage needs and

usability expectations.

� This text is copied from Wiegers, K.E., Software requirements, Microsoft Press, 2003

