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Abstract

Fixed-priority scheduling with deferred preemption (FPDS) has been proposed in the literature as a viable alternative to
fixed-priority pre-emptive scheduling (FPPS), that obviates the need for non-trivial resource access protocols and reduces
the cost of arbitrary preemptions.

This paper shows that existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods is pessimistic and/or optimistic. The same problem also arises for fixed-
priority non-pre-emptive scheduling (FPNS), being a special case of FPDS. This paper provides revised analysis, resolving
the problems with the existing approaches. The analysis is based on known concepts of critical instant and busy period for
FPPS. To accommodate for our scheduling model for FPDS, we need to slightly modify existing definitions of these concepts.
The analysis assumes a continuous scheduling model, which is based on a partitioning of the timeline in a set of non-empty,
right semi-open intervals. It is shown that the critical instant, longest busy period, and worst-case response time for a task
are suprema rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time
cannot be assumed. Moreover, it is shown that the analysisis not uniformfor all tasks, i.e. the analysis for the lowest priority
task differs from the analysis of the other tasks. To build on earlier work, the worst-case response time analysis for FPDSis
expressed in terms of known worst-case analysis results for FPPS. The paper includes pessimistic variants of the analysis,
which are uniformfor all tasks.

1 Introduction
1.1 Motivation

Based on the seminal paper of Liu and Layland [27], many results have been achieved in the area of analysisfor fixed-priority
preemptive scheduling (FPPS). Arbitrary preemption of real-time tasks has a number of drawbacks, though. In systems
requiring mutual access to shared resources, arbitrary preemptions induce the need for non-trivial resource access protocols,
such asthe priority ceiling protocol [32]. In systems using cache memory, e.g. to bridge the speed gap between processors and
main memory, arbitrary preemptionsinduce additional cache flushes and reloads. As aconsequence, system performanceand
predictability are degraded, complicating system design, analysis and testing [13, 18, 24, 29, 33]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these problems, it generally leads to reduced schedulability compared to
FPPS. Therefore, alternative scheduling schemes have been proposed between the extremes of arbitrary preemption and no
preemption. These schemes are aso known as deferred preemption or co-operative scheduling [11], and are denoted by
fixed-priority scheduling with deferred preemption (FPDS) in the remainder of this paper.

Worst-case response time analysis of periodic real-time tasks under FPDS, arbitrary phasing, and relative deadlines within
periods has been addressed in a number of papers [10, 11, 13, 24]. The existing analysis is not exact, however. In [10],
it has already been shown that the analysis presented in [11, 13, 24] is pessimistic. More recently, it has been shown in
[6, 7] that the analysis presented in [10, 11, 13] is optimistic. Unlike the implicit assumptions in those latter papers, the
worst-case response time of atask under FPDS and arbitrary phasing is not necessarily assumed for the first job of that task
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upon its critical instant. Hence, the existing analysis may provide guarantees for tasks that in fact miss their deadlinesin the
worst-case. 1n [8, 9], it has been shown that the latter problem also arises for FPNS, being a specia case of FPDS, and its
application for the schedulability analysis of controller areanetwork (CAN) [35, 36, 37]. Revised analysisfor CAN resolving
the problem with the original approach in an evolutionary fashion can be foundin [15].

1.2 Contributions

This paper resolves the problems with the existing approaches by presenting novel worst-case response time anaysisfor hard
real-timetasks under FPDS, arbitrary phasing and arbitrary relative deadlines. The analysis assumes a continuous scheduling
model rather than a discrete scheduling model [4], e.g. al task parameters are taken from the real numbers. The motivation
for this assumption stems from the observation that a discrete view on time isin many situations insufficient; see for example
[2, 20, 23]. The scheduling modél is based on a partitioning of the timeline in a set of non-empty, right semi-open intervals
[14, 20]. The analysis is based on the concepts of critical instant [27] and busy period [25]. To accommodate for our
scheduling model for FPDS, we need to slightly modify the existing definitions of these concepts. To prevent confusion with
the existing definition of busy period, we use the term active period for our definition in this document.

In this document, we discuss conditions for termination of an active period, and present a sufficient condition with a
formal proof. Moreover, we show that the critical instant, longest active period, and worst-case response time for a task
are suprema rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time
cannot be assumed. Our worst-case response time analysis is not uniform for all tasks. In particular, the analysis for the
lowest priority task differs from the analysis for the other tasks. To build on earlier results, worst-case response times under
FPDS are expressed in terms of worst-case response times and worst-case occupied times [5] under FPPS. We also present
pessimistic variants of the analysis, which are uniform for al tasks, and show that the revised analysisfor CAN presented in
[15] conformsto a pessimistic variant.

1.3 Related work

Next to continuous scheduling models, one can find discrete scheduling models in the literature, e.g. in [16, 19], and models
in which domains are not explicitly specified [14, 22, 28]. Because the equations for response time analysis depend on the
model, we prefer to be explicit about the domains in our model. As mentioned above, our scheduling model is based on a
partitioning of the timeline in a set of non-empty, right semi-open intervals. Alternatively, the scheduling model in [28] is
based on left semi-open intervals.

In this paper, we assume that each job (or activation) of atask consists of a sequence of non-preemptable subjobs, where
each subjob has a known worst-case computation time, and present novel worst-case response time analysis to determine
schedulability of tasks under FPDS. Similarly, George et a assume in [16] that the worst-case computation time of each
non-preemptive job is known, and present worst-case response time analysis of tasks under FPNS. Conversely, Baruah [3]
determines the largest non-preemptive ‘ chunks' into which jobs of a task can be broken up to still ensure feasibility under
earliest deadlinefirst (EDF).

For worst-case response time analysis of tasks under FPPS, arbitrary phasing, and relative deadlines at most equal to
periods, it suffices to determine the response time of the first job of atask upon its critical instant. For tasks with relative
deadlines larger than their respective periods, Lehoczky [25] introduced the concept of a busy period, and showed that all
jobs of atask in a busy period need to be considered to determine its worst-case response time. Hence, when the relative
deadline of atask is larger than its period, the worst-case response time of that task is not necessarily assumed for the first
job of atask when released at a critical instant. Similarly, Gonzalez Harbour et al [17] showed that if relative deadlines are
at most equal to periods, but priorities vary during execution, then again multiple jobs must be considered to determine the
worst-case response time. Initial work on pre-emption thresholds [38] failed to identify this issue. The resulting flaw was
later corrected by Regehr [31]. Worst-case response time analysis of tasks under EDF and relative deadlines at most equal to
periods described by Spuri [34] is also based on the concept of busy period.

1.4 Structure

This paper has the following structure. First, in Section 2, we present real-time scheduling modelsfor FPPS and FPDS. Next,
worst-case analysis for FPPS is briefly recapitulated in Section 3. Section 4 presents various examples refuting the existing
worst-case response time analysis for FPDS. The notion of active period is the topic of Section 5. We present a formal
definition of active period and theorems with arecursive equation for the length of an active period and an iterative procedure
to determineits value. Worst-case analysis for FPDS is addressed in Section 6. We present a theorem for critical instant and
theorems to determine the worst-case response time of a task under FPDS and arbitrary phasing. Section 7 illustrates the
worst-case response time analysis by applying it to some examples presented in Section 4. Section 8 compares the notion
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of level-i active period with similar definitions in the literature, and presents pessimistic variants of the worst-case response
time analysis. The paper is concluded in Section 9.

2 Real-time scheduling models

This section starts with a presentation of a basic real-time scheduling model for FPPS. Next, that basic model is refined for
FPDS. The section is concluded with remarks.

2.1 Basic model for FPPS

We assume a single processor and a set 7 of n periodicaly released, independent tasks 1,12, ...,Tn With unique, fixed
priorities. At any moment in time, the processor is used to execute the highest priority task that has work pending. So, when
atask 7; is being executed, and a release occurs for a higher priority task 7 j, then the execution of t; is preempted, and will
resume when the execution of T has ended, aswell as all other releases of tasks with ahigher priority than T that have taken
place in the meantime.

A scheduleis an assignment of the tasks to the processor. A schedule can be defined as an integer step functionc : R —
{0,1,...,n}. Informally, o(t) =i with i > O means that task t; is being executed at timet, while 6(t) = 0 means that the
processor is idle. More formally, o partitions the timeline in a set of non-empty, right semi-open intervals {[t j,tj 1) }jez,
such that o(t) is right-continuous and piece-wise continuous in each of those intervals, and discontinuous at the ends. At
timestj, the processor performs a context switch. Figure 1 shows an example of the execution of a set 7 of three periodic
tasks and the corresponding value of the schedule G (t).
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Figure 1. An example of the execution of a set 7 of three independent periodic tasks 11, T2, and 13, where task 11 has highest
priority, and task 13 has lowest priority, and the corresponding value of o(t).

Each task 7; is characterized by a (release) period T; € R™, a computation time C; € R™, a (relative) deadline D; € R™,
where C; < min(D;, Ti), and a phasing ¢; € R™ U{0}. An activation (or release) time is a time at which atask t; becomes
ready for execution. A release of atask isalso termed ajob. Thefirst job of task t; isreleased at time ¢; and isreferred to as
job zero. Therelease of job k of t; therefore takes place at time ajx = ¢; + KT, k € N. The (absolute) deadline of job k of t;
takes place at dix = ajx + Dj. The begin (or start) time bjx and finalization (or completion) time f;i of job k of 1; isthetime at
which 1; actually starts and ends the execution of that job, respectively. The set of phasings ¢ ; is termed the phasing ¢ of the
task set 7.

The active (or response) interval of job k of t; is defined as the time span between the activation time of that job and
its finalization time, i.e. [ay, fik). The response time rix of job k of 1; is defined as the length of its active interva, i.e.
rik = fik — aik. Figure 2 illustrates the above basic notionsfor an examplejob of task ;.
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Figure 2. Basic model for task 7.
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The worst-case response time WR; of atask 1; is the largest response time of any of itsjobs, i.e.

WR; = supri. 1)

9.k

In many cases, we are not interested in the worst-case response time of atask for a particular computation time, but in the
value as a function of the computation time. We will therefore use a functional notation when needed, e.g. WR;(C;). A
critical instant of atask is defined to be an (hypothetical) instant that leads to the worst-case response time for that task.
Typically, such an instant is described as a point in time with particular properties. As an example, acritical instant for tasks
under FPPS is given by a point in time for which all tasks have a simultaneous rel ease.

We assume that we do not have control over the phasing ¢, for instance since the tasks are released by external events, so
we assume that any arbitrary phasing may occur. This assumption is common in real-time scheduling literature [21, 22, 27].
We al so assume other standard basic assumptions[27], i.e. tasks are ready to run at the start of each period and do no suspend
themselves, tasks will be preempted instantaneously when a higher priority task becomes ready to run, ajob of task t; does
not start before its previous job is completed, and the overhead of context switching and task scheduling isignored. Findly,
we assume that the deadlines are hard, i.e. each job of atask must be completed before its deadline. Hence, aset 7 of n
periodic tasks can be scheduled if and only if

WR <D %)

forali=1,...,n. For notational convenience, we assume that the tasks are given in order of decreasing priority, i.e. task 1 1
has highest priority and task t,, haslowest priority.

The (processor) utilization factor U is the fraction of the processor time spent on the execution of the task set [27]. The
fraction of processor time spent on executing task t; isGi/Ti, and is termed the utilization factor U;" of task 7, i.e.

G

ut==.
T

3

The cumulative utilization factor U; for tasks 4 till 7; is the fraction of processor time spent on executing these tasks, and is
given by

U=y U (4)
j<i
Therefore, U is equal to the cumulative utilization factor Uy, for n tasks.
p Cj
U:Un=2uj=2ﬁ. (5)

j<n j<n

In [27], the following necessary condition is determined for the schedulability of a set 7 of n periodic tasks under any
scheduling algorithm.
Uu<i1. (6)

Unless explicitly stated otherwise, we assume in this document that task sets satisfy this condition.

2.2 Refined model for FPDS

For FPDS, we need to refine our basic model of Section 2.1. Each job of task t; is how assumed to consist of m; subjobs.
Thekh subjob of 7 is characterized by a computationtimeCix € R*, whereC; = Zrk“:lcik. We assume that subjobs are non-
preemptable. Hence, tasks can only be preempted at subjob boundaries, i.e. at so-called preemption points. For convenience,

we will use the term F; to denote the computation time C; , of the final subjob of 1;. Note that when my = 1 for al i, we have
FPNS as special case.

2.3 Concluding remarks

In this document, we will use the superscript P to denote FPPS, e.g. WRF denotes the worst-case response time of task
under FPPS and arbitrary phasing. Similarly, we will use the superscripts D and N to denote FPDS and FPNS, respectively.
In our basic model for FPPS, we introduced notions for points in time with a subscript identifying a task and optionally
ajob of that task, e.g. ajk is the release time of job k of task ;. In this document, we will need similar notions that are
expressed relative to a particular moment in time, e.g. the relative release time of the first job of atask at or after timets. We
will therefore also use relative versions of the notions, where relative can refer to the identification of the job and/or to the
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particular moment in time, depending on the notion. As an example, let ¢(t) denote the earliest (absolute) activation of ajob

of task 7; at or after timet, i.e.
=a+([=2]) 7
O = Qi T i

Given ¢;(t), the relative phasing @; (t) is given by ¢;(t) = ¢i(t) —t. The release of job k of task 7; relative tot takes place at
the relative activation time ajk(t) = ¢i(t) + KTi, k € N. For a(t), both the identification of thejob and the time are therefore
relativeto t. Similarly, the notions relative begin time bk (t) and relative finalization time fik(t) denote atime relative to t
and concern the job k of task t; relative to t. For the relative response timerik(t), only the identification of the job is relative
tot. We will use abbreviated representations for the relative notions using a prime (") when the particular moment intimeis
clear from the context. As an example, in a context concerning a particular moment t s, the relative activation time a;, denotes
ai(ts).

3 Recapitulation of wor st-case analysisfor FPPS

For the analysis under FPPS, we only consider cases where the deadlines of tasks are less than or equal to the respective
periods. For illustration purposes, we will use a set 77 of two independent periodic tasks t1 and t2 with characteristics as
givenin Table 1.

T=Di G
T1 5 2
T2 7 3

Table 1. Task characteristics of 7;.

Figure 3 shows an exampl e of the execution of the tasks 1 and 12 under FPPS. Note that even an infinitesimal increase of
the computation time of either task t1 or t2 will immediately cause the job of task 15 released at time 0 to miss its deadline

T e e
- ol |

15 20 25 30 35
Figure 3. Timeline for 77 under FPPS with a simultaneous release of both tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective releases.

time

3.1 Worst-caseresponsetimes

This section presentstheoremsfor the notion of critical instant and to determine worst-case response times of tasks. Although
these theorems are taken from [5], most of these results were already known; see for example [1, 21, 27]. Auxiliary lemmas
on which the proofs of these theorems and theorems in subsequent sections are based are included in Appendix A.

Theorem 1 (Theorem 4.1in [5]). In order to have a maximal response time for an execution k of task i, i.e. to have fjx —
aix = WR;, we may assume without |oss of generality that the phasing ¢ issuch that ¢ j = aj for all j <i. In other words, the
phasing of the tasks' release times is such that the release of the considered execution of t; coincides with the simultaneous
release for all higher priority tasks. Thislatter pointintimeis called a critical instant for task ;. |

Given this theorem, we conclude that time O in Figure 3 is a critical instant for both task T4 and 1. From this figure, we
therefore derive that the worst-case response times of tasks t1 and 12 are 2 and 5, respectively. The next theorems can be
used to determine the worst-case response times analytically.

Theorem 2 (Theorem 4.2in [5]). Theworst-caseresponsetime WR; of atask 7; isgiven by the smallest x € R that satisfies
the following equation, provided that x is at most T;.

x_C.+Z{ ] (7)

j<i
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O

Theorem 3 (Theorem 4.3in [5]). The worst-case response time WR; of task t; can be found by the following iterative pro-
cedure.

WR(Q) _ ¢ (8)
(1)
WRi(|+1) _ Ci+z {W_'?I -‘ Cj, 1=01,... 9)

J

The procedureis stopped when the same valueis found for two successiveiterations of |, or whenthe deadline D ; is exceeded.
O

3.2 Worst-case occupied times

InFigure 3, task T2 is preempted at time 15 dueto arelease of task 141, and resumesits execution at time 17. The span of time
fromatask t'sreleasetill the moment in time that t can start or resume its execution after completion of a computation time
C istermed occupied time. The wor st-case occupied time (WO) of atask 7 isthe longest possible span of time from arelease
of T till the moment in time that t can start or resume its execution after completion of a computation C. In [5], it has been
shown that the worst-case occupied time can be described in terms of the worst-case response time as follows.

WOI(C) = limWR (X). (10)
x|Gi
Considering Figure 3, we derive that worst-case occupied times WO;(0) and WO,(C,) of task 1, are equal to 2 and 7,

respectively. The next theorems can be used to determine the worst-case occupied times analytically.

Theorem 4 (Theorem 4.4in [5]). When the smallest positive solution of (7) for a computation time C/ is at most D;, the
worst-case occupied time WO; of a task t; with a computation time C; € [0,C/] is given by the smallest non-negative x € R

that satisfies

x—ci+2Q1J+1>cj. (11)
j<i Tj

0

Theorem 5 (Theorem 4.5in [5]). The worst-case occupied time WO; of task t; can be found by the following iterative
procedure.

0 >Cj forCi=0
WO, = j<i (12)
WR forGi >0
)
+) _ WO o
WO = C'+%Q T J+1>cj, |=0,1,... (13)
The procedure is stopped when the same value is found for two successive iterations of |. O

3.3 Concluding remarks

The proof of Theorem 4 derives Equation (11) by starting from Equation (10) and subsequently using Lemma 16.
Similarly to Equation 10, we can express WR; in terms of WO, i.e.

WRi(Ci) = limWO; (x). (14)
X1Gi
The next two equations express that WR; (C;) and WO; (C;) are | eft-continuous and right-continuous, respectively.
WR (G)) = limWR (x) (15)
x1Gi
WGO; (Ci) = limWO;(x) (16)
x|Gi

Lemmasrelated to these latter three equations can be found in Appendix A.
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4 EXxisting response time analysisfor FPDS refuted

In this section, we first recapitulate existing response time analysis under FPDS. Next, we show that the existing analysis
is pessimistic. We subsequently give examples refuting the analysis, i.e. examples that show that the existing analysisis
optimistic.

4.1 Recapitulation of existing wor st-case response time analysisfor FPDS

In this section, we recapitulate existing worst-case response time analysis for FPDS with arbitrary phasing and deadlines
within periods as described in [11, 13]. We include a recapitulation of the analysis for FPNS as presented in [37]. The main
reason for including the latter isthat it looks different from the analysis for FPDS and is a basis for the analysis of controller
area network (CAN).

4.1.1 Existing analysisfor FPDS

The non-preemptive nature of subjobs may cause blocking of atask by at most onelower priority task under FPDS. Moreover,
atask can be blocked by at most one subjob of alower priority task. The maximum blocking B P of task 1 by alower priority
task istherefore equal to the longest computation time of any subjob of atask with apriority lower thantask t;. Thisblocking
timeisgiven by
BP =max max Cjx. (17)
j>i 1<k<mj

Strictly spoken, BP is asupremum for al but the lowest priority task, i.e. that value cannot be assumed.

The worst-case response time mp of atask t; under FPDS, arbitrary phasing, and deadlines |ess than or equal to periods,
as presented in [11] and [13], is given by

WR, = WRP(BP +Gi — (R —A)) + (F — A), (18)

where WRP denotes the worst-case response time of t; under FPPS. According to [13], A is an arbitrary small positive value
needed to ensure that the final subjob has actually started. Hence, when task t; has consumed C; — (K — A), the final subjob
has (just) started.

412 Existinganalysisfor FPNS

In this section, we first recapitulate the update of [21] given in [37] to take account of tasks being non-preemptive. Next, we
show that the update is actually a specialization of (18).

The non-preemptive nature of tasks may cause blocking of a task by at most one lower priority task. The maximum
blocking BiN of task t; by alower priority task is equal to the longest computation time of a task with a priority lower than
task 1i, i.e.

BN = maxC;. (19)
j>i
Similarly to BP, BiN isasupremum for all but the lowest priority task, i.e. that value cannot be assumed.
The worst-case response time WR. is given by

WR'=w +G, (20

wherew; isthe smallest x € Rt that satisfies

x=BV+Y {XJFT_T“S] Ci. 21)

j<i J

In this latter equation, Tres IS the resolution with which time is measured. To calculate w;, an iterative procedure based on

recurrence relationships can be used. An appropriateinitial value of this procedureis Wi(o) = BiN +2<iCj.
We now show that these resultsfor FPNS are aspecialization of (18). To thisend, we substitute w; =W, — Tres, X = X' — Tres,

and Tres = A in equations (20) and (21). Hence, the worst-case response time WR is given by
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wherew, isthe smallest X' € R that satisfies
/!
X=B\+A+Y [%W Gj.
j<i )
Reusing the results for FPPS, we therefore get

—N
WR =WR’(BN+A)+ (Ci—A). (22)
Because we have F; = Cj and BP = BiN for FPNS, Equation (22) for FPDS is a specialization of Equation (18) for FPNS.

4.2 Existing analysisis pessimistic
Consider the set 7> consisting of three tasks with characteristics as described in Table 2.
T DG
1 5 4 2
T 7 7 1+2
3 30 30 2+2
Table 2. Task characteristics of 75.

Based on (18) and using A = 0.2 we derive

—D
WR, = WRE(BS+Co— (FRo—A))+(Fa—A)
= WR)(2+3-18)+18
= WR5(32)+18=72+18=09.
However, the existing analysis does not take into account that t; can only be blocked by a subjob of a lower priority task
if that subjob starts an amount of time A before the simultaneous release of t; and all tasks with a higher priority than ;.
This aspect can be taken into account in the analysis by replacing BP in (18) by (BP — A)*. Here, the notation w* stands
for max(w, 0), which is used to indicate that the blocking time can not become negative for the lowest priority task. The
worst-case response time of T2 now becomes 6.8, asillustrated in Figure 4. As aresult, the existing analysisis pessimistic.

4-A
we [ [T
task 1, /A///A

2
task T3

time

Hi

a 3 5 7

A A A
Figure4. Timelinefor 72 under FPDS with arelease of tasks t1 and 12 at timet = 1 and arelease of task T3 at timet = 1— A.

We observe that the characteristics of the tasks of 7> areintegral multiplesof avalue d = 1, and A < 8. As a consequence,

reducing A to an arbitrary small positive value does not change the value for WZD. When A is larger than 9, reducing A
can change the value of the derived worst-case response time. As an example, consider set 73 consisting of three tasks with
characteristics as described in Table 3. For this example, the task characteristics are integral multiples of 6 = 0.5. We will

now determine the worst-case response time m? of 1, for two values of A, onevalue larger than & and another value smaller
than &.
Let A= 0.6 > 9, i.e. the computation times C1, C,, and C3 are integral multiples of A, but the period T1 is not. For the

worst-case response time WR, we find

—D

WR, = WRE(BS+Co— (FRo—A))+(Fa—A)
WR5(34+3—(3—0.6)) + (3—0.6)
WR5(3.6) +2.4=9.6+24=12.



TU/e, CS-Report 06-34, December 2006 9

Ti=Di G
T1 6.5 3
T2 9 3
13 30 3

Table 3. Task characteristics of 73.

. — . .
For thisvalue of A, WR, islarger than 1,’s deadline.
Let A=0.4,i.e. A< §. For the worst-case response time WZD of 1, wefind

WR, = WRS(BD+Co— (R—A))+(R—A)
WR5(34+3—(3—0.4))+ (3—0.4)
WR5(3.4) +2.6=6.442.6=09.

For this value of A, WR, < D, and reducing the value of A will not change the value found for WR; .

If we take into account that the blocking subjob of a lower priority task has to start an amount of time A before the
simultaneous release of t; and all higher priority tasks, we find values 8.4 and 8.6 for A = 0.6 and A = 0.4, respectively. We
will return to this examplein Section 8.3.2.

4.3 Existing analysisisoptimistic
We will give three examplesillustrating that the existing analysisis optimistic. For al three examples, deadlines are equal to
periods, i.e. D; = T;. Thefirst section shows an obvious example, i.e. an example with a utilization factor U > 1. The second
section shows an example with U < 1. The third section shows an examplewithU = 1.

For all three examples, the task set consists of just two tasks. For such task sets, the worst-case response time analysis

under FPDS presented in [11, 12, 13] and in [10] is very similar. In particular, the worst-case response time m? of task 12
is determined by looking at the response time of the first job of task T2 upon a simultaneous release with task t1. However,
the worst-case response time of task 12 is not assumed for the first job for all three examples.

431 AnexamplewithU >1

An example refuting the worst-case response time analysisis givenin Table 4. Note that the utilization factor U of this set of
tasks 7y isgivenby U = % + 475 > 1. Hence, the task set is not schedulable.

=D G
T1 5 2
T2 7 15+3

Table 4. Task characteristics of 7.
Based on (18) and using A = 0.1, we derive

WRy = WRE(B2+Co— (F2—A))+(F2—A)
= WR(0+45-29)+29
= WR}(1.6)+29=36+29=65.

This value correspondswith the response time of the 1% job of task T, upon asimultaneous release with task 11, asillustrated
in Figure 5. However, the same figure also illustrates that the second job of T, missesits deadline. Stated in other words, the
existing worst-case response time analysis is optimistic.

4.3.2 AnexamplewithU <1

Another example refuting the worst-case response time analysisis given in Table 5. Note that the utilization factor U of this

set of tasks 75 is given by U = 2 + %1 < 1. Hence, the task set could be schedulable. Applying (18) yields WR, = 6.1,
which corresponds with the response time of the first job of task T2 upon a simultaneous release with task t1; see Figure 6.
However, the same figure also illustrates that the second job of task T, missesits deadline.
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Figure 5. Timeline for 74 under FPDS with a simultaneous release of both tasks at time zero.

=0 G
T1 5 2
T2 7 2+21

Table 5. Task characteristics of 7s.

433 AnexamplewithU =1

Consider task set 7g given in Table 6. The utilization factor U of this set of tasksis givenby U = 2 + %2 = 1. The task set
is not schedulable by FPPS, as we showed in Section 3 that the task set is only schedulable when C is at most 3. Figure 7
shows atimeline with the executions of these two tasks under FPDS with a simultaneous release at time zero in an interval of
length 35, i.e. equal to the hyperperiod of the tasks. Applying (18) yields WR, = 6.2, which corresponds with the response
time of the first job of task T, in Figure 7. However, the response time of the 5t job of task 15 is equal to 7, illustrating once
again that the existing analysisistoo optimistic. Nevertheless, the task set is schedulable under FPDS for this phasing.

Now, consider task set 77 givenin Table 7, which is similar to task set 7 given in Table 6, except for the fact that rather
than having a second subjob for task T it has a task t3. Figure 8 shows a timeline with the executions of these three tasks
under FPNS with a simultaneous release at time zero in an interval of length 35, i.e. equal to the hyperperiod of the tasks.

Applying (18) yields WR; — 6.2, which corresponds to the response time of the first job of task T3 in Figure 8. However,
the response time of the 5" job of task 13 is equal to 7, illustrating once again that the existing analysis is too optimistic.
Nevertheless, the task set is schedulable under FPNS for this phasing.

4.4 Concluding remark

We have shown that we cannot restrict ourselves to the response time of the first job of a task when determining the worst-
case response time of that task under FPDS. The reason for this is that the final subjob of a task t; can defer the execution
of higher priority tasks, which can potentially giverise to higher interference for subsequent jobs of task t ;. We observe that
Gonzalez Harbour et a [17] identified the same influence of jobs of atask for relative deadlines at most equal to periodsin
the context of fixed priority scheduling of periodic tasks with varying execution priority.

Considering Figure 7, we see that every job of task 12 in the interval [0,26.8) defers the execution of ajob of task t1.
Moreover, that deferred job of task t1 subsequently gives rise to additional interference for the next job of task t,. This
situation ends when the job of 15 is started at timet = 28, i.e. the 5" job of T» does not defer the execution of ajob of 1.
Viewed in a different way, we may state that the active intervals of the jobs of tasks t1 and t2 overlap in the interval [0, 35).
Note that this overlapping starts at timet = 0 and ends at time't = 35, and we therefore term this interval [0, 35) a level-2
active period. Informally, alevel-i active period is asmallest interval that only contains entire active intervals of jobs of task

I
0 5

Figure 6. Timelinefor 75 under FPDS with a simultaneous release of all tasks at time zero.
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T=Di G
T1 5 2
T2 7 12+3

Table 6. Task characteristics of 7g.

2.0 3.2 4.4 2.6 2.6 3.8 2.0
task T, %
62 y | 540 ¢ i ggiy 58 ¢ i i 7

task 1,

0 5 10 15 20 25 30 35 tme

Figure 7. Timelinefor 7 under FPDS with a simultaneous release of all tasks at time zero.

7 and jobs of tasks with a higher priority than task t;. Hence, the active interval of every job of atask t; is contained in a
level-i active period. To determine the worst-case response time of atask t;, we therefore only have to consider level-i active
periods. However, asillustrated by the examples shown in this section and mentioned above, we cannot restrict ourselvesto

the response time of thefirst job of atask t; when determining the worst-case response time of that task under FPDS. Instead,

we have to consider the response times of all jobs in alevel-i active period. In a subsequent section, we will show that it

suffices to consider only the response times of jobsin alevel-i active period that starts at a so-called e-critical instant.

5 Activeperiod

This section presents a formal definition of a level-i active period and theorems to determine the length of a level-i active
period. As mentioned above, alevel-i active period may contain multiple jobs of T;. We therefore also define the notion of a
level-(i, k) active period, and present a theorem to determine the length of such a period. Informally, level-(i, k) active period
isasmallest interval that contains k successive active intervals of jobs of task t; and all jobs of tasks with a higher priority
than task T;.

We start with the definition of the notion level-i active period in Section 5.1. Next, we provide examples of level-i active
periodsin Section 5.2. The length of alevel-i active period is the topic of Section 5.3. We refine the notion of level-i active
period to level-(i, k) active period in Section 5.4, and conclude with atheorem to determineits length in Section 5.5.

5.1 Level-iactive period

The notion of level-i active period is defined in terms of the notion of pending load, which on its turn is defined in terms of
the notion of active job.

5.1.1 Activejob and pending load

Definition 1. Ajobk of atask tj isactiveat timet if and only ift € [aiy, fik), where ax and fix are the activation (or release)
time and the finalization (or completion) time of that job, respectively. |

The active interval of job k of task t; is defined as the time span between the activation time of that job and its completion,
i.e. [ai, fik). We now define the notion of pending load in terms of active job, and derive properties for the pending load.

Definition 2. The pending load P (t) isthe amount of processing at timet that still needsto be performed for the active jobs
of tasks 1; that are released beforetimet, i.e.

' +
ro=(|52]) o [ o @)
TG
T1 5 2
T 7 12
3 7 3

Table 7. Task characteristics of 77.
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Figure 8. Timeline for 77 under FPNS with a simultaneous release of all tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective releases.

where

. 1 iftask T isbeing executed at timet, i.e. o(t) =i
oi(t) = -
0 otherwise.

O

: +
Note that the term ( | =2 in (23) is equal to the number of releases of t; in [0,t). By multiplying this term with C;,
Ti

we therefore get the amount of processing that needs to be performed due to releases of task t; in that interval. The term
fé o} (t')dt’ is equal to the amount of processing that has been performed for ;. The righthand side of (23) is therefore equal
to the amount of processing at timet due to releases of jobs of task t; beforet that still beensto be performed.

We subsequently define the notions of (cumulative) pending load P;(t) and (processor) pending load P(t).

Definition 3. The (cumulative) pending load P;(t) is the amount of processing at timet that till needs to be performed for
the active jobs of tasks tj with j < that are released before timet, i.e.

R(t) =Y Pft) =2 (P_T—,ﬂy -Cj— /Ot oi(t))dt’, (24)

j<i j<i

where

Gi(t) = Y oj(t) :{ 1 ifo(t)e{l....i}

— 0 otherwise.
j<i
O

Definition 4. The (processor) pending load P(t) is the amount of processing at timet that still needs to be performed for the
active jobs of all tasksthat are released beforetimet, i.e.

P(t) =Pa(t). (25)
O
Corollary 1. The order in which thetaskst; with j <i are executed isimmaterial for the cumulative pending load P;. [
For i < n, the cumulative pending load P; also depends on blocking dueto alower priority task. Asan example, let Pj(ts) =0,
than B (t) = Cs for al t € (ts,t{) under FPDS if the following three conditions hold:
e atask ts withs <iisreleased at timets,,

e no other releases of t; for j <i takesplacein [ts,t5), and

e asubjob of alower priority task isexecuting at timets and blockstask ts during [ts,t;) dueto the non-preemptivenature
of the subjob.

Because blocking due to alower priority task does not play arole for the (processor) pending load, P(t) only depends on the
activations of tasks.

Coroallary 2. The (processor) pending load P(t) isindependent of the scheduling algorithm. O
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5.1.2 Definition of alevel-i active period
We now define the notion of level-i active period in terms of the pending load P;(t).

Definition 5. Alevel-i active period isaninterval [ts,te) with the following three properties.
1. R(ts) =0;
2. R(te) =0;
3. R(t) >0 fort e (s, te).
(I

Lemmal. If alevel-i active period starts at time ts and ends at time te, then the following properties hold:

(i) Taskstj with j <i are continuously executing in [ts, te), except for an (optionally empty) initial interval [ts, ts+ B) with
0 < B < BP during which the tasks are blocked by a lower priority task.

(ii) Thelength L;(ts) of that level-i active period is at least B+ Cs, where task 15 isreleased at timets.

(iii) The order in which the tasks Tj with j < i are executed isimmaterial.

Proof. (i) This property follows immediately from the non-preemptive nature of subjobs and the assumptions for fixed-
priority scheduling.

(ii) By definition, P (ts) = 0. Because thetasks t; with j <i areblocked in the (optionally empty) initial interval [ts,ts+B),
and the level-i active period contains at least the active interval of task ts, the length L;(ts) of that level-i active period is at
least B+ Cs.

(iii) This property follows immediately from the definition of alevel-i active period and Corollary 1. O

From this definition of the level-i active period in terms of the pending load P;(t), we draw the following conclusion.
Corollary 3. Thelevel-n active period is independent of the scheduling algorithm. O

Note that a level-i active period may, but need not, contain activations of task t;. In the sequel, we will call alevel-i active
period that contains an activation of task t; atrue level-i active period. Unless explicitly stated otherwise, we use the phrase
‘level-i active period’ to denote atrue level-i active period in the remainder of this document.

5.2 Examples

We will how consider two examples, one for FPPS based on the timeline in Figure 3 for 77 and one for FPDS based on the
timelinein Figure 7 for 7.

Consider Figure 9, with atimeline for 71 under FPPS, pending loads Py(t), P5(t), and P»(t), and level-i active periods.
Notethat Py (t) isequal to Pf(t) by definition. From the graph for P1(t), we find that theinterval [0, 35) contains seven level-1
active periods, corresponding with the seven activations of task 11, i.e. [0,5), [5,7), [10,12), [15,17), [20,22), [25,27), and
[30,32). The horizontal line fragments in the graph for P3(t) are caused by the fact that T is preempted by ajob of task 7.
From the graph for the pending load P;(t), we find that the interval [0,35) contains eight level-2 active periods, i.e. [0,5),
[5,7), [7,10), [10,12), [14,19), [20,25), [25,27), and [28,33). As mentioned before, the level-2 active period only depends
on the activations of t; and 2, and is independent of the scheduling algorithm.

Consider Figure 10, with a timeline for 7 under FPDS, pending loads P1(t), P;(t), and P»(t), and level-i active periods.
From the graph for Py(t), we find that the interval [0,35) contains seven level-1 active periods, corresponding with the
seven activations of task 11, i.e. [0,2), [5,8.2), [10,14.4), [15,17.6), [20,22.6), [25,28.8), and [30,32). The horizontal line
fragments in the graph for P1(t) are caused by the fact that t1 is blocked by a subjob of task t2. From the graph for the
pending load P»(t), we find that the interval [0, 35) contains asingle level-2 active period, i.e. [0, 35).

5.3 Length of alevel-i active period

This section presents three theorems for the length of alevel-i active period. A first theorem presents a recursive equation
for the length of alevel-i active period. A next theorem states that under the following assumption alevel-i active period that
starts will also end.

Assumption 1. Either U < 1 or U < 1 and the least common multiple (Icm) of the periods of the tasks of 7~ exists. a

Hence, the assumption is a sufficient condition to guarantee that alevel-i active period will end when its starts. Because we
assume @; > Oforall i <n, P;(0) =0forall i <n. Wetherefore concludethat, when Assumption 1 holds, thetimeline consists



TU/e, CS-Report 06-34, December 2006 14

bl B
m%m '

Py(t)

time

o i 5 i f i B s i a5 0 | time
bug"‘j';od ] ] | ] ] ] | 4
40 ﬁ
3% f\\ & o ”:\ o
F wilndin |nn||\!nn| ...... |nn||\=nn|nn|nn|n| o bl I.\I....Im m |n|||lnll\!nnhnllln&Elnl ........ Lovoado N |nn¢ )
0 5 10 15 20 25 30 35 fime
Py(t)
5 ;{ + O
ENN & &
E N\ b
3 A \ A ey o \ \
F FITL FYTTY FETA ATETI FT" “PIT [T | TR T T h\!nnlnn I nnlnnlnnll\!ln FETY PETTE TETI YT PP TP m ........ | T |nnmun||n
E 15 {0 B 30 Pogs time
acﬁ'\‘j‘é‘;')jiod vy //WW/ W/ W///////////////////ﬁ W/ I W/////////////////////,l 1
bug’sjo ’ W W// ///1 W// % W// il B

Figure 9. Timeline for 71 under FPPS, pending loads Py (t), P5(t), and Py (t), and level-i active periods and level-i busy periods.

of a sequence of level-i active periods, optionally preceded by and separated by idle-periods. A final theorem provides an
iterative procedure to determine the length of alevel-i active period.

Appendix B shows an example illustrating that the level-n active period need not end when Assumption 1 does not hold.
5.3.1 A recursiveequation
Theorem 6. The length L;(ts) of a level-i- active period that starts at time ts is found for the smallest x € R* that satisfies

the following equation
(T

j<i

where B denotes the amount of time that a task with a lower priority than task t; is executing non-preemptively as fromtime
ts, With0< B < BP for i <nand B=0for i =n.

Proof. Becausethelevel-i active period starts at timets, P, (ts) = O by definition. Now assume the level-i active period under
consideration ends at timete. Hence, time te is the smallest t larger than ts for which P(t) = O, and the length L;(ts) of the
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Figure 10. Timelinefor 7g under FPDS, pending loads Py (t),

active period becomeste — ts. We now derive (26) from P(te) = 0.

(52 o foue

Ri(te)

{9y Y

i<i

= PR+,

j<i

— o}z

_ J%dte—(

(ts+i(ts))

(=

(ts+¢j(ts))

x([*

Tj

Iy

)

J[S_F%MW)JF.Cj_/&tQGi(t)dt:O

P3(t), and P»(t), and level-i active periods and level-i busy periods.

15

From Lemma 1, we derive that the lower priority task is executing in [ts,ts+ B), and only tasks tj with j < are executing in
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[ts+ B,te). Hence, we can conclude that
te
/t Gi(t)dt = te— (ts+ B).
S
Substituting this result in the former equation, we get

te— (ts+B) = E <F—e_(t3;(pj(ts))D+'ij

and by subsequently substituting te = X+ts, we get (26). Because timete is the smallest t (larger thants) for which P;(t) =0,
X =te —tgisthe smallest valuein R™ that satisfies (26), which proves the theorem. O

5.3.2 End of alevel-i active period

We now present a theorem which states that there exist positive solutions for the recursive equation (26) if Assumption 1
holds. To that end, we will use Lemma4.3 from [5] (see Lemma 15 in Appendix A), and first prove two lemmas.

Lemma 2. There exists a positive solution for the recursive equation (26) for the length of the level-i active period if U; < 1.

Proof. We will prove that the condition U; < 1 is sufficient by means of Lemma4.3 of [5]. Let f be defined as

w-esg([=])

We choosea = min S, hence
<i

f(a) = (i B+zq—mm’<' . “’J“S)D <

i<i
By definition, thereis at least onetask that is released at the start of thelevel-i active period. Let task Ty withk < i bereleased
attimet =ts, i.e. @k(ts) = 0. We now get

min<; %

e
> — = - =
f(a)_B+{ T ch B+Ck>r|n§|ir12 a,
hence f(a) > a. In order to choose an appropriate b, we make the following derivation.
<B+Z[ WCJ<B+Z +1)Cj=B+xUi + Y.C;j.
i<i i<i TJ i<i

AsU; < 1, therelation
x>B+xUi+ Y.C

=i

holdsfor
B+Z.CJ
x> =t
- 1-U;
We now choose
B—i—Z.Cj
1-U;

and therefore get b > f(b). Now the conditions for Lemma 15 hold, i.e. the function f(x) is defined and strictly non-
decreasing in an interval [a, b] with f(a) > aand f(b) < b. Hence, there existsan
B+ Y Cj
i<i

xemnz T-uy”

such that x = f(x). O
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Lemma 3. There exists a positive solution for the recursive equation (26) for the length of the level-n active period if U = 1
and the least common multiple of the periods of 7 exists.

Proof. We first observe that B = 0O for the level-n active period, i.e. the lowest priority task is never blocked. Next, we
distinguish two complementary cases, afirst case with ¢;(ts) = O for al i and a second case where this does not hold. We
prove the lemma by considering both cases separately.

For the first case, we provethat for B = 0 and ¢;(ts) = O for al i the value x=Icm(T4,...,T,) isasolution of (26). For
these values of B and ¢ (ts), equation (26) simplifiesto

-z N
i< T
Because [ww Cj =lem(Ty,...,Tn )T—J ; T—‘ =U =1, we immediately see that Icm(T4,...,Ty) is a (positive)

solution.
For the second case, we prove that the condition U = 1 and Icm of the periods of 7 exists is sufficient by means of

Lemma1bs. Let f be defined as
X— @i (t *
f0=Y ([#D .cj.
j<n ]

We choose a = minj<,C;j/2. Similar to the proof of Lemma 2, we find f(a) > a. In order to choose an appropriate b, we
make the following derivation.
SR
i<n

We now consider two digunct cases for x = lem(Ty,..., Ty). If f(X) < Xj<n Hﬂ Cj, we choose b = lem(Ty,...,Ty), and
therefore get b > f(b). Now the conditions for Lemma 15 hold, i.e. the function f(x) is defined and strictly non-decreasing
inaninterval [a,b] with f(a) > aand f(b) < b. Hence, thereexistsanx € (minjgn%,lcm(Tl, ..., Tn)) such that x = f(x). If
f(X) =2« [Tﬂ C;, we found a (positive) solution and we are also done. O

Appendix B.1 presents an example consisting of two taskswith U = 1 and the least common multiple of the periods does not
exist, where the level-n active period does not end.

Theorem 7. When Assumption 1 holds, a level-i active period that is started at timets is guaranteed to end.

Proof. The theorem followsimmediately from Lemmas 2 and 3. O

5.3.3 Aniterativeprocedure
The next theorem provides an iterative procedure to determine the length of alevel-i active period.
Theorem 8. Let the level-i active period start with a release of task 15 at timets, and let the period start with an (optionally

empty) initial interval of length B during which thetasks tj with j <i are blocked by a subjob of a task with a lower priority.
If Assumption 1 holds, the length L (ts) of that level-i active period can be found by the following iterative procedure.

L%t) = B+GCs (27)

+
j

j<i

Proof. From Lemma 2 and Lemma 3, we know that there exists a positive solution of Equation (26) when Assumption 1
holds. To prove the lemma, we first prove that the sequence is non-decreasing. Next, we prove that the procedure stops when
thelength L;(ts) isreached, i.e. for the smallest solution of Equation (26). To that end, we show that all valuesin the sequence

Li(') (ts) are lower bounds on L;(ts). To show that the procedure terminates, we show that the sequence can only take a finite
number of values to reach that solution.
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We prove that the sequence is non-decreasing, by induction. To this end,we start by noting that L fo) (ts) =B+Cs >0, and

LVt = B+Z({—Li(O)(tS)T__(pj(ts)D#CJ

i<i J
> {gs(ts) = 0} B+-Cs=L\%t5)

Next, if L' (tg) > LU ts), then we can conclude from Equation (28) that also L' "2 (ts) > L (t), asfilling in a higher
valuein the right-hand side of Equation (28) gives a higher or equal result.
We next prove Li(')(ts) < Lj(ts), foradl I =0,1,..., by induction. From Lemma 1 item (ii) we know Lfo) (ts) =B+Cs <

Li(ts). Next, if Li(') (ts) isalower bound on L;(ts), then

L'(I) s) — Pjlls "
sz | (t)Tj M)D G

isalower bound on the amount of processing that needs to be performed due to releases of task t; and its higher priority tasks
intheinterval of length Li(')(ts), and hence Li('“) (ts) isalso alower bound on L (ts).

Finally, we provethat the sequence can only take on a finite number of values. To thisend, we note that L i(') (ts) is bounded
from below by B+ C5 and from above by the solution.
O
5.4 Level-(i,k) active period
Similar to alevel-i active period, alevel-(i, k) active period is defined in terms of the notion pending load. For the definition
of alevel-(i, k) active period, we first need to refine the notion of pending load.
54.1 A refinement of pending load

Let atruelevel-i active period start at timet = ts. As described above, the length of that period is given by the smallest x > 0
satisfying (26). Let the length of that period be L;. The number of jobs|; of task 7; in that period is now given by

- ﬂ%“’(ﬂ | (29)

We now refine our notion of pending load P;(t) by considering only the first k+ 1 < I; jobs of 1; in the active period, where
ke N.

Definition 6. The pending load Pik(t) in alevel-i active period that started at timets < t is the amount of processing at time
t that still needs to be performed for at most the first k4 1 < I; jobs of 1; and the jobs of tasks tj with j < i that are released
infts,t), i.e

Py(t) = min(([M})ik—&- 1)-G +% ([MWY .Cj —Lt oi(t")dt’, (30)

where o (t) as defined in Definition 3. O

5.4.2 Déefinition of alevel-(i,k) active period
Similarly, we refine our notion of level-i active period to level-(i, k) active period.

Definition 7. Alevel-(i,k) active period isan interval [ts,te) with the following three properties.
1. Pk(ts) =0;
2. Pk(te) =0;
3. Pk(t) > 0fort € (ts,te).
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5.5 Length of alevel-(i,k) active period

Theorem 9. Let the number of jobs of task t; in a level-i active period be given by |;. The length Ly of a level-(i, k) active
period with 0 < k < |; that starts at timet = t5 is the smallest x € R™ satisfies the following equation

x—B+(k+1)Ci+j§<:i<V_+jj(tsw>+-Cj, (31)

where B denotes the amount of time that a task with a lower priority than task t; is executing non-preemptively as from time
t - ts.

Proof. The proof is similar to the proof of Theorem 6. O

6 Worst-case analysisfor FPDS

This section provides theorems for the notions of critical instant and worst-case response times for tasks under FPDS and
arbitrary phasing, and theorems to determine the worst-case response times analytically. We assume in this section that
Assumption 1 holds. Moreover, we consider an arbitrary true level-i active period with a start at timets. As described in
Section 2.3, we will use abbreviated representations for the relative notions using a prime (') to denote the value of these
notions relative to timets, e.g. we use a;, to denote ajy(ts).

6.1 A critical instant
Similar to Equation (1), the worst-case responsetime WRP of atask 1; under FPDS isthe largest response time under arbitrary

phasing, i.e.
WRY = supri.
0.k
We can refine this equation by taking blocking of tasks and the notion of level-i active period into account. Assuming the start
of an arbitrary true level-i active period at timets, the worst-case response time WRP of task 1; can therefore be described as

WRP = sup max r (B, ¢4, ....0), (32)
B0 Ok (Bghgl) <0

where B denotes the amount of time that atask with alower priority than task t; is executing non-preemptively as from the
start of the level-i active period, and |{ is the number of jobs of task t; in that level-i active period.

We will now first present alemma to determine the response time of job k of task t; in atrue level-i active period. We
subsequently present atheorem which states that given an infinitesimal time € > 0, the maximum response time of task 1; is
assumed in alevel-i active period which starts at an e-critical instant. A next theorem refines Equation (32).

Lemma4. The response time ri'?< of job k of task 7; in a level-i active period that startsat timet =tswithO< k < |/ and I/
the number of jobs of task t; in that level-i active period is given by

Mk(B, 01, ..., @) = bl (B, @7, 0] 1) +F — (KTi +¢f), (33)

where B denotes the amount of time that a task with a lower priority than task t; is executing non-preemptively as from time

t=ts, and bi’k‘m isthe relative begin time of the final subjob of job k, given by the smallest non-negative x € R satisfying

/ +
x:B+(k+1)Ci—F|+Z<{X_T.(pJJ+1> .Cj. (34)
J

j<i

Proof. We first look at the relative begin time b{km of the final subjob of that job k, and subsequently describer, in terms
of the relative begin time, the relative activation time aj, and the computation time F; of that final subjob.

Thefinal subjob of job k of task t; in the level-i active period that starts at timets can begin at timets+ bi’k_m when
o the blocking subjob of the lower priority task has executed B;

o al higher priority tasksthat arereleased in [ts,ts+ bi’km] have acompletion in that interval;



TU/e, CS-Report 06-34, December 2006 20

o al earlier jobs of task 1; and al earlier subjobs of job k that are released in [ts,ts+ bi’k_m]
interval.
Note that the order in which the subjobsin the interval [ts,ts+ b} k,m] are executed is irrelevant for the begin time of the final
subjob of job k of task ;. Stated in other words, the final subjob of job k of task t; can start for thesmallestt > ts+ max(B, &)
for which Pi(t) = F. The relative begin time by . (B, ¢},...,¢j_;) is therefore the smallest non-negative x € R satisfying
the following equation:

have a completion in that

/ +
x=B+(k+1)G-F+Y QX T-(pJJ +1> .Cj.
j<i J

Therelative completion time f;, of job k of t; is now given by the relative begin time b{km plus the computationtime F, i.e.

ik = Bixm + Fi- Theresponsetime rj, of the job k is given by the relative completion time f;j minus the relative activation
time &, i.e.

ri,k(B’ (Pg_v s a(pll) = bi,k.m (Ba (Pg_a s a(pil—l) +F - (kTI + (pll)
O

Theorem 10. Given an infinitessimal time € > 0, the maximum response time of task t; under FPDS and arbitrary phasing
is assumed when the level-i active period is started at an e-critical instant, i.e. when t; has a simultaneous release with all
higher priority tasksand a subjob of the lower priority taskswith computationtime BP startsatime e before that simultaneous
release.

Proof.  Let Ri(B,¢},...,qf) denote maXo<ki/(B,q,.....o) Mik(B: @1, -, ). We will prove that Ri(B,¢7,...,¢;) assumes a
maximum for ¢} = 0 with j <iandB= (BP —e)*. Hence, the maximum is assumed when t; has a simultaneous release
with all higher priority tasks, and a subjob of alower priority task with computationtime B P starts an infinitesimal timee > 0

before that simultaneous release, which proves the theorem.
Based on Theorem 7, i.e. termination of alevel-i active period under Assumption 1, we conclude that

o only afinite number of jobs need to be considered to determine the worst-case response time of task 1 j;
e every job of 1; in alevel-i active period has afinite responsetime.

We will now look at the value of the length L| of the level-i active period, the number | of jobs of task t; in the level-i
active period, and the response timer{, as afunction of the relative phasing (p’j with j <'i and the blocking time B. Consider
Equation (26) for the length L; of a level-i active period. The term X_T%W in that equation is a strictly non-increasing
function of ¢ with j <i. Because ¢} > 0, a maximum of that term is assumed for ¢ = 0. Moreover, the righthand side
of Equation (26) is astrictly increasing function of B, and the length L is therefore also a strictly increasing function of B.
The largest value of L/ is found for the largest value of B under consideration, i.e. for B= (BP —¢) . Asaconsequence, L/
assumes amaximum for ¢} = Oforall j <iandB= (BP —g)".

Given the behavior of L{ and Equation (29), we conclude that the number of jobs|| of task t; in the level-i active period is
a strictly non-increasing function of (p’j with j <i and astrictly non-decreasing function of B. As a consequence, | { assumes
amaximum for ¢} =Oforall j <iandB= (BP —e)+.

From Equation (33), we concludethat r (B, ¢}, ..., ;) isastrictly decreasing function of ¢;. Because ¢; > 0, amaximum
is assumed for ¢ = 0. Now consider Equation (34) for the relative begin time bi’k_m. The term {XTT"J in that equation is
agtrictly non-increasing function of ¢/. Similarly to ¢f, ¢j > 0, amaximum of that term is therefore assumed for ¢ = 0.
Hence, bjy . (B,0,...,0) dominates by . (B,¢},...,¢j_;) for al values of B and all values of ¢ with j <i. Moreover,
the righthand side of Equation (34) is a strictly increasing function of B, and b{km (B,0,...,0) is therefore aso a strictly
increasing function of B. Thelargest value of by, .. (B,0,...,0) isfound for the largest value of B under consideration, i.e. for
B= (BP —¢)". Asaconsequence, r},(B,q,...,|) aso assumes a maximum for ¢} =0foral j<iandB= (BP — e)’.

From the values of L{, I and rj, asafunction of the relative phasing ¢/ with j <i and the blocking time B, we conclude
that (B, @, ...,9}) isastrictly non-increasing function of ¢4, ..., ¢_;, astrictly decreasing function of ¢, and a strictly
increasing function of B. Asaresult, Ri(B, 7, ..., ¢) assumes amaximum for ¢} = Owith j <iandB= (BP — e)+, which
provesthe theorem. |
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Theorem 11. The worst-case response time WRP of task tj under FPDSand arbitrary phasing is given by

WRP =lim max ' ((BP—¢)".0,....0). 35
£10 0<k<l!/((B°—e)* 0.....0) 'k(( " ¢) ) (39)
Proof. Once again, let RP(B, ¢}, ..., ¢f) denote maXo_yi:(gp_e)+ 0...0) ik ((BP —€)",0,... ,0) From the proof of Theo-
rem 10, we derivethat RP(B,0, ..., 0) dominates RP (B, ¢}, ..., ¢}) for all values of Band all values of ¢/ with j <i,i.e.
WR> = sip RO(B,oy,....9)

B,¢,..,0f
= supRP(B,0,...,0)
B

Moreover, RP(B, @1,...,9) isastrictly increasing, i.e. monotonic, function of B. Hence,
WRP = supRP(B,0,...,0)
B
- . D D +
= Igng| ((BI €) ,O,...,O),

which proves the theorem. O
From the previous two theorems, we draw the following conclusions.

Corollary 4. Theworst-case responsetime WRP is a supremum (and not a maximum) for all but the lowest priority task, i.e.
that value cannot be assumed. O

Corollary 5. Acritical instant is a supremum for all but the lowest priority task, i.e. that instant cannot be assumed. |

6.2 Worst-caseresponse times

The next theorem describes WRP in terms of the worst-case response time WRP and worst-case occupied time WO under
FPPS.

First, we provethe following three lemmas for the worst-case length WL P of alevel-i active period, the maximum number
wiP jobs of task 7 in alevel-i active period, and the worst-case response time VVR}?( of job k of task ;.

Lemma 5. Theworst-case length WLP of a level-i active period with i < nunder FPDSis given by the smallest x € R+ that
satisfies the following equation

x—BP+Z[%W c;. (36)

il

Proof. Theterm [XTJ_QJW in Equation (26) isastrictly non-increasing function of ¢ with j <i. Because ¢ > 0, amaximum

of that term is assumed for cp’j = 0. Now let L{(B) denote the length of alevel-i active period with i < n for a simultaneous
release of task t; with all tasks with a higher priority. Hence, L{(B) is the smallest x € R* satisfying equation (26) with
¢} =0,i.e thesmalest x € R* satisfying

x—B+2[ﬂcj. (37)
2|7

We will now consider thecasesi < nand i = n separately.

{i = n} The lowest priority task is never blocked, therefore BP = 0, and we immediately get (36) by substituting B = 0in
equation (37) fori =n.

{i < n} The righthand side of equation (37) is a strictly increasing function of B, and L {(B) is therefore also a strictly
increasing function of B. The largest valuefor L!(B) is found for the largest value of B < BP. Hence, WLP is given by

WLP = lim L/(B). (38)
B1BP
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Given Lemma 17, we can make the following derivation starting from this equation.
. L{(B)
{@7)} lim [ B+ [ ' WC-
BIBP ng. T

= §+2mﬂ%?kq

j<iBIBY

wLP

= {Lemmal7}BP +Y | lim LB | c
I = [BBP T :

(@9} B+ Y [WLTD] ¢

j<i
Hence, the worst-case length WLP is the smallest x € R* satisfying (36), which proves the lemma. d

Because BP is a supremum (and not a maximum) for all but the lowest priority task, we draw the following conclusion from
the previouslemma.

Corollary 6. The worst-case length WLP is a supremum (and not a maximum) for all but the lowest priority task, i.e. that
value cannot be assumed. O

Lemma 6. The maximum number wiP of jobs of task 7j in a level-i active period with i < n under FPDSis given by

WP — [Wﬂ | (39)

Proof. We first derive Equation 39 and subsequently prove that WL P is a maximum.

As described in the proof of Theorem 10, |/(B) is a strictly non-decreasing function of the blocking time B. Because BP
is a supremum that cannot be assumed, the largest value for 1/ (B) is therefore found for the largest value of B < BP. Hence,
wiP is given by

wiP = lim I/(B). (40)
B1BP

Because Li%B) isastrictly increasing function of B, we can use Lemma 17 in the following derivation

iml/(®) = lim [ﬂ]

BIBP BiBP | i
= {Lemmal7} {Iim @w
BeP i
D
— {7

Equation (39) immediately follows from Equation (40) and this latter equation.
The proof that wiP is a maximum consists of two steps. We first provethat I/ (B) is left-continuousin BP, i.e.

1(8P) = lim 1(8), (41)

and subsequently provethat |/ (B) is constant in an interval (BP — v, BP] for asufficiently small y € R, i.e.

v 1/(B)=wP.
BP—y<B<BP

To provethat I/(B) isleft-continuousin BP, we show that L!(BP) is defined and equal to WLP, and subsequently show that
I/(BP) =wIP. From Theorem 7, we know that L{(B) exists when Assumption 1 holds. Moreover, considering Theorem 6 and
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Lemmas5, we concludethat WLP and L{(BP) are solutions of the same equation, i.e. L{(BP) = WLP. Asaresult, we get

To provethat I/ (B) is constant in an interval (BP — v, BP] for asufficiently small y € R*, we use the definition of limit:

imfx)=Y< v 3 v |[f(X)-Y|<e.
xTX £>08>0xe(X—8,X)

Becausel/(B) is strictly non-decreasing and defined in BP, we have

v 1/(B) <wiP.
0<B<BP

Lete € (0,1]. Now thereexistsad < (0,BP) suchthat 0 <wiP —1/(B) < & < 1foral B € (BP —§,BP], hencewiP > 1/(B) >

wiP — 1. Because wlP, I/ (B) € N, this completes the proof. O

Note that unlike WLP, the value for WP can be assumed. Based on Lemma 6, we conclude that |/((BP —y)*) = wiP for a
sufficiently small y € R, and we can therefore exchange the order of the operatorsin Equation 35, i.e.

WRP = max Ilmrlk((BP—e)+). (42)

0<k<wiP €l0

In the next lemma, we use WRY, as ashorthand, i.e.
. +
WRS = limri ((BP —¢) ). (43)
Lemma 7. The worst-case response time \NR}?( of job k with 0 < k < wiP of a task 7 under FPDSand arbitrary phasing is

given by
p_ [ WRP(BP + (k+1)Gi—FR)+FR—KT fori<n
Wk = { VVOP((k+ 1)Cp— Fn) + Fn— KT fori=n ° (44)

where WRP(BP + (k+1)C — F) and WOP(BP + (k+ 1)Ci — ) are the worst-case response time and the wor st-case occupied
time under FPPS of a task T/ with a computation time C/ = BP + (k+ 1)Ci — R, a period T,/ = KT; + Dj — F; and a deadline
Dl Tl

Proof. Starting from Equation (43), we derive

WRY = Igmr,k ((B}3 —e)+)

{(33)} Ilm( ik,my ((BP_€)+) +F —kTi)

= limbl, ((BP-€)") +F-KkT,

where b, . ((B-D —£)+) denotes the relative begin time of the final subjob of job k of task tj with 0 < k < wl; and ¢} = 0
for j <i asgivenin Equation (34). Hence, b}y . ((BP—£)+) isthesmallest x € R satisfying

:((BP—g)) + (k+1)C .+ZQ J+1)CJ

j<i

Now let task set 7' beidentical to 7~ except for the characteristics of task i, i.e. T/ has characteristicsC/ = (BD—;s)Jr + (k+
1)Ci—F, T/ =KTi+ D; — F, and D] = T{". Hence, task t; of 7’ missesits deadllne under FPPS and arbltrary phasing if and
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only if task tj of 7 misses its deadline under FPDS, and arbitrary phasing and an amount of blocking (BP — e)+. Based on
Theorem 4, we can now write

flom ((BP—€)+) :V\/in((BP —&) "+ (k+1)Ci- F') '

For i = n, we substitute BP = 0. We now immediately arrive at Equation (44), which provesthe lemmafor i = n.
Fori < n, we derive

WRE = imwof (8P —e) "+ (k+ G~ F) + F — KT

{9} WRE (BP + (k+ 1)Gi — ) + R — kT,
which provesthe lemmafori < n. o

Note that WR}?( is a supremum (and not a maximum) for all but the lowest priority task, i.e. that value cannot be assumed.

Theorem 12. The worst-case response time WRP of a task 1; under FPDSand arbitrary phasing is given by

WRP = max WRE. (45)
0<k<wiP
Proof. The theorem follows immediately from Equations (42) and (43), and requiresLemma7. O

6.3 Aniterativeprocedure

The next theorem provides an iterative procedure to determine the worst-case response time WR P for task 1; under FPDS and
arbitrary phasing. The procedureis stopped when the worst-case response time \NR}?( of job k for task 1; exceedsthe deadline
D; or when the level-i active period is over. This latter condition is based on a property of WL P.

Lemma 8. The worst-case length WL}?( of a level-(i, k) active period under FPDSis the smallest positive x € R satisfying
the following equation

x=BP+ (k+1)Gi+ [ﬂ Cj. (46)

j<i J
Proof. The proof is similar to the proof of Lemmab. |

Notethat because BP isasupremum (and not amaximum) for all tasks, except the lowest priority task, WL }?( isalso supremum
(and not amaximum) for all tasks, except the lowest priority task, i.e. that value cannot be assumed.

Lemma 9. Theworst-case length WLE, of a level-(i, k) active period under FPDSis given by

WLE = WRP(BP + (k+1)C)). (47)
where WRP(BP + (k+1)Ci) isthe worst-case response time under FPPSand arbitrary phasing of a task t/ with a computation
timeC/ = BP + (k+1)C;, aperiod T/ = (k+1)T; + Dj and a deadline D} = T/".

Proof.  The lemma follows from the similarity between Equations (7) and (46). The period and deadline of task ]
have been chosen to be equal to the deadline of job k+ 1 of task t;. Hence, when the iterative procedure to determine
WR (BP + (k+1)G;) stops because the deadline D/ is exceeded, the deadline d; x.1 will be exceeded as well. O

Lemma 10. Letk’ € N bethe smallest value for which WR' (BP + (K + 1)G;) < (K +1)T;. The worst-case length WLP of a
level-i active period is now given by WRP (BP + (K + 1)C;).
Proof. To prove the lemma, we will prove the following equivalent relation by means of a contradiction argument

v (WLR < (k+1)Ti=k=wP -1).
0<k<wlP

We only consider k < wiP — 1, because the proof for k=wl P — 1is similar.
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Let \/\/I_{?k < (k+1)Ti for 0 < k < wlP — 1. Using Lemma 9, we derive WR(BP + (k+ 1)Ci) < (k+ 1)T;. Hence, task 1/
has a completion at or before (k+ 1) T;, and all higher priority tasksthat are released in theinterval [0, WR" (BP + (k+ 1)G;))
have a completion in that interval. Because task t; represents the executions of both the blocking lower priority task as well
as task t;, all executions of the corresponding jobs also have a completion in that interval. Hence, the level-i active period
that started with an e-critical instant ends at time WRF (BP + (k+ 1)C;). However, we now have that the length of the level-i
active period equaIsWLEk, avauethat is strictly smaller than WLP, which is a contradiction. Therefore, our assumption that
\/\/I_}?k < (k+1)T; for 0 < k < WP — 1iswrong, which proves the lemma. O
From this lemmas, we draw the following conclusion.

Corollary 7. Thelevel-i active period is over for the smallest k’ € N for which WRP(BP + (K + 1)Cj) < (K +1)T;. O

Theorem 13. The worst-case response time VVRP of a task t; can be found by the following iterative procedure under As-
sumption 1, using (44).

WR® — WS, (48)
\/\/Ri(”l) _ max(\NRf'),\NREHl) l=0,1,... (49)

The procedure is stopped when the worst-case response time \NR}?( of job k of task t; exceeds the deadline D; or when the
level-i active period is over, i.e. WRP(BP + (k+1)Ci) < (k+ 1)T,.

Proof. Corollary 7 states that WRP(BP + (k+1)Ci) < (k+1)T; isa proper termination condition to determine whether or not
the level-i active period is over before the release of job k+ 1. Because of Theorem 7, the level-i active periods ends under
Assumption 1, and we therefore have to consider at most a finite number wi P of jobs of task 1. As aresult, the iterative
procedure ends. We observe that the iterative procedure also stops when the deadline D ; is exceeded, by the worst-case
response time WRY, of job k of 1; i.e. when the task set is not schedulable. O

Corollary 8. When Assumption 1 holds, we can derive the schedulability of a set of tasks 7 under FPDS and arbitrary
phasing by checking the schedulability criterion WRP < D using Theorem 13. O

Corollary 9. To check the schedulability criterion \NRP < Dj we do not need to determine the length WLP of the worst-case
level-i active period under FPDSfirst. Instead, we can simply check whether or not the level-i active period is over after
every iteration. O
Finally note that

° V\/R}?k can be used asinitia valueto calculate WRP(BP + (k+ 1)C;) to determine whether or not the level-i active period
is over before the release of job k+ 1;

o WRP(BP + (k+1)Ci) can be used asinitial valueto calculate WRF(BP + (k+ 2)Ci — F) to determine WRD, ;.

7 Examples

In this section, we will illustrate the worst-case response time analysis presented in Section 6 to determine the schedul ability
of tasks and task sets under FPDS and arbitrary phasing of some examples of Section 4 using the iterative procedure presented
in Theorem 13.

7.1 Schedulability of task 12 of 75

The schedulability of task T, of task set 7 is the topic of this section. The characteristics of the tasks of 7, can be found in
Table 2 on page 8in Section 4.2.
To determine the worst-case response time WRY for task 15, we first derive B = 2 using Equation (17). Next, we

determi neVVR(ZO) using Lemma?,i.e.
WRY = WRE, = WRE(BS +C, — o) + Fo = WRE(3) +2=5+2=7.

Because WRD , < D2 = 7 and WR5(BR +Cz) = WR5(5) = 9> T, = 7, i.e. thelevel-2 active period is not over yet, we proceed
with the 2" job.
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For the 2" job, we find

WRS, = WRS(BS +2C, — F) + Fo — T = WR5(6) — 5= 10— 5=5,

and therefore WR}" = max(WR”,WRD ) = max(7,5) = 7. Now WR2, = 5 < D, and WRE(BY + 2C2) = WR5(8) = 14 <
2T, = 14. Hence, we know that the level-2 active period is over, all jobs of task 1, meet their deadlines in that period, and
the worst-case response time WRS = 7.

7.2 Schedulability of task 12 of 75

We will determine the schedulability of task 1, of task set 75 in this section. The characteristics of the tasks of 75 can be

foundin Table 5 on page 10 in Section 4.3.2.

We first determi neWR<2°) using Lemma?,i.e.

WRY = WRS o = WOB(BS +Co — Fo) + Fo = WOB(2) + 2.1 = 4+ 2.1 = 6.1.

Because WRD, < D2 = 7 and WR5(BS +Cz) = WR5(4.1) = 8.1 > T, = 7, we proceed with the 2" job.
For the 2" job, we find

WRE; = WOB(BD +2C; — o) + Fo — T, = WO5(6.1) — 4.9=12.1- 49=7.2

Because \/\/Rz'?1 > Dy = 7, we conclude that task T2 is not schedulable.

7.3 Schedulability of thetask set 7g

In this section, we will determine the schedulability of the task set 7. The characteristics of the tasks of 7g can be found in
Table 6 on page 11 in Section 4.3.3.
To determine the worst-case response time WR? for task t1, we first derive B? = 3 using Equation (17). Next, we

determi neWR(ZO) usingLemma?,i.e.
WRY = WRD; = WRE(BD +C1 — Fy) + Fr = 3+2=5,

Now WRE0 =D; and WR? (B +C;) = 5= Ty. Hence, we know that the level-1 active period is over, al jobs of task t1 meet
their deadlines, and the worst-case response time WRY = 5.
Next, we determine the worst-case response time WRY for task 1,. To this end, we first determine \NR(ZO) using Lemma?,
i.e
WRY) = WRD ) = WOB(BD +Co — F») + Fo = WOB(1.2) + 3= 32+ 3= 6.2.
Because \/\/R2'37O <Dy =7and WR(BY +Cy) = 8.2> T, = 7, we proceed with the 2" job.
For the 2™ job, wefind

WRD; = WOB(BR +2C; — Fo) + Fo — T, = WO5(5.4) — 4= 9.4 4 =54,
and therefore WR}” = max(WR,”,WRS ;) = max(6.2,5.4) = 6.2. Because WRD; < Dz and WRE(BD +2C;) = 14.4 > 2T, =

14, we proceed with the 37 job.
For the 3™ job, we find

WRE, = WOB(BS +3C, — ) + F — 2T, = WO5(9.6) — 11=17.6 — 11= 6.6,
and therefore WR = max(WRS", WRD,) = max(6.2, 6.6) = 6.6. Because WRY,, < Dz and WRE(BD +3C;) = 22.6 > 3T, =

21, we proceed with the 41" job.
For the 4tM job, we find

WRS 3 = WO5(BS +4C; — F2) + F2 — 3T, = WO5(13.8) — 18=23.8— 18=5.8.
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and therefore WRYY = max(WRéz),MR23) = max(6.6,5.8) = 6.6. Because WR5 3 < D2 and WR5 (B +4Cp) = 28.8> 4T, =
28, we proceed with the 5" job.
For the 51" job, we find

WRS 4 = WOB(BS +5C; — F2) + Fo — 4T, = WO5(18) — 25=32 - 25=7,

and therefore WR,,” = max(WRS”, WRD ;) = max (6.6, 7) = 7. Now WRD,, = D and WR5(BS + 5C;) = 35 = 5T,. Hencewe
know that the level-2 active period is over, all jobs of task T, meet their deadlinesin that period, and the worst-case response
time WRD = 7.

Because WRP < D; for all i < n, we concludethat 7 is schedulable under FPDS and arbitrary phasing when deadlines are
equal to periods.

8 Discussion

This section presents a theorem for the worst-case response time of the highest priority task, compares the notion of level-i
active period with similar notionsin the literature, and presents pessimistic variants for the worst-case response time analysis
of tasks under FPDS and arbitrary phasing.

8.1 Worst-caseresponsetime of highest priority task

The next theorem states that the worst-case response time of the highest priority task 1 can be found by only considering the
first job of 11 in alevel-1 active period started at an e-critical instant.
First, we prove the following lemma.

Lemma 11. Thefirst job of task 11 in alevel-1 active period has the largest response time of all jobs of 11 in that period.

Proof. The highest priority task t1 experiences blocking of at most one subjob of alower priority task. If thefirst job of t 4
in alevel-1 active period is blocked by an amount B, its responsetimer '1,0(5) becomes

ro(B) =B+Cy.

Now, assume the level-1 active period contains | > 1 jobs of task 7;. The responsetime ry  (B) of job k, with 0 <k < Iy,
becomes '

—_
=~
=
—
Y]
~—
Il

B+ (k+1)Cy1— KTy
B+Ci+ k(Cl — Tl)
= B+Ci+k(Ui—1)Ty

When task 11 is blocked by alower priority task, U; < 1. Hence, wefind
rk(B) < B+Ci=rio(B),
which proves the lemma. U
Theorem 14. The worst-case response time\NR? of the highest priority task T, under FPDSis equal to
WR? =BY +C;. (50)

Proof. From equationr o(B) = B+ Cy, we concludethat ry o(B) isastrictly increasing function of B. Hence, we derive

WRP = sgpr'l,o(s) (B+Cy) =B?+Cy,

= lim
B1BY
which proves the theorem. 0

8.2 A comparison with existing notions
We will now compare our notion of level-i active period with similar notionsin the literature.
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8.2.1 Level-i busy period in [25]

The notion of level-i busy period originates from [25], where it has been introduced as an expedient to determine the worst-
case response times of tasks for deadlines larger than periods under FPPS and arbitrary phasing. The level-i busy period is
defined as follows.

Definition 8. Alevel-i busy period isatimeinterval [a, b] within which jobs of priority i or higher are processed throughout
[a,b] but no jobs of level i or higher are processed in (a—e€,a) or (b,b+ ¢) for sufficiently small € > 0. O

Figure 9 aso shows the level-1 busy periods and level-2 busy periods for 77. The level-1 busy periods in this figure only
differ from the level-1 active periods by the inclusion of the end-points of theintervals by the former. The difference between
level-2 busy periodsand level-2 active periodsis more significant, however. Whereasthe interval [0,12) is constituted by four
level-2 active periods, i.e. [0,5), [5,7), [7,10), and [10,12), the interval is contained in a single level-2 busy period [0, 12].
Stated in other words, the level-2 busy period unifies four adjacent level-2 active periods. Similarly, the interval [20,27) is
constituted by two level-2 active periods, i.e. [20,25) and [25, 27), and theinterval is contained in asingle level-2 busy period
[20,27].

Figure 10 shows the level-1 busy periods and level-2 busy periods for 71. From this figure, we see that the level-2 busy
period never endsfor U = 1, as also becomesimmediately clear from Definition 8. Conversely, the level-2 active period that
started at timet = 0 ends at time t = 35; see also Assumption 1 and Theorem 7. We observe that the definition of level-i
busy periodisincluded in [22] (on page D-4, referring to [25]), and the notionis used in Technique 5 “ Calcul ating Response
Time with Arbitrary Deadlines and Blocking.” As shown above, the busy period never ends for U = 1. Notably, in [22] on
page 4-35 it is only mentioned that we must be sure that the[...] utilization[...] isnot greater than one. In Step 6 “Decide
if the busy period is over” the notion is used to determine whether or not the iterative procedure can be stopped. Notably,
that decision is not based on the end of the busy period, but on the end of the level-i active period, i.e. when the (worst-case)
responsetime WRi'T( of job k of task t; isless than or equal to T;; see also Theorem 13.

There is another striking difference between the level-i active period and the level-i busy period. A level-i active period
may start when atask with alower priority is still being processed, asillustrated by the level-1 active period that starts at time
t = 5in Figure 10. The corresponding level-1 busy period does not start at timet = 5, but at timet = 6.2 instead.

The fundamental difference between both notions can be traced back to their definitions; a busy period is based on a
schedule, i.e. the definition refers to processing of jobs, whereas an active period is based on (pending) load or active jobs.

8.2.2 1i-busy period in [17]

In [17], the notion of busy period is slightly modified to accommodate the fact that a task ©; may be composed of distinct
subtasks, each of which may have its own timing requirements and fixed priority. In the following definition, p ; denotes the
minimum priority of the subtasks of task ;.

Definition 9. A tj-idle instant is any time t such that all work of priority p; or higher started beforet and all t; jobs also
started beforet have completed at or beforet. O

Definition 10. A tj-busy period is an interval of time [A, B] such that both A and B are t;-idle instants and there is no time
t € (A,B) suchthatt isa ti-idle instant. O

Thisnotion of t;-busy periodis similar to our level-i active period, with as main differencethat at;-busy periodisaclosed
interval rather than aright semi-open interval. Although this difference may be viewed as philosophical, we prefer the usage
of aright semi-open interval, which we will motivate by means of Figure 10. Given Definition 9 and 10, timet = 35 belongs
to two t2-busy periods, i.e. [0,35] and [35,70]. Moreover, timet = 35 is also aty-idle instant. Hence, t;-busy periods can
overlap, and when they overlap, the overlap istermed ati-idleinstant. Thisis considered to be counter-intuitive.

8.2.3 Level-i busy period in [16]

After a brief recapitulation of the notion of level-i busy period of [25] for FPPS, an informal description of a level-i busy

period for FPNS under discrete scheduling [4] is given in Appendix A.2 of [16]. Note that for discrete scheduling, all task

parameters are integers, i.e. Ti, G, Dj € Z* and ¢; € Z* U {0}, and preemptions are restricted to integer time points.
Unfortunately, there is an inconsistency in [16]. In Appendix A.2, the following definition is given.

Definition 11. A level-i busy period is a processor busy period in which only instances of tasks with a priority greater than
or equal to that of 1; execute. O
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Accordingly, the interval of time that a lower priority task blocks task t; and its higher priority tasks is not included in the
level-i busy periodin both the text of the proof of Lemma6in Section 4.3.1 and Figure 6, which isused toillustrate that proof,
Conversely, that interval isincluded in the equation to determine the length of the level-i busy period for the non-preemptive
case, as described in Appendix A.2in [16].

Notethat [ 16] does not reproducethe definition of [25] (see Definition 8 above), but presentsanew definition. Surprisingly,
the differences between these definitions are not discussed. As an example, a (synchronous processor) busy periodin [16] is
described as aright semi-open interval on page 6, whereas the level-i busy period in [25] is aclosed interval.

The notion of level-i busy period for FPNS in [16] is similar to our notion of level-i active period under the assumption
that the equation to determine the length of alevel-i busy period for the non-preemptive case properly reflects the intention
of the authors.

8.24 Level-wj busy interval in [28]

In [28], an analysis method is described to determine the schedulability of tasks under FPPS whose relative deadlines are
larger than their respective periods, using theterm level-wt; busy interval. A level-wt; busy interval is defined as aleft semi-open
interval (to,t], i.e. the partitioning of the timeline in [28] differs from ours. Given the description in [28], our definition of
level-i active period can be viewed as a dlightly modified definition of level-nt; busy interval to accommodate our scheduling
model for FPDS.

8.3 Pessimistic variants

Given Equation (45) in Theorem 12, we observe that the worst-case response time analysis is not uniform for all tasks.
The analysis can be made uniform at the cost of potentialy introducing pessimism. This section presents two lemmas with
pessimistic variants for the worst-case response time analysis, one based on worst-case occupied times and one based on
worst-case response times. For both variants, the iterative procedure presented in Theorem 13 can be used, i.e. only the
equationsfor WRPk change, not the iterative procedure.

8.3.1 A uniform analysis based on WOP

Lemma 12. A pessimistic worst-case response time m?( of job k with 0 < k < wiP of a task 1 under FPDSand arbitrary
phasing is given by

—D

WR, = WOP(BP + (k+ 1)Ci — F) + F — KT;, (51)
where WOP(BP + (k+1)Ci — F) is the worst-case occupied time under FPPS of a task t/ with a computation time C; =
BP + (k+1)Ci — F, aperiod T/ = KT; + D; — F;, and a deadline D! = T/.

Proof. By definition, WRP(C) < WOP(C), hence WR? < WR,,. Becawise WRE(C) = WOE(C), WRy, is potentially pessimistic
forl<i<n. O

The pessimism isillustrated by the set 7> consisting of three tasks with characteristics as described in Table 2 on page 8
in Section 4.2. For the worst-case response time @ZO of the 1 job of task 1, we find

—D
WR,y = WOE(BY +Co—Ro)+Fo
= WOH(2+3-2)42

= WO5(3)+2=7+2=09.

Because @ZO > Dy, 77 is considered unschedulable under FPDS based on Theorem 12. Conversely, application of Theo-
rem 12 yieldsavalue WRS = 7 < D».

We observe that @ZO isequal to WZD as determined in Section 4.2 by means of the existing analysis as presented in [11]
and [13]. This equality is not a coincidence, for the following two reasons. Firstly, remember that because the characteristics

of the tasks of 7, are integral multiples of avalue 6 =1 and A = 0.2 < §, the value for m? does not change when A is
reduced to an arbitrary small positive value, i.e.

WR; = lim (WRE(BR +Co— (R~ &) + (Fo— )
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Secondly, we can make the following derivation using Equation (10)

lim (WRE(BZ +C2 — (R~ A)) + (R~ 4)

i (WRE(BR +Co ~ (R 4)) +Fo

= {10} WOS(BS +Co—F)+ R

These two results show that @20 - WZD for 7.

8.3.2 A uniform analysis based on WR”
We will give another pessimistic approach that is uniform for all tasks, which assumes avalue A and is based on WRP.
—D
Lemma 13. A pessimistic worst-case response time WR;, of job k with 0 < k < wiP of a task tj under FPDS and arbitrary
phasing is given by

—D
WRy = WRE(BP + (k+1)Ci — (F — A)) + (Fi — A) — KT, (52)
where
(i) WRP(BP + (k+ 1)Ci — (Fi — A)) is the worst-case response time under FPPS of a task T/ with a computation time
C/ =BP + (k+1)C— (F — A), aperiod T/ = KT + Dj — (F — A), and a deadline D} = T/;
(ii) A isan arbitrary small positive value.

—D
Proof. Because WRY(C) = WOP(C) =C, WR; o = VVR?,o = WR?. Hence, this approach is not pessimistic for i = 1. We will
now prove that WRP(C +A) — A > WOP(C) for 1 < i < n. The potentially additional pessimism introduced by Equation (52)
—D
now immediately follows from Lemma 12, i.e. WR;, > \NRE(.

By definition, task t; can start executing an additional amount of computation time A after having executed an amount C at
time WOFP (C). Because execution of that additional computation time A takes at least an amount of time A, we immediately
get WRP(C+A) > WOP(C) + A, which provesthe theorem. O

—D
Based on Equation (52) and Equation (18), we first conclude that \/\/R1 0= \/\/R1 For task 1, of 7, we therefore also find a

pessimistic value, i.e. \NR20 =0
The additional pessimism isillustrated by the set 73 consisting of three tasks with characteristics as described in Table 3
on page 9 in Section 4.2. We now reconsider that example. As explained in Section 4.2, the task characteristics are integral

—_—Db
multiples of = 0.5. For A= 0.6 > 8, wefind WR; ; = \/\/R2D = 12, which islarger than t,'s deadline. Conversely, the worst-

. —D . . : =D
case responsetime VVR2 of task 12 determined by means of Theorem 13 usi ng Lemma 12 yields WR, = WRS = 9 < D,. For
—D
A=0.4< 3, wefind VVR20 = VVR2 = 9. For thisvalue of A, WR20 = VVR2 = WRE = 9 < Dy, and reducing the value of A
—D
will not change the value found for WRz,o-

Lemma 14. When the greatest common divisor (gcdw) of the periods and computation times of the tasks exists, and is equal
to , A < d isa sufficient condition to guarantee that Lemma 13 introduces no additional pessimism compared to Lemma 12.

Proof. To provethe lemma, it sufficesto prove
A<8=WR'(BP + (k+1)Ci— (F —A)) —A=WOP(BP + (k+ 1)Ci — F).

From Theorem 2, we derive that WRP(BP + (k+ 1)Cj — (F; — A)) is given by the smallest x € R+ that satisfies the following
equation, provided that x is at most kT + D; — (F — A),

x=BP + (k+1)C — (F — A+Z{Tj

j<i
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By substituting x = X' + A, we get

X+A
x’—BP+(k+1)Ci—F.+Z[ i WC,-.
j<i Tj

When the greatest common divisor (gcdw) of the periods and computation times of the tasks exists and is equal to 9, all

task parameters are integral multiples of & (by definition), and x’ will also be an integral multiple of 8. Let X' = n, -8 and
Tj=nr, -6 for an arbitrary j < i, where Ny, N7, € N*. Now we get

[X/_'_A—‘ e+ 5
TJ' nTj '
A Ne + 4 Ny
O<=<l= | 23| = | X| 41
) I’]‘rj I’]‘rj

Hence, when gcd]R+ exists and is equal to & > A, the smallest X' ¢ R™ satisfying the recursive equation given above is a
solution for both WRP(BP + (k4 1)Cj — (F — A)) — A and WOP(BP +- (k+ 1)C; — ), which proves the lemma. O

Moreover,

We finally observe that the analysis presented in Lemma 13 is similar to the revised schedulability analysis for CAN
presented in [15]. The latter analysisis an evolutionary improvement of the analysis given by Tindell in [36, 35, 37]. A fixed
valuefor A isused in [15], corresponding to the transmission time for asingle bit on CAN .

9 Conclusions

In this paper, we revisited existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods. We showed by means of a number of examples that existing analysis is
pessimistic and/or optimistic, both for FPDS as well as for FPNS, being a specia case of FPDS. From these examples, we
concluded that the worst-case response time of atask is not necessarily assumed for the first job of atask when released at
acritical instant. The reason for thisis that the final subjob of a task can defer the execution of higher priority tasks, which
can potentially give riseto higher interference for subsequent jobs of that task. We observed that Gonzalez Harbour et a [17]
identified the same influence of jobs of atask for relative deadlines at most equal to periods in the context of fixed priority
scheduling of periodic tasks with varying execution priority.

We provided revised worst-case response time analysis, resolving the problems with existing approaches. The analysis
is based on known concepts of critical instant and busy period for FPPS, for which we gave slightly modified definitions to
accommodate for our scheduling model for FPDS. To prevent confusion with existing definitions of busy period, we used the
term active period for our definition in this document. We discussed conditions for the termination of an active period, and
presented a sufficient condition with aformal proof.

We showed that the critical instant, longest active period, and worst-case response time for atask are supremarather than
maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time cannot be assumed. We
expressed worst-case response times under FPDS in terms of worst-case response times and worst-case occupied time under
FPPS, and presented an iterative procedure to determine worst-case response times under FPDS.

We briefly compared the notion of level-i active period with similar notionsin the literature. We concluded that the notions
of tj-busy periodin[17], level-i busy periodin [16], and level-wt; busy interval in[28] are similar to our notion of level-i active
period. There are striking differences with the notion of busy period in [25], however. In particular, the level-n busy period
never ends for a utilization factor U = 1. Moreover, we observed that although [22] refersto the notion of busy period from
[25] in their description of a method to determine worst-case response times of tasks under FPDS, arbitrary phasing and
deadlines larger than periods, their termination condition is actually based on the notion of active period rather than busy
period. We aso presented uniform, but pessimistic variants of our worst-case response time analysis, and showed that the
evolutionary improvement of the analysis for CAN as presented in [15] correspondsto one of these variants.

Acknowledgements

We thank Alan Burns and Robert 1. Davis from the University of York for discussions, and the | ST-004527 funded ARTIST 2
Network of Excellence on Embedded Systems Design for making those discussions possible.



TU/e, CS-Report 06-34, December 2006 32

References

[1] N.C. Auddley, A. Burns, M.F. Richardson, and A.J. Wellings. Hard real-time scheduling: The deadline monotonic
approach. In Proc. 8" |EEE Workshop on Real-Time Operating Systems and Software (RTOSS), pages 133-137, May
1991.

[2] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.

[3] S.Baruah. The limited-preemption uniprocessor scheduling of sporadic systems. In Proc. 17 ™" Euromicro Conference
on Real-Time Systems (ECRTS), pages 137-144, July 2005.

[4] SK. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems, 2(4):301-324, November 1990.

[5] R.J. Bril. Real-time scheduling for media processing using conditionally guaranteed budgets. PhD thesis, Technische
Universiteit Eindhoven (TU/e), The Netherlands, July 2004. http://alexandria.tue.nl/extra2/200412419.pdf.

[6] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemptionistoo optimistic. Technical Report CS 06-05, Department of Mathematics and Computer Science, Technis-
che Universiteit Eindhoven (TU/e), The Netherlands, February 2006.

[7] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemption refuted. In Proc. Work-in-Progress (WP) session of the 18" Euromicro Conference on Real-Time Systems
(ECRTS), pages 1-5, July 2006.

[8] R.J. Bril, JJ. Lukkien, R.l. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. Technical Report CS 06-19, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 2006.

[9] R.J. Bril, JJ. Lukkien, R.I. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. In (to appear) Proc. 5 International Workshop on Real Time Networks (RTN), 2006.

[10] R.J. Bril, W.FJ. Verhaegh, and J.J. Lukkien. Exact worst-case response times of real-time tasks under fixed-priority
scheduling with deferred preemption. In Proc. Work-in-Progress (WP) session of the 16" Euromicro Conference
on Real-Time Systems (ECRTS), Technical Report from the University of Nebraska-Lincoln, Department of Computer
Science and Engineering (TR-UNL-CSE-2004-0010), pages 57—-60, June 2004.

[11] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In S. Son, editor, Advancesin
Real-Time Systems, pages 225-248. Prentice-Hall, 1994.

[12] A.Burns. Defining new non-preemptivedispatching and locking policiesfor Ada. In Proc. 6 " Ada-Europenternational
Conference, Lecture Notesin Computer Science (LNCS) 2043, pages 328-336, May 2001.

[13] A. Burns and A.J. Wellings. Restricted tasking models. In Proc. 81" International Real-Time Ada Workshop, pages
27-32, 1997.

[14] G.C. Buttazzo. Hard real-time computing systems - predictable scheduling algorithms and applications (2™ edition).
Springer, 2005.

[15] R.l. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedulability analysis. Refuted, re-
visited and revised. Technical Report Y CS-2006-408, University of York, Department of Computer Science, September
2006. http://www.cs.york.ac.uk/ftpdir/reports/Y CS-2006-408.pdf .

[16] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-time uni-processor scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et en Automatique (INRIA), France, September 1996.

[17] M. Gonzalez Harbour, M.H. Klein, and J.P. Lehoczky. Fixed-priority scheduling with varying execution priority. In
Proc. 12! |EEE Real-Time Systems Symposium (RTSS), pages 116128, December 1991.

[18] R. Gopalakrishnan and G.M. Parulkar. Bringing real-time scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sigmetrics Conference on Measurement & Modeling of Computer Systems, pages 1-12, May
1996.

[19] J-F Hermant, L. Leboucher, and N. Rivierre. Real-time fixed and dynamic priority driven scheduling agorithms:
theory and practice. Technical Report 3081, Institut National de Recherche et Informatique et en Automatique (INRIA),
France, December 1996.

[20] J. Hooman. Specification and Compositional Verification of Real-Time Systems. PhD thesis, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 1991.



TU/e, CS-Report 06-34, December 2006 33

[21] M. Joseph and P. Pandya. Finding response timesin areal-time system. The Computer Journal, 29(5):390-395, 1986.

[22] M.H. Klein, T. Ralya, B. Pallak, R. Obenza, and M. Gonzalez Harbour. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.

[23] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255-299, November
1990.

[24] S.Lee, C.-G.Lee, M. Leg, SL. Min, and C.-S. Kim. Limited preemptible scheduling to embrace cache memory in real-
time systems. In Proc. ACM Sgplan Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES),
Lecture Notesin Computer Science (LNCS) 1474, pages 5164, June 1998.

[25] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proc. 11" IEEE Real-Time
Systems Symposium (RTSS), pages 201209, December 1990.

[26] J.Y.T.LeungandJ. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-timetasks. Performance
Evaluation, 2(4):237-250, December 1982.

[27] C.L. Liuand JW. Layland. Scheduling algorithms for multiprogramming in a real-time environment. Journal of the
ACM, 20(1):46-61, January 1973.

[28] JW.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[29] A.K. Mok and W.-C. Poon. Non-preemptive robustness under reduced system load. In Proc. 26 ™" IEEE Real-Time
Systems Symposium (RTSS), pages 200209, December 2005.

[30] J.C. Palencia and M. Gonzélez Harbour. Offset-based response time analysis of distributed systems scheduled under
EDF. In Proc. 15" Euromicro Conference on Real-Time Systems (ECRTS 03), pages 3—12, July 2003.

[31] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to timing faults. In Proc. 23 |EEE
Real-Time Systems Symposium (RTSS), pages 315-326, December 2002.

[32] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols. an approach to real-time synchronisation. | EEE
Transactions on Computers, 39(9):1175-1185, September 1990.

[33] J. Simonson and J.H. Patel. Use of preferred preemption points in cache-based real-time systems. In Proc. IEEE
International Computer Performance and Dependability Symposium (IPDS), pages 316-325, April 1995.

[34] M. Spuri. Analysis of deadline scheduled real-time systems. Technical Report 2772, Institut National de Recherche et
Informatique et en Automatique (INRIA), France, January 1996.

[35] K.Tindell and A. Burns. Guaranteeing message | atencies on Controller AreaNetwork (CAN). In Proc. 1 International
CAN Conference, pages 1-11, September 1994.

[36] K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (CAN) message response times. Control
Engineering Practice, 3(8):1163-1169, August 1995.

[37] K. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communications. Controller area network (CAN). In
Proc. 15" |EEE Real-Time Systems Symposium (RTSS), pages 259263, December 1994.

[38] Y. Wand and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In Proc. 6" International Con-
ference on Real-Time Computing Systems and Applications (RTCSA), pages 328-335, December 1999.

A Auxiliary definitions and lemmas

Thisappendix presents auxiliary definitionsfor greatest common divisor and least common multiple for both positiverational
numbers and positive real numbers. Moreover, it presents auxiliary lemmas for a strictly increasing function f(x).

Definition 12. The greatest common divisor for positive rational numbers (gcd@+) is defined as

gcd@+(—p,£) = w where p,q,r,se N* (53)
ged? (ry,...,n) = gcd® (ra,...,1_2,0cd% (r_1,1)) forl e Nandl > 2, andry,...,r € QF (54)

O
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Definition 13. The least common multiple for positive rational numbers (Icm Q+) is defined as

ITai<iciTi

s L 55
ged®" (ry,...,n) )

lem@ (ra,....1)

wherel e Nand| > 2,andrq,...,r € Qt. O

Unlike gcd@+ and lem@” | the greatest common divisor for positive real numbers ged E" and the least common multi ple for
positive real numbers lem®" need not exist. We therefore give the following aternative definitions.

Definition 14. The least common multiple for positive real numbers (Icmw) is defined as
Icmw(rl,...,n) =min{reR"r=ny-rp=...=n-rwithng,...,m e N*}, (56)
wherel e Nandl > 2,andrq,...,r ¢ R™. O

Definition 15. The greatest common divisor for positive real numbers (gcd W) is defined as
gcdR+(rl,...,r|) =max{r e RT|ng-r=ny,...,m-r=r withny,...,n € N*}, (57

wherel e Nand| > 2, andry,...,r e R, O

Lemma 15 (Lemma4.3 of [5]). Let f(x) be defined and strictly non-decreasing in an interval [a,b] with f(a) > a and
f(b) < b. Thenthere existsa value c € (a,b) suchthat f(c) =c.

Proof. See[5]. |
Lemma 16 (Lemma4.5in [5]). When limyx f(x) is defined, and f(x) is strictly increasing in an interval (X,X +vy) for
sufficiently small y € R, then the following equation holds.

Ixi&"n [f(x)] = leilryf(x)J +1 (58)

Proof. See[5]. |

Lemma17. When limy;x f(x) is defined, and f(x) is strictly increasing in an interval (X —v,X) for a sufficiently small
v € R, then the following equation holds.

lim[f(x)] = {Iimf(x)w (59

XX XX
Proof. The proof uses the definition of limit:

limfx)=Y< v 3 v oo fx)—-Y|<e.
XX £>08>0xe(X—8,X)

Wefirst provethe relation
f(x) <Y,
X—y<x<X
and subsequently prove the lemma.
The proof of therelation is based on acontradiction argument. Because limy;x f(x) isdefined, we may writelim,x f(x) =
Y. Assume f(xq1) >Y for an x; € (X —7,X). Choose an xz € (x1,X). Because f(x) is strictly increasing in (X — v, X),
f(x2) > f(x1) > Y. Now choosee = f(x2) —Y, then

VXE(XZX)f(X) > f(Xz) >Y

and hence
FX)=Y[>[f(x) - Y[=¢,

which contradicts the fact that limy;x f(x) =Y.
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For the proof of the lemma, we consider two maincases. Y € ZandY ¢ Z. LetY € Z. According to the relation proven
above, 0 <Y — f(x) foral xe (X —7,X). Lete € (0,1]. Now thereexistsad € (0,y) suchthat 0 <Y — f(x) <e < 1forall
X€ (X=981,X), henceY > f(x) >Y—1ie [f(X)] =Y =[Y]. So,

lim[f(x)] =1lim[Y]=]Y]= {Iimf(x)w .

XX XX XX
Next, letY ¢ Z. Lete € (0,Y — | Y |]. Now thereexistsadz € (0,7) such that for all x € (X —82,X)
O<Y-f(x)<e<Y-—|Y],
hence
Y>fx)>Y—-e>|Y],
i.e

For this second main case we therefore also find

lim[f(x)] =lim[Y] =[Y] = Pimf(xﬂ ,

XIX XIX XIX
which proves the lemma. 0
The proofs of the following two lemmas are similar to the proofs of the previous two lemmas.

Lemma 18. When limy;x f(x) is defined, and f(x) is strictly increasing in an interval (X —v,X) for a sufficiently small
v € R, then the following equation holds.

imL 0] = [limf (9] 2 (60

O

Lemma 19. Whenlimyx f(x) isdefined, and f (x) isstrictly increasingin aninterval (X, X +) for sufficiently small ye R,
then the following equation holds.

lim[f(x)] = {Iimf(x)J (61)

XX x| X
O

B Ontermination of alevel-n active period

In this appendix, we give two examples of task sets with a utilization equal to 1 where the level-n active period does not
end upon a simultaneous release of the tasks. For the first example, the least common multiple of the periods does not
exist. Hence, the example shows that when Assumption 1 does not hold, the level-n active period need not end. The second
example requires an extension of the scheduling model presented in Section 2 with activation (or release) jitter. For this
extended model, it illustrates that even when the least common multiple of the periods exists, the level-n active period does
not necessarily end for a processor utilizationU = 1.

B.1 Least common multiple of the periods does not exist
Consider thetask set I's with task characteristicsas givenin Table 8. The utilizationU of I'g isequal to % + % = 1. Because
T G o
1 2 1 O

T2 T % 0
Table 8. Task characteristics of I'g.
the ratio of the periods of the tasksisirrational, the least common multiple of the periods does not exist. We will now show
that the following relation holds for the finalization time szfk of job k of task 12 under FPPS and a simultaneous release of 11
and 1, at timet =0 '

(k+ D < 5 < (k+1m+1 fork>0. (62)
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Based on Corollary 7, we therefore conclude that the level-2 active period doesnot end. Now letD 1 =Ty =2and D, =+ 1.
Given Equation (62), we derive
T=n<Ry<n+1=D; fork>0,

and therefore know that the task set is schedulable under FPPS. However, if we try to determine whether or not the task set
is schedul able under FPPS by means of the iterative procedure as described in, for example, [22], we find that the procedure
does not terminate. Thisis because the termination condition of the procedure never holds, i.e. the response time of every job
of task 12 is smaller than the deadline D, and larger than the period To.

We will now prove Equation (62). Task t1 is executing in the intervals [I T1,ITi +C1) = [In,In+1) for | € N, and the
finalization time f, P of job k of task 1, is thereforein a complementary interval [IT1+Cq, (I +1)T1) = [21 + 1,21 + 2). Let
jobk of T2 completein theinterval [2m+ 1,2m+ 2) for someme N, i.e.

2m+1< f3) <2m+2,

Becausethe utilization is 1 and we assume the tasks to be non-idling, thereisnoidletimeintheinterval [0, f 2 kP). Therefore,
theinterval [0, szf 1) contains exactly m+ 1 executions of task T1 and k+ 1 executions of task 12, i.e.

£ = (M+1)C1+ (k+1)Co = (Mm+1) + (k+ 1)%.
Substituting this latter equation in the former relation yields
2m+1< (m+1)+(k+1)g <2m+2&m< (k+1)g <m+1.
Because k,m € N, we get
m+1> (k+ 1)%

and therefore -
f5 = (m+1)+ (k+ 13> (k+ .

Moreover, because m < (k+ 1) 7, we derive

T

5 < (k+1)m+ 1.

f5r=(Mm+1)+ (k+1)

Together, these latter two relations for fZF: « prove Equation (62).

B.2 Activation jitter
With activation (or release) jitter, the rel eases of atask t; do not take place strictly periodically, with period T;, but we assume
they take place somewherein an interval of length AJ; that is repeated with period T;. More specifically, the activations ajy
satisfy

Q"0+ KTi < @iy < o™+ KT,
for some @, oi'™° € R+ U {0} with '™ — /" = AJ;. Consider task set T'g with task characteristicsas givenin Table 9. The

T G AJ
1 4 2 1
T2 4 2 0

Table 9. Task characteristics of I'g.

least common multiple of the periods T1 and T, isgiven by lem(Ty, T2) = 4. Figure 11 shows the activationsfor task T4 and 2,
ieap=Al1=1ay=(+1)Tiforl € N,anday o= 1, and the processor pending load P(t). These activations correspond
to a critical instant for task 12 for FPPS and FPDS. For this example, the pending load is periodic, i.e. P(t +4) = P(t) for
t > 1. Because P(t) > Ofort > 1, thelevel-2 active period never ends. As a consequence, the worst-case responsetime of t »
cannot be determined by means of an iterative procedure in which the response times of al activationsin the level-2 active
period are considered, irrespective of the scheduling agorithm. Hence, the common approach to determine the worst-case
response time for 12 under FPPS, FPDS, and EDF [34] does not work.
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task T, l

task T, l ¥

OB N N N

0 5 10 time
Figure 11. Activations for I'g and processor pending load P(t).

Without proof, we merely state that the worst-case length WL, of the level-n active period under arbitrary phasing and
activation jitter is given by the smallest x € R™ satisfying the following equation

where AJj is the activation jitter of task tj. As mentioned in [30], there exists a positive solution for this recursive equation
whenU < 1. The proof of thislatter claim is similar to the proof of Lemma 2 on page 16.

Figure 12 shows timelines for I'g under FPPS, FPDS, and EDF. The figure illustrates that I'g is schedulable under FPDS
7 7 7/

R =2 R,,=3 R,=3

Ryo=4 R, =4 R,=4

(a) Timeline under FPPS (b) Timeline under EDF and FPDS

Figure12. Timelinesfor I'q under FPPS, FPDS, and EDF with releasejitter and a simultaneous rel ease of both tasks at timet = 1.

and EDF for the given activations. Moreover, the scheduleis periodic, i.e. 6(t +4) = o(t) fort > 1. I' g is aso schedulable
under FPPS when the deadline D, > 6 for task t2. Under FPPS, the scheduleis also periodic, i.e. 6(t +4) = o(t) fort > 3.
Because the schedule is periodic, the worst-case response time of task T2 can be determined by considering the response
times of al jobs of 1, ina‘sufficiently long’ interval, e.g. similar to the approach described in [26].



