Wor st-caseresponse time analysis of real-timetasks
under fixed-priority scheduling with deferred preemption revisited
—with extensionsfor ECRTS 07 —

Reinder J. Bril and Johan J. Lukkien Wim F.J. Verhaegh
Technische Universiteit Eindhoven (TU/e), Philips Research Laboratories,
Den Dolech 2, 5600 AZ Eindhoven, High Tech Campus 11, 5656 AE Eindhoven,
The Netherlands The Netherlands
{r.j.bril, j.j.lukkien} @tue.nl wim.verhaegh@philips.com
Abstract

Fixed-priority scheduling with deferred preemption (FPDS) has been proposed in the literature as a viable alternative to
fixed-priority pre-emptive scheduling (FPPS), that obviates the need for non-trivial resource access protocols and reduces
the cost of arbitrary preemptions.

This paper shows that existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods is pessimistic and/or optimistic. The same problem also arises for fixed-
priority non-pre-emptive scheduling (FPNS), being a special case of FPDS. This paper providesarevised analysis, resolving
the problems with the existing approaches. The analysis is based on known concepts of critical instant and busy period for
FPPS. To accommodate for our scheduling model for FPDS, we need to slightly modify existing definitions of these concepts.
The analysis assumes a continuous scheduling model, which is based on a partitioning of the timeline in a set of non-empty,
right semi-open intervals. It is shown that the critical instant, longest busy period, and worst-case response time for a task
are suprema rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time
cannot be assumed. Moreover, it is shown that the analysisis not uniformfor all tasks, i.e. the analysis for the lowest priority
task differs from the analysis of the other tasks. These anomaliesfor the lowest priority task are an immediate consequence of
the fact that only the lowest priority task cannot be blocked. To build on earlier work, the worst-case response time analysis
for FPDSis expressed in terms of known wor st-case analysis results for FPPS. The paper includes pessimistic variants of the
analysis, which are uniformfor all tasks.

1 Introduction
1.1 Motivation

Based on the seminal paper of Liu and Layland [29], many results have been achieved in the area of analysisfor fixed-priority
preemptive scheduling (FPPS). Arbitrary preemption of real-time tasks has a number of drawbacks, though. In systems
requiring mutual access to shared resources, arbitrary preemptionsinduce the need for non-trivial resource access protocols,
such asthe priority ceiling protocol [34]. In systems using cache memory, e.g. to bridge the speed gap between processors and
main memory, arbitrary preemptionsinduce additional cache flushes and reloads. As a consequence, system performanceand
predictability are degraded, complicating system design, analysis and testing [15, 20, 26, 31, 35]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these problems, it generally leads to reduced schedulability compared to
FPPS. Therefore, alternative scheduling schemes have been proposed between the extremes of arbitrary preemption and no
preemption. These schemes are also known as deferred preemption or co-operative scheduling [12], and are denoted by
fixed-priority scheduling with deferred preemption (FPDS) in the remainder of this paper.

*This document is an extension of [10], addressing the comment of the reviewers of the Euromicro Conference of Real-Time Systems 2007 (ECRTS 07)
on apaper derived from [10].

TU/e, CS-Report 07-11, April 2007 2

Worst-case response time analysis of periodic real-time tasks under FPDS, arbitrary phasing, and relative deadlines within
periods has been addressed in a number of papers [11, 12, 15, 26]. The existing analysis is not exact, however. In [11],
it has already been shown that the analysis presented in [12, 15, 26] is pessimistic. More recently, it has been shown in
[6, 7] that the analysis presented in [11, 12, 15] is optimistic. Unlike the implicit assumptions in those latter papers, the
worst-case response time of atask under FPDS and arbitrary phasing is not necessarily assumed for the first job of that task
upon its critical instant. Hence, the existing analysis may provide guarantees for tasks that in fact miss their deadlines in
the worst-case. In [8, 9], it has been shown that the latter problem also arises for FPNS, being a special case of FPDS, and
its application for the schedulability analysis of controller area networks (CAN) [37, 38, 39]. Revised analysis for CAN
resolving the problem with the original approach in an evolutionary fashion can be found in [17].

1.2 Contributions

This paper resolves the problems with the existing approaches by presenting a novel worst-case response time analysis for
hard real-time tasks under FPDS, arbitrary phasing and arbitrary relative deadlines. The analysis assumes a continuous
scheduling model rather than a discrete scheduling model [4], e.g. al task parameters are taken from the real numbers. The
motivation for this assumption stems from the observation that a discrete view on time isin many situations insufficient; see
for example[2, 22, 25]. The scheduling model is based on apartitioning of thetimelinein a set of non-empty, right semi-open
intervals [16, 22]. The analysisis based on the concepts of critical instant [29] and busy period [27]. To accommodate for
our scheduling model for FPDS, we need to slightly modify the existing definitions of these concepts. To prevent confusion
with the existing definition of busy period, we use the term active period for our definition in this document.

In this document, we discuss conditionsfor termination of an active period, and present a sufficient conditionwith aformal
proof. Moreover, we show that the critical instant, longest active period, and worst-case response time for atask are suprema
rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time cannot be
assumed. Our worst-case response time analysisis not uniform for al tasks. In particular, the analysis for the lowest priority
task differs from the analysis for the other tasks. These anomalies for the lowest priority task are an immediate consequence
of the fact that, unlike the other tasks, the lowest priority task cannot be blocked. To build on earlier results, worst-case
response times under FPDS are expressed in terms of worst-case response times and worst-case occupied times [5] under
FPPS. We also present pessimistic variants of the analysis, which are indeed uniform for all tasks, and show that the revised
analysisfor CAN presented in [17] conformsto a pessimistic variant.

1.3 Related work

Next to continuous scheduling models, one can find discrete scheduling modelsin the literature, e.g. in [18, 21], and models
in which domains are not explicitly specified [16, 24, 30]. Because the equations for response time analysis depend on the
model, we prefer to be explicit about the domains in our model. As mentioned above, our scheduling model is based on a
partitioning of the timeline in a set of non-empty, right semi-open intervals. Alternatively, the scheduling model in [30] is
based on left semi-open intervals.

In this paper, we assume that each job (or activation) of atask consists of a sequence of non-preemptable subjobs, where
each subjob has a known worst-case computation time, and present novel worst-case response time analysis to determine
schedulability of tasks under FPDS. Similarly, George et a. assume in [18] that the worst-case computation time of each
non-preemptive job is known, and present worst-case response time analysis of tasks under FPNS. Conversely, Baruah [3]
determines the largest non-preemptive ‘ chunks' into which jobs of a task can be broken up to still ensure feasibility under
earliest deadlinefirst (EDF).

For worst-case response time analysis of tasks under FPPS, arbitrary phasing, and relative deadlines at most equal to
periods, it suffices to determine the response time of the first job of atask upon its critical instant. For tasks with relative
deadlines larger than their respective periods, Lehoczky [27] introduced the concept of a busy period, and showed that all
jobs of atask in a busy period need to be considered to determine its worst-case response time. Hence, when the relative
deadline of atask is larger than its period, the worst-case response time of that task is not necessarily assumed for the first
job of atask when released at a critical instant. Similarly, Gonzélez Harbour et a. [19] showed that if relative deadlines are
at most equal to periods, but priorities vary during execution, then again multiple jobs must be considered to determine the
worst-case response time. Initial work on pre-emption thresholds [40] failed to identify this issue. The resulting flaw was
later corrected by Regehr [33]. Worst-case response time analysis of tasks under EDF and relative deadlines at most equal to
periods described by Spuri [36] is also based on the concept of busy period.

TU/e, CS-Report 07-11, April 2007 3

1.4 Structure

This paper hasthe following structure. First, in Section 2, we present basic real-time scheduling models for FPPS and FPDS.
Next, worst-case analysis for FPPS is briefly recapitulated in Section 3. Section 4 presents various examples refuting the
existing worst-case response time analysis for FPDS. The notion of active period is the topic of Section 5. We present a
formal definition of active period and theorems with a recursive equation for the length of an active period and an iterative
procedure to determine its value. Worst-case analysis for FPDS is addressed in Section 6. We present a theorem for critical
instant and theorems to determine the worst-case response time of a task under FPDS and arbitrary phasing. Section 7
illustrates the worst-case response time analysis by applying it to some examples presented in Section 4. Section 8 compares
the notion of level-i active period with similar definitions in the literature, presents pessimistic variants of the worst-case
response time analysis, and illustrates the revised analysis for an advanced model for FPDS. The paper is concluded in
Section 9.

2 Real-time scheduling models

This section starts with a presentation of a basic real-time scheduling model for FPPS. Next, that basic model is refined for
FPDS. The section is concluded with remarks.

2.1 Basic mode for FPPS

We assume a single processor and a set 7 of n periodically released, independent tasks t1,12,...,Tn With unique, fixed
priorities. At any moment in time, the processor is used to execute the highest priority task that has work pending. So, when
atask 7; is being executed, and a release occurs for a higher priority task 1 j, then the execution of 7 is preempted, and will
resume when the execution of T has ended, as well as all other releases of tasks with ahigher priority than t; that have taken
place in the meantime.

A scheduleis an assignment of the tasks to the processor. A schedule can be defined as an integer step functionc : R —
{0,1,...,n}, whereo(t) =i withi > 0 meansthat task t; is being executed at timet, while 5(t) = 0 means that the processor
isidle. More specifically, we define 6(t) as aright-continuous and piece-wise constant function, i.e. ¢ partitions the timeline
in aset of non-empty, right semi-openintervals {[tj,tj;1)}jez. At timest;, the processor performs a context switch. Figure 1
shows an example of the execution of aset 7 of three periodic tasks and the corresponding value of the schedule o (t).

task T r A A r Y Legend:
! C C C C [] preemptionsby
higher priority tasks
tosk 72 [] execution
v
task Tz | v release

AAAAAAAAAAAAAAAAAAAAAAA
t t t

time

o(t)

—C *—C *—C *—<C *~—

A S W T A T AR

t
Figure 1. An example of the execution of a set 7 of three independent periodic tasks 11, T2, and t3, where task 11 has highest
priority, and task 13 has lowest priority, and the corresponding value of o(t).

Each task 7; is characterized by a (release) period T; ¢ R™, a computation time C; ¢ R™, a (relative) deadline Dj € R™,
where C; < min(D;, Ti), and a phasing ¢; € R™ U{0}. An activation (or release) time is a time at which atask t; becomes
ready for execution. A release of atask is also termed ajob. Thefirst job of task t; isreleased at time ¢; and is referred to as
job zero. Therelease of job k of t; therefore takes place at time ajx = @; + KTj, k € N. The (absolute) deadline of job k of t;
takes place at dix = ajx + Dj. The begin (or start) time bjx and finalization (or completion) time f;x of job k of 1; isthetime at
which t; actually starts and ends the execution of that job, respectively. The set of phasings ¢ istermed the phasing ¢ of the
task set 7.

The active (or response) interval of job k of 1; is defined as the time span between the activation time of that job and
its finalization time, i.e. [ai, fik). The response time rik of job k of 71; is defined as the length of its active interval, i.e.
rik = fik — aik. Figure 2 illustrates the above basic notions for an example job of task ;.

TU/e, CS-Report 07-11, April 2007 4

T Legend:
D [] preemptionsby
lik higher priority tasks
[] execution
v
*

task Ti |

release
deadline

T T T S B A B B

A bik fik dik A g+ time

Figure 2. Basic model for task 7.

The worst-case response time WR; of atask 1; isthe largest response time of any of its jobs, i.e.

WR; = Suprik. @)
o,k
In many cases, we are not interested in the worst-case response time of atask for a particular computation time, but in the
value asafunction of the computationtime. We will therefore use afunctional notation when needed, e.g. WR (C;). A critical
instant of atask is defined to be an (hypothetical) instant that leads to the worst-case response time for that task. Typicaly,
such an instant is described as a point in time with particular properties. As an example, a critical instant for tasks under
FPPSis given by apoint in time for which all tasks have a simultaneous release.

We assume that we do not have control over the phasing ¢, for instance since the tasks are released by external events, so
we assume that any arbitrary phasing may occur. This assumption is common in real-time scheduling literature [23, 24, 29].
We al so assume other standard basic assumptions[29], i.e. tasks are ready to run at the start of each period and do no suspend
themselves, tasks will be preempted instantaneously when a higher priority task becomes ready to run, ajob of task t; does
not start before its previous job is completed, and the overhead of context switching and task scheduling isignored. Findly,
we assume that the deadlines are hard, i.e. each job of atask must be completed at or beforeits deadline. Hence, aset 7 of n
periodic tasks can be scheduled if and only if

WR, < Dj 2

forali=1,...,n. For notational convenience, we assume that the tasks are given in order of decreasing priority, i.e. task 1 1
has highest priority and task T, haslowest priority.

The (processor) utilization factor U is the fraction of the processor time spent on the execution of the task set [29]. The
fraction of processor time spent on executing task t; isGi/Ti, and is termed the utilization factor U;" of task 7, i.e.

G
ut==. 3
=T ©)
The cumulative utilization factor U; for tasks 4 till 7; is the fraction of processor time spent on executing these tasks, and is
given by
U=y U (4)
j<i

Therefore, U is equal to the cumulative utilization factor U, for n tasks.
S

U=U=3u=3 S

j<n j<n 1

()

In [29], the following necessary condition is determined for the schedulability of a set 7 of n periodic tasks under any
scheduling algorithm.
u<i (6)

Unless explicitly stated otherwise, we assume in this document that task sets satisfy this condition.

2.2 Refined model for FPDS

For FPDS, we need to refine our basic model of Section 2.1. Each job of task t; is now assumed to consist of a sequence
of m; subjobs. The Kth subjob of 1; is characterized by a computation time Cix € R™, where C; = Zﬂllcik. We assume that
subjobs are non-preemptable. Hence, tasks can only be preempted at subjob boundaries, i.e. at so-called preemption points.
For convenience, we will use theterm F; to denote the computation time C; n, of thefinal subjob of ;. Notethat whenm; =1
for al i, we have FPNS as special case.

TU/e, CS-Report 07-11, April 2007 5

2.3 Concluding remarks

In this document, we will use the superscript P to denote FPPS, e.g. WRF denotes the worst-case response time of task
under FPPS and arbitrary phasing. Similarly, we will use the superscripts D and N to denote FPDS and FPNS, respectively.
In our basic model for FPPS, we introduced notions for points in time with a subscript identifying a task and optionally
ajob of that task, e.g. ajx is the release time of job k of task ;. In this document, we will need similar notions that are
expressed relative to a particular moment in time, e.g. the relative release time of the first job of atask at or after timets. We
will therefore also use relative versions of the notions, where relative can refer to the identification of the job and/or to the
particular moment in time, depending on the notion. As an example, let ¢(t) denote the earliest (absolute) activation of ajob

of task 7; at or after timet, i.e.
ot (29N 7
0i(t) = @i + T -Ti.

Here, the notation x* stands for max(x,0), which is used to indicate that there are no releases of t; before time ;. Because
+

@i > 0, theterm (P’T—ﬂ) is equal to the number of releases of t; in [0,t). Given ¢;(t), the relative phasing ¢;(t) is given
by ¢i(t) = ¢i(t) —t. Therelease of job k of task 7; relativeto t takes place at the relative activation time ajk(t) = oi(t) + KT,
k € N. For aj(t), both theidentification of thejob and the time are thereforerelativeto t. Similarly, the notionsrelative begin
time by (t) and relative finalizationtime fj(t) denote atime relativeto t and concern the job k of task t; relativeto t. For the
relative response time rik(t), only the identification of thejob is relative to t. We will use abbreviated representations for the
relative notions using a prime (') when the particular moment in time is clear from the context. As an example, in a context
concerning a particular moment ts, the relative activation time aj, denotes aj(ts).

3 Recapitulation of wor st-case analysisfor FPPS

For the analysis under FPPS, we only consider cases where the deadlines of tasks are less than or equal to the respective
periods. For illustration purposes, we will use a set 77 of two independent periodic tasks t1 and T2 with characteristics as
givenin Table 1.

Ti=Di G
T1 5 2
T2 7 3

Table 1. Task characteristics of 7;.

Figure 3 shows an example of the execution of the tasks t; and 12 under FPPS. Note that even an infinitesimal increase of
the computation time of either task 11 or t2 will immediately cause the job of task 15 released at time 0 to miss its deadline

T e

15 20 25 30 35
Figure 3. Timeline for 77 under FPPS with a simultaneous release of both tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective rel eases.

time

3.1 Worst-caseresponsetimes

This section presents theoremsfor the notion of critical instant and to determine worst-case response times of tasks. Although
these theorems are taken from [5], most of these results were already known; see for example[1, 23, 29]. Auxiliary lemmas
on which the proofs of these theorems and theoremsin subsequent sections are based are included in Appendix A.

Theorem 1 (Theorem 4.1in [5]). Inorder to have a maximal response time for an execution k of task 1, i.e. to have fj, —
aix = WR;, we may assume without |loss of generality that the phasing ¢ is such that ¢ j = aj for all j <i. In other words, the
phasing of the tasks' release times is such that the release of the considered execution of t; coincides with the simultaneous
release for all higher priority tasks. Thislatter pointintimeis called a critical instant for task ;. |

TU/e, CS-Report 07-11, April 2007 6

Given this theorem, we conclude that time O in Figure 3 is a critical instant for both task T4 and t2. From this figure, we
therefore derive that the worst-case response times of tasks t1 and 12 are 2 and 5, respectively. The next theorems can be
used to determine the worst-case response times analytically.

Theorem 2 (Theorem 4.2in [5]). Theworst-caseresponsetime WR; of atask 7; isgiven by thesmallest x € R that satisfies
the following equation, provided that x is at most T;.

x:ci+j§<‘i {T—ﬂ c, 7
O

Theorem 3 (Theorem 4.3in [5]). The worst-case response time WR; of task t; can be found by the following iterative pro-
cedure.

WRY = ¢ (®)

wR' L
e o X

3
&
|
(@]
4
™M

The procedureis stopped when the same valueis found for two successiveiterations of |, or whenthe deadline D ; is exceeded.
O

3.2 Worst-case occupied times

In Figure 3, task 1 is preempted at time 15 due to arelease of task 71, and resumes its execution at time 17. The span of time
from atask v'sreleasetill the moment in time that t can start or resume its execution after completion of a computation time
C istermed occupied time. The wor st-case occupied time (WO) of atask 7 isthe longest possible span of time from arelease
of 1 till the moment in time that t can start or resume its execution after completion of a computation C. In [5], it has been
shown that the worst-case occupied time can be described in terms of the worst-case response time as follows.

WO (Gi) = limWR;(x). (10)
X|Ci
Considering Figure 3, we derive that worst-case occupied times WO2(0) and WO,(C,) of task 12 are equal to 2 and 7,

respectively. The next theorems can be used to determine the worst-case occupied times analytically.

Theorem 4 (Theorem 4.4in [5]). When the smallest positive solution of (7) for a computation time C/ is at most D, the
worst-case occupied time WO; of a task ; with a computation time C; € [0,C/] is given by the smallest non-negative x € R

that satisfies

X

x—ci+2Q—J+1>cj. (11)

et Tj
j<i

O

Theorem 5 (Theorem 4.5in [5]). The worst-case occupied time WO; of task t; can be found by the following iterative
procedure.

0 >Cj forCi=0
WO, = j<i 12)
WR forCi >0
)
41 WO,
wo!"Y = Ci+2q = J+1>cj, 1=0,1,... 13)

j<i J

The procedure is stopped when the same value is found for two successive iterations of |. O

TU/e, CS-Report 07-11, April 2007 7

3.3 Concluding remarks

The proof of Theorem 4 derives Equation (11) by starting from Equation (10) and subsequently using Lemma 16.
Similarly to Equation 10, we can express WR; in terms of WOy, i.e.

WR (Ci) = limWG; (x). 149
x1G
The next two equations express that WR; (C;) and WO; (C;) are | eft-continuous and right-continuous, respectively.
WR(Gi) = limWR (x) (15)
XIGi
WO, (Ci) = limWO;(x) (16)
x|Gi
Lemmasrelated to these |atter three equations can be found in Appendix A.

4 EXxisting response time analysisfor FPDS refuted

In this section, we first recapitulate existing response time analysis under FPDS. Next, we show that the existing analysis
is pessimistic. We subsequently give examples refuting the analysis, i.e. examples that show that the existing analysisis
optimistic.

4.1 Recapitulation of existing wor st-case response time analysisfor FPDS

In this section, we recapitulate existing worst-case response time analysis for FPDS with arbitrary phasing and deadlines
within periods as described in [12, 15]. We include a recapitulation of the analysis for FPNS as presented in [39]. The main
reason for including the latter isthat it looks different from the analysis for FPDS and is a basis for the analysis of controller
area network (CAN).

411 Existinganalysisfor FPDS

The non-preemptive nature of subjobs may cause blocking of atask by at most onelower priority task under FPDS. Moreover,
atask can be blocked by at most one subjob of alower priority task. The maximum blocking B P of task 1 by alower priority
task istherefore equal to the longest computation time of any subjob of atask with apriority lower thantask t;. Thisblocking
timeisgiven by
BP =max max Cjx. (17)
j>i 1<k<m;

Strictly spoken, this blocking time is a supremum (and not a maximum) for all tasks, except for the lowest priority task, i.e.
that value cannot be assumed for i < n.

The worst-case response time m of atask 1; under FPDS, arbitrary phasing, and deadlines |ess than or equal to periods,
as presented in [12] and [15], is given by

WR = WR(BP +Ci — (F —4)) + (F — A), (18)

where WRP denotes the worst-case response time of 1; under FPPS. According to [15], A is an arbitrary small positive value
needed to ensure that the final subjob has actually started. Hence, when task t; has consumed C; — (K — A), the final subjob
has (just) started.

4.1.2 Existing analysisfor FPNS

In this section, we first recapitul ate the update of [23] givenin [39] to take account of tasks being non-preemptive. Next, we
show that the updateis very similar to the analysis for FPDS as given by Equation (18).

The non-preemptive nature of tasks may cause blocking of a task by at most one lower priority task. The maximum
blocking BiN of task t; by alower priority task is equal to the longest computation time of a task with a priority lower than
task 1i, i.e.

BN = r?g(q. (19)

D

Similarly to BP, BN isasupremum for all tasks, except for the lowest priority task, i.e. that val ue cannot be assumed for i < n.

TU/e, CS-Report 07-11, April 2007 8

=N,
The worst-case response time WR, is given by

—N
WR =w +G, (20
wherew; isthe smallest x € R that satisfies

X
x—BiN+Z[“rﬂc,-. 21)
j<i i
In this latter equation, Tres IS the resolution with which time is measured. To calculate w;, an iterative procedure based on

recurrence relationships can be used. An appropriateinitial value of this procedureis Wi(o) =BVN+3 j<iCj-
We now show that these results for FPNS are similar to the existing analysis for FPDS. To this end, we substitute w; =

W, — Tres, X=X — Tres, and Tres = A in equations (20) and (21). Hence, the worst-case response time WR. is given by

—N
WR =w{+(C -4,
wherew, isthe smallest X' € R that satisfies
Xl
X =B+A+Y [?W Cj.
j<i M
Reusing the results for FPPS, we therefore get

——N

WR =WR’(BN+A) + (Ci—A). (22)
Because we have F; = Ci and BP = BN for FPNS, Equation (22) for FPNS is similar to Equation (18) for FPDS. There is
an aspect requiring further attention, however. In particular, Equation (18) is based on an arbitrary small positive value A

whereas the analysis for FPNS is based on the resolution t,es with which time is measured. We will return to thisissuein
Section 8.3.

4.2 Existing analysisis pessimistic
Consider the set 7, consisting of three tasks with characteristics as described in Table 2. Based on (18) we derive
T D G
1 5 4 2

T 7 7 1+2
73 30 30 2+2

Table 2. Task characteristics of 75.

WR, = WRE(BD +Co— (Fo—A))+ (F—A)
= WRY(2+3—-(2-A))+(2-A)
= WRY(B+A)+(2-A)=T7+A+(2-A)=09.

However, the existing analysis does not take into account that t; can only be blocked by a subjob of alower priority task if
that subjob starts before the simultaneous release of t; and all tasks with a higher priority than t;. This aspect can be taken
into account in the analysis by replacing BP in (18) by (BP — A)*. The notation x* is used to indicate that the blocking time
can not become negative for the lowest priority task. The worst-case response time of T2 now becomes 7 — A, as illustrated
inFigure 4. For A | 0, we thereforefind a supremum (and not a maximum) equal to 7 for the worst-case responsetime of 1 ».
Asaresult, the existing analysisis pessimistic.

4.3 Existing analysisisoptimistic
Wewill give three examplesillustrating that the existing analysisis optimistic. For all three examples, deadlines are equal to
periods, i.e. D; = T;. Thefirst section shows an obvious example, i.e. an example with a utilization factor U > 1. The second
section shows an examplewith U < 1. The third section shows an examplewithU = 1.

For all three examples, the task set consists of just two tasks. For such task sets, the worst-case response time analysis

under FPDS presented in [12, 13, 15] and in [11] is very similar. In particular, the worst-case response time sz of task 12
is determined by looking at the response time of the first job of task T, upon a simultaneous release with task t1. However,
the worst-case response time of task 15 is not assumed for the first job for all three examples.

TU/e, CS-Report 07-11, April 2007 9

I 4-A
task T, -W T:Z

sk T ':

2
task T,

IIIII Lol
i 3 57
A A A

time

Figure4. Timelinefor 7, under FPDS with arelease of tasks 1, and 12 at timet = 1 and arelease of task T3 at timet = 1— A.

431 AnexamplewithU > 1

An example refuting the worst-case response time analysisis given in Table 3. Note that the utilization factor U of this set of
tasks 73 isgiven by U = 2+ %2 > 1. Hence, the task set is not schedulable. Based on (18), we derive

T=Di G
T1 5 2
T2 7 15+3

Table 3. Task characteristics of 73.

—D

WR, = WRS(B;+Co— (F2—A)) + (F2—A)
= WRS(04+45—(3—A))+(3—A)
= WRS(L5+A)+(3—A)=35+A+(3—A)=6.5.
Thisvalue correspondswith the responsetime of thefirst job of task T, upon asimultaneousrelease with task 11, asillustrated

in Figure 5. However, the same figure also illustrates that the second job of T, missesits deadline. Stated in other words, the
existing worst-case response time analysisis optimistic.

0 5 } tl me

Figure5. Timeline for 73 under FPDS with a simultaneous release of both tasks at time zero.

\§

4.3.2 AnexamplewithU <1
Another exampl e refuting the worst-case response time analysisis given in Table 4. Note that the utilization factor U of this

set of tasks 7z is given by U = 2 + %1 < 1. Hence, the task set could be schedulable. Applying (18) yields WR, = 6.1,
which corresponds with the response time of the first job of task T2 upon a simultaneous release with task t1; see Figure 6.
However, the same figure also illustrates that the second job of task T, misses its deadline.

4.3.3 AnexamplewithU =1

Consider task set 75 givenin Table 5. The utilization factor U of this set of tasksis givenby U = % + ‘%2 = 1. Thetask set
is not schedulable by FPPS, as we showed in Section 3 that the task set is only schedulable when C is at most 3. Figure 7
shows a timeline with the executions of these two tasks under FPDS with asi rqyltaneous release at time zero in an interval of
length 35, i.e. equal to the hyperperiod of the tasks. Applying (18) yields WR, = 6.2, which corresponds with the response
time of the first job of task 1, in Figure 7. However, the response time of the 51" job of task 1, is equal to 7, illustrating once
again that the existing analysisis too optimistic. Nevertheless, the task set is schedulable under FPDS for this phasing.

TU/e, CS-Report 07-11, April 2007 10

T=Di G
T1 5 2
T2 7 2+21

Table 4. Task characteristics of 7.

2 31 21 Legend:
task 1, W ? deadline miss

6.1

0 5 10 ’é 15 tme

Figure 6. Timeline for 7, under FPDS with a simultaneous release of all tasks at time zero.

Now, consider task set 7g given in Table 6, which is similar to task set 75 givenin Table 5, except for the fact that rather
than having a second subjob for task T2 it has atask t3. Figure 8 shows a timeline with the executions of these three tasks
under FPNS with a simultaneous release at time zero in an interval of length 35, i.e. equal to the hyperperiod of the tasks.

Applying (18) yields WR; = 6.2, which corresponds to the response time of the first job of task T3 in Figure 8. However,
the response time of the 5 job of task 13 is equal to 7, illustrating once again that the existing analysis is too optimistic.
Nevertheless, the task set is schedulable under FPNS for this phasing.

4.4 Concluding remark

We have shown that we cannot restrict ourselves to the response time of the first job of atask when determining the worst-
case response time of that task under FPDS. The reason for thisis that the final subjob of atask t; can defer the execution of
higher priority tasks, which can potentially give rise to higher interference for subsequent jobs of task t;. This problem can
therefore arise for all tasks, except for the highest priority task. Gonzalez Harbour et al. [19] identified the same influence of
jobs of atask for relative deadlines at most equal to periods in the context of FPPS of periodic tasks with varying execution
priority.

Considering Figure 7, we see that every job of task 12 in the interval [0,26.8) defers the execution of ajob of task t1.
Moreover, that deferred job of task t1 subsequently gives rise to additional interference for the next job of task t,. This
situation ends when the job of 15 is started at timet = 28, i.e. the 5 job of T» does not defer the execution of ajob of t1.
Viewed in a different way, we may state that the active intervals of the jobs of tasks t1 and 12 overlap in the interval [0,35).
Note that this overlapping starts at timet = 0 and ends at time't = 35, and we therefore term this interval [0, 35) a level-2
active period. Informally, alevel-i active period is asmallest interval that only contains entire active intervals of jobs of task
7; and jobs of tasks with a higher priority than task t;. Hence, the active interval of every job of atask t; is containedin a
level-i active period. To determine the worst-case response time of atask t;, we therefore only have to consider level-i active
periods. However, asillustrated by the examples shown in this section and mentioned above, we cannot restrict ourselvesto
the response time of thefirst job of atask t; when determining the worst-case response time of that task under FPDS. Instead,
we have to consider the response times of all jobs in alevel-i active period. In a subsequent section, we will show that it
suffices to consider only the response times of jobsin alevel-i active period that starts at a so-called e-critical instant.

5 Activeperiod

This section presentsaformal definition of alevel-i active period, which isbased on the notion of pending load, and theorems
to determine the length of alevel-i active period. As mentioned before, alevel-i active period may contain multiple jobs of
;. We therefore a so define the notion of alevel-(i, k) active period, and present a theorem to determine the length of such a

T=Di G
T1 5 2
T2 7 1.2+3

Table 5. Task characteristics of 7s.

TU/e, CS-Report 07-11, April 2007 11

2.0 3.2 4.4 2.6 2.6 3.8 2.0
task T, %
62 y | 540 ¢ i ggiy 58 ¢ i i 7

task 1,

0 5 10 15 20 25 30 35

Figure 7. Timelinefor 75 under FPDS with a simultaneous release of all tasks at time zero.

TG
T1 5 2
T 7 12
T3 7 3

Table 6. Task characteristics of 7Zg.

period. Informally, alevel-(i,k) active period isasmallest interval that contains k successive active intervals of jobs of task T
and al jobs of taskswith ahigher priority than task t;. These notions and theorems form the basis for the worst-case analysis
for FPDS in the next section.

We start with the definition of the notion level-i active period in Section 5.1. Next, we provide examples of level-i active
periodsin Section 5.2. The length of alevel-i active period is the topic of Section 5.3. We refine the notion of level-i active
period to level-(i, k) active period in Section 5.4, and conclude with atheorem to determineits length in Section 5.4.3.

5.1 Level-i activeperiod

The notion of level-i active period is defined in terms of the notion of pending load, which on its turn is defined in terms of
the notion of active job.

5.1.1 Activejob and pending load

Definition 1. Ajobk of atask tj isactiveat timet if and only ift € [ai, fik), where ax and fix are the activation (or release)
time and the finalization (or completion) time of that job, respectively. |

The active interval of job k of task t; is defined as the time span between the activation time of that job and its completion,
i.e. [aik, fik). We now define the notion of pending load in terms of active job, and derive properties for the pending load.

Definition 2. The pending load P (t) is the amount of processing at timet that still needsto be performed for the active jobs
of tasks 1; that are released beforetimet, i.e.

ro=([52]) o [, @)
o b e e

6.2} 5.4} 6.

\

- P
0 5 10 15 20 25 30 35 fime

Figure 8. Timeline for 7g under FPNS with a simultaneous release of all tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective rel eases.

TU/e, CS-Report 07-11, April 2007 12

where
(1) = 1 iftask T isbeing executed at timet, i.e. 6(t) =i
V= 0 otherwise

O

) +
Note that the term (P’T—ﬂ) -G in (23) is equal to the amount of processing that needs to be performed due to releases of

task 7 in [0,t). Theterm fé of (t')dt” is equal to the amount of processing that has been performed for ;. The righthand side
of (23) istherefore equal to the amount of processing at timet due to releases of jobs of task t; beforet that till needsto be
performed.

We subsequently define the notions of (cumulative) pending load P;(t) and (processor) pending load P(t).

Definition 3. The (cumulative) pending load P;(t) is the amount of processing at timet that till needs to be performed for
the active jobs of tasks Tj with j < i that are released beforetimet, i.e.

RO =3P(H)=Y (F‘T—ﬂ >+ Cj— /Ot oi ()t (24)

j<i j<i

where

Gi(t) = Y oj(t) :{ 1 ifo(t)e{l....i}

— 0 otherwise.
j<i
O

Definition 4. The (processor) pending load P(t) is the amount of processing at timet that still needs to be performed for the
active jobs of all tasksthat are released beforetimet, i.e.

P(t) = Pn(t)- (25)
U
Corollary 1. Theorder inwhich thetaskstj with j <i are executed isimmaterial for the cumulative pendingload P;. [0
For i < n, the cumulative pending load P; also depends on blocking dueto alower priority task. Asan example, let Pj(ts) =0,
then B (t) = Cs for al t € (ts,t{) under FPDS if the following three conditions hold:
e atask ts withs <iisreleased at timets,

e no other releases of 1 for j <i take placein [ts,t}), and

o asubjob of alower priority task isexecuting at timets and blockstask s during [ts, t;) dueto the non-preemptivenature
of the subjob.

Because blocking due to alower priority task does not play arole for the (processor) pending load, P(t) only depends on the
activations of tasks.

Corollary 2. The (processor) pending load P(t) is independent of the scheduling algorithm, provided that the algorithmis
non-idling. d
5.1.2 Definition of alevel-i active period

We now define the notion of level-i active period in terms of the pending load P (t).

Definition 5. Alevel-i active period isaninterval [ts,te) with the following three properties.
1. R(ts) =0;
2. R(te) =0;
3. R(t) >0 foralt e (t,te).
O
Let the blocking time B (ts) of alevel-i active period that starts at time ts be defined as the length of the (optionally empty)

initial interval during which thetaskstj with j <i areblocked by asubjob of atask with alower priority. Notethat Bn(ts) =0
and 0 < Bj(ts) < BP fori < n.

TU/e, CS-Report 07-11, April 2007 13

Lemmal. If alevel-i active period starts at time ts and ends at time te, then the following properties hold:

(i) Tasks Tj with j <'i are continuously executing in [ts,te), except for an (optionally empty) initial interval [ts,ts+ Bi(ts))
during which the tasks are blocked by a lower priority task.

(ii) Thelength L;(ts) of that level-i active period is at least B;(ts) + Cs, where a task 15 isreleased at timets.

(iii) The order in which the tasks Tj with j <i are executed isimmaterial for the length L;(ts).

Proof. (i) This property follows immediately from the non-preemptive nature of subjobs and the assumptions for fixed-
priority scheduling.

(ii) By definition, P;(ts) = 0. Because the tasks tj with j < are blocked in the (optionally empty) initia interval [ts,ts+
Bi(ts)), and the level-i active period contains at |east the activeinterval of task T, the length L (ts) of that level-i active period
isat least Bi(ts) + Cs.

(iii) This property follows immediately from the definition of alevel-i active period and Corollary 1. O

From this definition of the level-i active period in terms of the pending load P;(t), we draw the following conclusion.

Corollary 3. Thelevel-n active period isindependent of the scheduling algorithm, provided that the algorithmis non-idling.
O

Note that a level-i active period may, but need not, contain activations of task t;. In the sequel, we will call alevel-i active
period that contains an activation of task t; a proper level-i active period. Similarly, we call alevel-i active period that does
not contain an activation of t; an improper level-i active period. Unless explicitly stated otherwise, we use the phrase ‘level-i
active period’ to denote a proper level-i active period in the remainder of this document.

5.2 Examples

We will now consider two examples, one for FPPS based on the timeline in Figure 3 for 71 and one for FPDS based on the
timelinein Figure 7 for 7s.

Consider Figure 9, with atimeline for 71 under FPPS, pending loads Py(t), P5(t), and P»(t), and level-i active periods.
Notethat P (t) isequal to Pf(t) by definition. From the graph for P1(t), we find that theinterval [0, 35) contains seven level-1
active periods, corresponding with the seven activations of task 11, i.e. [0,5), [5,7), [10,12), [15,17), [20,22), [25,27), and
[30,32). The horizontal line fragments in the graph for P3(t) are caused by the fact that t» is preempted by a job of task
t1. From the graph for the pending load P»(t), we find that the interval [0,35) contains eight level-2 active periods, i.e.
[0,5), [5,7), [7,10), [10,12), [14,19), [20,25), [25,27), and [28,33). From these eight level-2 active periods, [0,5), [7,10),
[14,19), [20,25), and [28,33) are proper, i.e. contain activations of task 1 2, and [5,7), [10, 12), and [25,27) areimproper. As
mentioned before, the level-2 active period only depends on the activations of T 1 and 12, and isindependent of the scheduling
algorithm.

Consider Figure 10, with atimeline for 75 under FPDS, pending loads P1(t), P3(t), and P,(t), and level-i active periods.
From the graph for Py(t), we find that the interval [0,35) contains seven level-1 active periods, corresponding with the
seven activations of task 11, i.e. [0,2), [5,8.2), [10,14.4), [15,17.6), [20,22.6), [25,28.8), and [30,32). The horizontal line
fragments in the graph for P1(t) are caused by the fact that t1 is blocked by a subjob of task to. From the graph for the
pending load P (t), we find that the interval [0, 35) contains asingle level-2 active period, i.e. [0,35).

5.3 Length of alevel-i active period

This section presents three theorems for the length of a level-i active period. A first theorem presents a recursive equation
for the length of alevel-i active period. A next theorem states that under the following assumption alevel-i active period that
starts will also end.

Assumption 1. Either U < 1 or U < 1 and theleast common multiple (Icm) of the periods of the tasks of 7 exists. O

Hence, the assumption is a sufficient condition to guarantee that a level-i active period will end when it starts. Because we
assume; > Oforalli <n, R (0) =0forall i <n. Wetherefore concludethat, when Assumption 1 holds, thetimeline consists
of a sequence of level-i active periods, optionally preceded by and separated by idle-periods. A final theorem provides an
iterative procedure to determine the length of alevel-i active period.

Appendix B shows an example illustrating that the level-n active period need not end when Assumption 1 does not hold.

TU/e, CS-Report 07-11, April 2007 14

bl B
m%m '

Py(t)

15 20 25 30 35 time

o | 5 0 B o B N i
w:\%i;,od 7 7 7| ZZ ZZ 7 7| 4
bu';’g';od]] |]]] | 4

40 ;{
3 *\\ & o ”:\ o
F wilndin |nn||\!nn| |nn||\=nn|nn|nn|n| o bl I.\I....Im m |n||nnll\!nnlnnlnn&blnl Lovoado N |nn¢)
0 5 10 15 20 25 30 35 fime
Py(t)
5 ;{ + O

ENN & &

E N\ b

f S \ A A A \ \

F FITL FYTTY FETA ATETI FT" “PIT [T | TR T T h\!nnlnn I nnlnnlnnll\!nl FETY PETTE TETI YT PP TP m | T |nnmnn||n

E 15 {0 B 30 Pogs time
acﬁ'\‘j‘é‘;')jiod vy //WW/ W/ W///////////////////ﬁ W/ I W/////////////////////,l 1
bu',_;’r‘j'éﬁo ’ W W// ///1 W// % W// il B

Figure 9. Timeline for 73 under FPPS, pending loads Py (t), P3(t), and P,(t), and level-i active periods and level-i busy periods.
From the eight level-2 active periodsin theinterval [0, 35), five are proper, i.e. [0,5), [7,10), [14, 19), [20,25), and [28,33) contain
activations of task to. The other three are improper, i.e. [5,7), [10,12), and [25,27).

5.3.1 A recursiveequation
Theorem 6. Thelength L;(ts) of a level-i active period that starts at timets is found for the smallest x € R™ that satisfies the

following equation

. +

x:Bi(tS)+z_qx_+j'(ts)D -Gj. (26)
j<i

Proof. Becausethelevel-i active period starts at timets, P, (ts) = O by definition. Now assume the level-i active period under
consideration ends at timete. Hence, timete is the smallest t larger than ts for which P;(t) = 0, and the length L;(ts) of the

TU/e, CS-Report 07-11, April 2007 15

b e 8

task 1,

Py(t)
2 f o
T nnlnnllnilnl T T lnllnilnlnnll mnm .i. nmh .Innl.ni. nmh llnnllnilnlln I ||ni|n||n nnlnnlnn'L
Pttt ° e 5 AT R A R et * ™ time
0 ; 5 i 10 (15 ; 20 ; .3 I B
w:\%i;io | o N i v 4
bug"‘j';od v/ v/ 7 77 77 4
Pi(H) z{ ; ; ; : :
e e e rj
3 1 | 1 mnrmi I i i .&Enl wn bl Livaalad)
0 15 20 25 30 35 tme
Py(t)
L. 5 i 5 o
5 X : S
E X A &
3 : B
PPN P T T T T | T | P T |nn[nn[|n\|* |nn|nn[nn[|:$ |nn|nn[nn'[nn[nn[nn‘lnnl Lo Do Do [
5 10 15 20 25 30 3 fme
actil\%ijiod vk

bul;;vg A

Figure 10. Timelinefor 75 under FPDS, pending loads Py (t), P3(t), and P»(t), and level-i active periods and level-i busy periods.

active period becomeste — ts. We now derive (26) from P (te) = 0.

{(24)) %G%WYQ—/J%(M
B () o L

j<i ts

- —0} ZGGT%MD -Cj—/teci(t)dt

j<i ts

Ri(te)

=0

From Lemma 1, we derive that the lower priority task isexecutingin [ts,ts+ Bi(ts)), and only tasks tj with j < i are executing
in [ts+ Bi(ts),te). Hence, we conclude that

/te Gi(t)dt = te — (ts+ Bi(ts)).

ts

TU/e, CS-Report 07-11, April 2007 16

Substituting this result in the former equation, we get
te— (ts+ @j (t N
te— (s +Bi(ts) = Y, U— forol S))D G,
j<i i
and by subsequently substituting te = x+ts, we get (26). Because timete is the smallest t (larger thants) for which B(t) =0,
X =te —tgisthe smallest valuein R™ that satisfies (26), which proves the theorem. O

5.3.2 End of alevel-i active period

We now present a theorem which states that there exist positive solutions for the recursive equation (26) if Assumption 1
holds. To that end, we will use Lemma4.3 from [5] (see Lemma 15 in Appendix A), and first prove two lemmas.

Lemma 2. There exists a positive solution for the recursive equation (26) for the length of the level-i active periodif U; < 1.

Proof. We will prove that the condition U; < 1 is sufficient by means of Lemma4.3 of [5]. Let f be defined as

f(x B.ts+qu 9 tS)D ..

j<i

We choosea = min S, hence
<i

N
f(a) = f(mm% Bi(ts)+z<{mml<'+(pj(tsﬂ> -Cj.

= i<i
By definition, thereis at least onetask that is released at the start of the level-i active period. Let task T with k <i bereleased
at timets, i.e. @k(ts) = 0. We now get

min < 0'7

e
> 3 _ = = : — =
f(a)B.(tS)J{ T -‘Ck Bl(ts)+Ck>rp§|in > a,
hence f(a) > a. In order to choose an appropriate b, we make the following derivation.
f(x) <Bi(ts) + [TWCJ <Bi(ts) + Y, (= = Jrch_B.(ts)eru.JchJ
j<it ' i<i 'l i<i
AsU; < 1, therelation

X > Bi(ts) + XU + Y. Cj

j<i

holdsfor
Bi (ts) + 2 Cj
x> =t
- 1-U; '
We now choose
Bits) + 2. Gy
b _ JS'
o 1-U; ’

and therefore get b > f(b). Now the conditions for Lemma 15 hold, i.e. the function f(x) is defined and strictly non-
decreasing in aninterval [a, b] with f(a) > aand f(b) < b. Hence, there existsan

(ts) + 2 CJ

xe (min—qg=g))

such that x = f(x). O

TU/e, CS-Report 07-11, April 2007 17

Lemma 3. There exists a positive solution for the recursive equation (26) for the length of the level-n active period if U = 1
and the least common multiple of the periods of 7 exists.

Proof. We first observe that B (ts) = O for the level-n active period, i.e. the lowest priority task is never blocked. Next, we
distinguish two complementary cases, afirst case with ¢i(ts) = O for al i and a second case where this does not hold. We
prove the lemma by considering both cases separately.

For the first case, we prove that for Bj(ts) = 0 and ¢i(ts) = O for dl i the value x =Icm(T4,...,T,) is a solution of (26).
For these values of Bj(ts) and ¢;(ts), equation (26) simplifies to

Because [ww C = Icm(Tl,...,Tn)(T:—jj and

solution.
For the second case, we prove that the condition U = 1 and Icm of the periods of 7 exists is sufficient by means of

Lemmals. Let f bedefined as
x—0j(ts) T\ "
fx) =Y G%D .Gj.
j<n J
We choose a = minj<pCj/2. Similar to the proof of Lemma 2, we find f(a) > a. In order to choose an appropriate b, we
make the following derivation.
X

j<nt)

We now consider two disjunct cases for x = lem(Ty,..., Tn). If f(X) < ¥j<n Hﬂ Cj, we choose b = lcm(T,...,Tn), and
therefore get b > f(b). Now the conditions for Lemma 15 hold, i.e. the function f(x) is defined and strictly non-decreasing
inaninterva [a,b] with f(a) > aand f(b) < b. Hence, thereexistsanx € (minjgn%,lcm(Tl, ..., Tn)) such that x= f(x). If
f(X) =Xj<i [Tﬂ C;, wefound a (positive) solution and we are also done. O

Appendix B.1 presents an example consisting of two tasks with U = 1 and the least common multiple of the periods does not
exist, where the level-n active period does not end.

Theorem 7. If Assumption 1 holds, a level-i active period that is started at timets is guaranteed to end.

Proof. The theorem follows immediately from Lemmas 2 and 3. O

5.3.3 Aniterativeprocedure
The next theorem provides an iterative procedure to determine the length of alevel-i active period.

Theorem 8. Let the level-i active period start with arelease of atask ts at timets. If Assumption 1 holds, thelength L (ts) of
that level-i active period can be found by the following iterative procedure.

L9%s) = Bits) +Gs 27

() . +
Li(|+l)(ts) _ Bi(tS)Jrz({M-‘) -Cj, 1=0,1,... (28)
J

i<i

Proof. From Lemma 2 and Lemma 3, we know that there exists a positive solution of Equation (26) when Assumption 1
holds. To prove the theorem, we first prove that the sequence is non-decreasing. Next, we prove that the procedure stops
when the length L;(ts) is reached, i.e. for the smallest solution of Equation (26). To that end, we show that al valuesin the

sequence Lf” (ts) arelower boundson L;(ts). To show that the procedure terminates, we show that the sequence can only take
afinite number of values to reach that solution.

TU/e, CS-Report 07-11, April 2007 18

We prove that the sequence is non-decreasing, by induction. To this end,we start by noting that L fo) (ts) =Bi(ts) +Cs > 0,

and
Oy o +
Bi(tsﬂzd%wb <

j<i

I
=
—
—
n
~—
\

v

{@s(ts) = O} Bi(ts) + Cs = L ts).

Next, if L' (tg) > L ts), then we can conclude from Equation (28) that also L' "2 (t) > L (t), asfilling in a higher
valuein the right-hand side of Equation (28) gives a higher or equal result.

We next prove Li(') (ts) < Li(ts), foral 1 =0,1,..., by induction. From Lemma1 item (ii) we know L fo) (ts) = Bi(ts) +Cs <
Li(ts). Next, if Li(') (ts) isalower bound on L;(ts), then

L'(I)s—'s ’
%<{.a%¢wﬂ>.q

isalower bound on the amount of processing that needs to be performed due to rel eases of task t; and its higher priority tasks
intheinterval of length Li(')(ts), and hence Li('“) (ts) isalso alower bound on L (ts).

Finally, we provethat the sequence can only take on a finite number of values. To thisend, we notethat L i(') (ts) is bounded
from below by B;(ts) + Cs and from above by the solution. O
5.4 Level-(i,k) active period
Similar to alevel-i active period, alevel-(i, k) active period is defined in terms of the notion pending load. For the definition
of alevel-(i, k) active period, we first need to refine the notion of pending load. We assume in this section that Assumption 1
holds.

54.1 A refinement of pending load

Let alevel-i active period start at timets. Asdescribed above, thelength of that period is given by the smallest x > 0 satisfying
(26). Let the length of that period be Li(ts). The number of jobsl;(ts) of task 1; in that period is now given by

O e it 29

We now refine our notion of pendingload P;(t) by considering only thefirst k41 < Ii(ts) jobs of 1; in the active period, where
keN.

Definition 6. The pending load Pik(t) in alevel-i active period that started at timets < t and ends at timete >t isthe amount
of processing at timet that still needs to be performed for at most thefirst k+ 1 < |;(ts) jobs of 7; and the jobs of tasks tj with
j <ithatarereleasedin [ts,t), i.e.

Hk(t)_min(<[w—‘>+vk+lyg+%<[w—‘>+,cj—/tci(t')dt', (30)

with i (t) as defined in Definition 3. At the start of a level-i active period and outside level-i active periods, Pik(t) is equal to
zero.]
5.4.2 Definition of alevel-(i,k) active period

Similarly, we refine our notion of level-i active period to level-(i, k) active period.

Definition 7. Alevel-(i,k) active period isan interval [ts,te) with the following three properties.
1. Pk(ts) =0;
2. Pk(te) =0;
3. Pg(t) > 0fort € (ts, te).

TU/e, CS-Report 07-11, April 2007 19

5.4.3 Length of alevel-(i,k) active period

Theorem 9. Let the number of jobs of task t; in a level-i active period that starts at time ts be given by I;(ts). The length
Lik(ts) of that level-(i, k) active period with 0 < k < l(ts) isthe smallest x € R" satisfies the following equation

x:Bi(ts)+(k+1)ci+%(["‘%}_"ﬂfq (31)

Proof. The proof is similar to the proof of Theorem 6. O

6 Worst-case analysisfor FPDS

This section provides theorems for the notions of critical instant and worst-case response times for tasks under FPDS and
arbitrary phasing, and theorems to determine the worst-case response times analytically. We assume in this section that As-
sumption 1 holds. Moreover, we consider an arbitrary level-i active period with astart at timet s. Asdescribed in Section 2.3,
we will use abbreviated representations for the relative notions using a prime (') to denote the value of these notions relative
to timets, e.g. we use &, to denote aji(ts).

6.1 A critical instant
Similar to Equation (1), the worst-case responsetime WRP of atask 1; under FPDS isthe largest response time under arbitrary

phasing, i.e.
WRP = supriy.
o,k
We can refine this equation by taking blocking of tasks and the notion of level-i active period into account. In particular, we
observe that all active intervals of jobs of task t; are contained in level-i active periods. Assuming the start of an arbitrary
level-i active period at timets, the worst-case response time VVRP of task 1; can therefore be described as

VVRID = sup max , ri/k(Bi/)(péL? s a(pi/)7 (32)

B0 Ok (B{.0.60)

wherel! is the number of jobs of task T; in that level-i active period.

We will now first present a lemma to determine the response time of job k of task t; in a level-i active period. We
subsequently present a theorem which states that given an infinitesimal time e > 0, the maximum response time of task t; is
assumed in alevel-i active period which starts at an e-critical instant. A next theorem refines Equation (32).

Lemma4. Theresponsetimer], of job k of task 1; in a level-i active period that starts at timets with 0 < k < I/ and I/ the
number of jobs of task t; in that level-i active period is given by

ri/k(Bi/a(péln s ;(P:) = i/k.m (Bl/a(PéIJ s 5(pi/—l) +hK-— (kT| + (pl/)7 (33)

whereb/, . istherelative begin time of the final subjob of job k, given by the smallest non-negativex € R satisfying

ik,my

) +
x—B{+(k+1)Ci—H+ZQX_T.(pJJ+1> -Cj. (34)
i<i j

Proof. We first look at the relative begin time b{k‘m of the final subjob of that job k, and subsequently describer, in terms

of the relative begin time, the relative activation time a;, and the computation time F; of that final subjob.

Thefinal subjob of job k of task 1; in the level-i active period that starts at timets can begin at timets+ bi’k_’m when

o the blocking subjob of the lower priority task has executed B/;

e al higher priority tasksthat are released in [ts, ts+ bjy .. | have acompletion in that interval;

e al earlier jobs of task 7j and all earlier subjobs of job k that are released in [ts,ts + bfy ;.] have a completion in that
interval.

TU/e, CS-Report 07-11, April 2007 20

Note that the order in which the subjobs in the interval [ts,ts + bj, | are executed is irrelevant for the begin time of the
final subjob of job k of task ;. Stated in other words, the final subjob of job k of task t; can start for the smallest ts+ x >
ts+ max (B, &) for which limy i x Pk(t) = Fi. We now derive

_ AT\ t—(ts+)\

j<i

+
=i [0) ey (m [CE]) g
= m|n(<t£tlsrﬂx[T k+1)-Gi+ Y tHSTX T Cj . ci(t)adt

j<i

= {Lemmail6} min(qx%(ﬂ +1)+,k+ 1)-G+Y <{X;®GJ +1>+'Cj —/tts+xci(t')dt'

I j<i J

/ +
= {x>max(B,¢/+k-T)} (k+1).ci+qu;(p’J+1> .Cj— (x—B))
j<i J

Therelative begintime bj, .. (B, 9}, ..., ¢ ;) istherefore the smallest non-negative x € R satisfying the following equation:

X— @' *
x=B+k+)G-F+3 (| =2 |+1) -c.
j<i Tj
The relative completion time f}, of job k of 7 is now given by the relative begintime by, . plusthe computationtime F;, i.e.

ik,my
ik = Bixm + Fi- Theresponsetimerj, of the job k is given by the relative completion time f;j minus the relative activation

timeaj,, i.e
ri/k(Bi/a(péln s ;(P:) - i/k,m (Bl/a(PéIJ s 5(pi/—l) +F - (kT| + (pl/)
(]

Theorem 10. Given an infinitesimal time € > 0, the maximum response time of task t; under FPDS and arbitrary phasing
is assumed when the level-i active period is started at an e-critical instant, i.e. when t; has a simultaneous release with all

higher priority tasks and a subjob of thelower priority tasks with computationtime BP startsatime € before that simultaneous
release.

Proof. Let R/(B{,},...,¢/) denote M&X o< k1! (Bl......01) (Bl oL,....¢). Wewill provethat R(B{,7,...,9]) assumes a
maximum for ¢ = 0 with j <i and Bj = (BP — e)+. Hence, the maximum is assumed when t; has a simultaneous release
with al higher priority tasks, and asubjob of alower priority task with computationtime B P starts an infinitesimal timee > 0
before that simultaneous release, which proves the theorem.

Based on Theorem 7, i.e. termination of alevel-i active period under Assumption 1, we conclude that

o only afinite number of jobs need to be considered to determine the worst-case response time of task 1 ;;

e every job of 1; in alevel-i active period has afinite responsetime.
We will now look at the value of the length L| of the level-i active period, the number | of jobs of task t; in the level-i
active period, and the response time r{, as afunction of the relative phasing ¢ with j < i and the blocking time Bj. Consider

Equation (26) for the length L{ of a level-i active period. The term XT%W in that equation is a strictly non-increasing
function of ¢ with j <i. Because ¢} > 0, a maximum of that term is assumed for ¢ = 0. Moreover, the righthand side
of Equation (26) is astrictly increasing function of B/, and the length L is therefore also a strictly increasing function of Bj.
Thelargest value of L] isfound for the largest value of B under consideration, i.e. for Bf = (BP — e)*. Asaconsequence, L]
assumes a maximum for (p’; =Oforal j<iandB/ = (BP —¢)".

Given the behavior of L| and Equation (29), we conclude that the number of jobs|| of task t; in the level-i active period is
astrictly non-increasing function of (p’j with j <i and astrictly non-decreasing function of B{. As a consequence, |{ assumes
amaximum for ¢ = Oforal j <iandB/ = (B —¢)".

TU/e, CS-Report 07-11, April 2007 21

From Equation (33), we concludethat r{, (B{, ¢/,...,¢{) isastrictly decreasing function of ¢;. Because ¢{ > 0, amaximum
is assumed for ¢j = 0. Now consider Equation (34) for the relative begin time bi’km. The term {X_T;P"J in that equation is

Similarly to ¢f, ¢j > 0, amaximum of that term is therefore assumed for ¢ = 0.
(B, @1,---,9i_1) for al values of Bf and all values of ¢} with j <i. Moreover,
the righthand side of Equation (34) is a strictly increasing function of Bj, and bj, .. (B{,0,...,0) is therefore also a strictly

increasing function of Bj. The largest value of bjy ., (B{,0,...,0) isfound for the largest value of Bj under consideration, i.e.

forB/ = (BP —¢) . Asaconsequence, r'y (B}, @, ..., ¢!) also assumesamaximum for ¢ = Oforall j <iandB{ = (BP — e)".

From the values of Lj, I{ and rj, as afunction of the relative phasing ¢} with j < i and the blocking time Bj, we conclude
that R/ (B{,¢},...,¢]) isastrictly non-increasing function of ¢, ..., ¢{_,, astrictly decreasing function of ¢{, and a strictly
increasing function of B{. Asaresult, Ri(B{, ¢}, .., ¢{) assumesamaximumfor ¢} = Owith j <iand Bf = (BP —e)+, which
proves the theorem. |

astrictly non-increasing function of ¢

L
Hence, by, ., (B{,0,...,0) dominates bi)k_m

Theorem 11. The worst-case response time \NRP of task 7; under FPDSand arbitrary phasing is given by

WRP = lim max rh((B°—¢)",0,...,0). 35
£10 0<k<I/((BP—e)* 0....0) 'k<(")) (35)

Proof. Once again, let Ri(B{, ¢}, ..., ¢{) denote maXo_y /(g0 _e)+ 0, 0) Mk ((BP—E)Jr ,O,.H,O). From the proof of Theo-

rem 10, we derivethat R{(B],0,....,0) dominates Ri(Bj, ¢y, ..., ¢;) for all values of B and all values of ¢ with j <i, i.e.

WR® = sup R(B@h,....¢)

= supR(B,0,...,0)

Moreover, R (B[, ¢}, ...,¢}) isastrictly increasing, i.e. monotonic, function of B{. Hence,

VVRID = SupRll(Bl/aOaao)

B

— limR D_ o\t
_ |S|ng{((|3I e) ,o,.u,o),
which proves the theorem. O

In the sequel, we will omit trailing zeros in the parameter list, e.g. we writer ((BP - e)+) when ¢} = 0for j <i.
From the previous two theorems, we draw the following conclusions.

Corollary 4. The worst-case response time VVRP is a supremum (and not a maximum) for all tasks, except for the lowest
priority task, i.e. that value cannot be assumed for i < n. (|

Corollary 5. A critical instant is a supremum for all tasks, except for the lowest priority task, i.e. that instant cannot be
assumed for i < n. O

6.2 Worst-caseresponsetimes
The next theorem describes WRP in terms of the worst-case response time WRF and worst-case occupied time WO under
FPPS.

First, we present definitions and prove three lemmas for for the worst-case length WL P of a level-i active period, the
maximum number wi P jobs of task 1; in alevel-i active period, and the worst-case response time VVR}?(of job k of task ;.

Definition 8. The worst-case length WLP of level-i active period under FPDS is the largest length of that period under
arbitrary phasing, i.e.
WL = sup Li(B}@h.....¢)- (36)

O

TU/e, CS-Report 07-11, April 2007 22

Definition 9. The worst-case number wiP of jobs of task 7; in a level-i active period under FPDSis the largest number in

that period under arbitrary phasing, i.e.

W|iD = Sup ||/(B|/,(p&7,(p|/) (37)
Bl,¢),--, 0]

O

Definition 10. The worst-case response time\NRPk of job k of task 7j, with 1 < k < wiP, under FPDSis the largest response
time of job k of t; under arbitrary phasing, i.e.

Wa’iz wp M (B, L., 9)). (38)

(I
Lemma 5. Theworst-case length WLP of a level-i active period with i < nunder FPDSis given by the smallest x ¢ R* that
satisfies the following equation
X
x=BP = |C. 39

/

Proof. Theterm [X_qu’jw in Equation (26) is a strictly non-increasing function of (p’j with j <i. Because (p’j > 0, amaximum

of that term is assumed for ¢ = 0. Now let L{(B;) denote the length of alevel-i active period with i < n for asimultaneous
release of task t; with all tasks with a higher priority. Hence, L{(B{) is the smallest x € R" satisfying equation (26) with
9] =0,i.e thesmallest x € R* satisfying

Xx=B+Y { W (40)
j<i
We will now consider thecasesi < nand i = n separately.
{i = n} Thelowest priority task is never blocked, therefore B = 0, and we immediately get (39) by substituting B/ = 0in
equation (40) fori = n.
{i < n} Therighthand side of equation (40) is a strictly increasing function of B{, and L{(B{) is therefore also a strictly
increasing function of B/. The largest valuefor L/(B/) is found for the largest value of B/ < BP. Hence, WLP is given by

WLP = lim Li(B]). (41)
B/1BP

Given Lemma 17, we can make the following derivation starting from this equation.

\/\ILE3 = {(40)} ||m <B/+ZF_/ B/)—‘)
j<i
BD+Z lim [Lilg_ljai,)ij

j<iB{1BP

{Lemmal17} BP + Y | lim Li(B) Ci
i=eee T

{@)}BP+Y { JDW

j<i

Hence, the worst-case length WLP is the smallest x € R* satisfying (39), which proves the lemma. O

Because BP is a supremum (and not a maximum) for all tasks, except for the lowest priority task, we draw the following
conclusion from the previous lemma.

Corollary 6. The worst-case length WLP is a supremum (and not a maximum) for all tasks, except for the lowest priority
task, i.e. that value cannot be assumed for i < n. d

TU/e, CS-Report 07-11, April 2007 23

Lemma 6. The maximum number wiP of jobs of task 7j in a level-i active period with i < n under FPDSis given by

WP — [Wﬂ | “2)

Proof. Wefirst derive Equation (42) and subsequently prove that wl P is a maximum.

As described in the proof of Theorem 10, |/(B/) is astrictly non-decreasing function of the blocking time B/. Because BP
isa supremum that cannot be assumed, the largest value for |/ (B) is therefore found for the largest value of B] < BP. Hence,
wiP is given by

wiP = lim I/(B]). (43)
B/ 1BP
Because Lf%‘?{) isastrictly increasing function of B;, we can use Lemma 17 in the following derivation
. . L/(B!
liml/(B) = lim [Mw
B/7BP P | T

= {Lemmal7} {Iim @-‘

- (e [,

Equation (42) immediately follows from Equation (43) and this latter equation.
The proof that wiP is a maximum consists of two steps. We first provethat I/ (B!) isleft-continuousin BP, i.e.

(BP) = Jim i(8): (44)

and subsequently provethat I/ (B!) is constant in an interval (BP —v,BP] for asufficiently small y € R, i.e.
v (B =wlP.
BP—y<B{<BP

To prove that 1/(B]) is left-continuous in BP, we show that L/(BP) is defined and equal to WLP, and subsequently show
that I/ (BP) = wIP. From Theorem 7, we know that L{(B]) existsif Assumption 1 holds. Moreover, considering Theorem 6
and Lemma 5, we conclude that WLP and L!(BP) are solutions of the same equation, i.e. L/(BP) = WLP. Asaresuilt, we get

To provethat I/ (B/) is constant in an interval (BP — v, BP] for asufficiently small y € R*, we use the definition of alimit:

limfx)=Y< v 3 v oo fx)—-Y|<e.
XX £>08>0xe(X—8,X)

Because l{(B]) is strictly non-decreasing and defined in BP, we have
v I{(B) <wiP.

0<B/<BP

Let € € (0,1]. Now there exists a d € (0,BP) such that 0 <wlIP —1/(B) < & < 1 for al B{ € (BP — §,BP], hence wI? >
I/(Bf) >wIP — 1. Because wIP, I/ (B]) € N, this completes the proof. O

Note that unlike WLP, the value for wiP can be assumed. Based on Lemma 6, we conclude that I/((BP —y)*) = wIP for a
sufficiently small y € R, and we can therefore exchange the order of the operatorsin Equation (35), i.e.

- imr! D_ ¢\
VVR'D*Ong\i(vIPISIIQrIk«BI)) (45)

Hence, WRY, is given by

\/\/R,!?(:ISiIgri’k<(BP—e)+). (46)

TU/e, CS-Report 07-11, April 2007 24

Lemma 7. The worst-case response time WRY, of job k with 0 < k < wiP of a task tj under FPDSand arbitrary phasing is
given by
WRP — WR:'P(BP +(k+1)G —F) +F —kT,fori<n | -
V\Dn((k+1)cn_Fn)+Fn—an fori=n

where WRP(BP + (k+1)C — F) and WOP(BP + (k+ 1)C; —) are the worst-case response time and the wor st-case occupied
time under FPPS of a task T/ with a computation time C/ = BP + (k+ 1)Ci — F;, a period T = KT; + D; — F; and a deadline
Dj=T.
Proof. Starting from Equation (46), we derive
D — limr! D_¢&)7F
VVRI?(lslwrlk ((BI 8))
; D + :
{(33)} |8|H)‘(ikm ((Bi —¢)) +F - k'ﬂ)

= limbi ((BP—£)+) +F —KT,

where b, ((BP - £)+) denotes the relative begin time of the final subjob of job k of task t; with 0 < k < wl; and ¢} = 0

for j <i asgivenin Equation (34). Hence, b}, . ((BP —e)+) isthe smallest x € R* satisfying

]

X = ((BP_8)+)+(k+1)ci—F.+% Q%J +1)c,-.

Now let task set 7’ beidentical to 7 except for the characteristics of task tj, i.e. 7/ has characteristicsC/ = (BP — s)+ + (k+
1)Ci — K, T/ =KTi+ D; — F, and D} = T;". Hence, task] of 7' misses its deadline under FPPS and arbitrary phasing if and
only if job k of task t; of 7 misses its deadline under FPDS, and arbitrary phasing and an amount of blocking (BP — e)+.
Based on Theorem 4, we can now write

ikm ((BP—8)+) :V\DF((BP—E)++ (k+1)Ci — H) ,

For i = n, we substitute BP = 0, and immediately arrive at Equation (47), which proves the lemmafor i = n.
Fori < n, we derive

WRE

: +
limwoP ((BP—2)" +(k+1)G —F) +F — kT
= {(14)} WR" (BP + (k+1)Ci —) + F — KT;,
which provesthe lemmafori < n. O

Note that because the lowest priority task is the only task that cannot be blocked, i.e. BY = 0, the worst-case response time
analysis for FPDS is not uniform for al tasks. Moreover, note that WRPk is a supremum (and not a maximum) for all tasks,
except for the lowest priority task, i.e. that value cannot be assumed for i < n.

Theorem 12. The worst-case response time WRP of a task t; under FPDSand arbitrary phasing is given by

P— max WRY. (48)
0<k<wiP

Proof. The theorem followsimmediately from Equations (45) and (46), and requires Lemma7. O

TU/e, CS-Report 07-11, April 2007 25

6.3 Aniterativeprocedure

The next theorem provides an iterative procedure to determine the worst-case response time WR P for task 1; under FPDS and
arbitrary phasing. The procedureis stopped when the worst-case response time \NR}?(of job k for task 1; exceedsthe deadline
D; or when the level-i active period is over. This latter condition is based on a property of WL P.

Lemma 8. The worst-case length WL}?(of a level-(i, k) active period under FPDSis the smallest positive x € R satisfying
the following equation

x=B+ (k+1)G+ Y H c;. (49)
j<i J

Proof. The proof is similar to the proof of Lemmab. O

Note that because BP is asupremum (and not amaximum) for all tasks, except the lowest priority task, WL ﬁ(isalso supremum
(and not amaximum) for all tasks, except the lowest priority task, i.e. that value cannot be assumed for i < n.

Lemma 9. Theworst-case length VVL}?(of alevel-(i, k) active period under FPDSis given by
WLE = WRP(BP + (k+1)C)). (50)

where WRP(BP + (k+1)Ci) isthe worst-case response time under FPPSand arbitrary phasing of a task t/ with a computation
timeC/ =BP + (k+1)Ci, aperiod T/ = (k+1)Ti + Dj and adeadline D} = T/".

Proof. ~ The lemma follows from the similarity between Equations (7) and (49). The period and deadline of task T
have been chosen to be equal to the deadline of job k+ 1 of task t;. Hence, when the iterative procedure to determine
WR (BP + (k+ 1)G;) stops because the deadline D is exceeded, the deadline d; k.1 will be exceeded as well. O

Lemma 10. Let k' € N be the smallest value for which WRP (BP + (k' + 1)Ci) < (K +1)T;. The worst-case length WLP of a
level-i active period is now given by WR (BP + (K + 1)G;).

Proof. To prove the lemma, we will prove the following equivalent relation by means of a contradiction argument

vV (WL < (k+D)Ti=k=w”-1).
0<k<wiP

We only consider k < wiP — 1, because the proof for k=w P — 1is similar.

Let WLD, < (k+1)T; for 0< k <wP — 1. Using Lemma 9, we derive WRP(BP + (k+1)Ci) < (k+ 1)T;. Hence, task]
has a completion at or before (k+1)T;, and al higher priority tasks that are released in the interval [0, WRP (BP + (k+1)G))
have a completion in that interval. Because task t; represents the executions of both the blocking lower priority task as well
as task t;, all executions of the corresponding jobs also have a completion in that interval. Hence, the level-i active period

that started with an e-critical instant ends at time WRP (BP + (k-+ 1)C;). However, we now have that the length of the level-i
D

active period equals WL, avalue that is strictly smaller than WLP, which is acontradiction. Therefore, our assumption that
WLE, < (k+1)Ti for 0 < k < wlP — 1iswrong, which provesthe lemma. O
From these lemmas, we draw the following conclusion.
Corollary 7. Thelevel-i active periodis over for the smallest k’ € N for which WRP(BP + (K’ +1)C) < (K +1)T,. O
Theorem 13. The worst-case response time WRP of a task 1; can be found by the following iterative procedure under As-
sumption 1, using (47).
0
WR? = wrY, (51)
[[
WR' = max(WRY WRB ;) 1=0,1,... (52)

The procedure is stopped when the worst-case response time WRE, of job k of task 1j exceeds the deadline D; or when the
level-i active period is over, i.e. WRP(BP + (k+1)Ci) < (k+ 1)T,.

TU/e, CS-Report 07-11, April 2007 26

Proof. Corollary 7 states that WRP(BP + (k+1)Ci) < (k+1)T; isa proper termination condition to determine whether or not
the level-i active period is over before the release of job k+ 1. Because of Theorem 7, the level-i active periods ends under
Assumption 1, and we therefore have to consider at most a finite number wi P of jobs of task 1. As aresult, the iterative
procedure ends. We observe that the iterative procedure also stops when the deadline D ; is exceeded, by the worst-case
response time WRE, of job k of 7 i.e. when the task set is not schedulable. O

Corollary 8. When Assumption 1 holds, we can derive the schedulability of a set of tasks 7 under FPDS and arbitrary
phasing by checking the schedulability criterion VVRP < Dj using Theorem 13. O

Corollary 9. To check the schedulability criterion \NRP < Dj we do not need to determine the length WLP of the worst-case
level-i active period under FPDSfirst. Instead, we can simply check whether or not the level-i active period is over after
every iteration. 0
Finally note that

° \/\/R}?k can be used asinitia valueto calculate WRP(BP + (k+ 1)C;) to determine whether or not the level-i active period
is over before the release of job k+ 1;

o WRP(BP + (k-+ 1)Ci) can be used asinitial valueto calculate WRP(BP + (k+ 2)Ci — F) to determine WRD, ;.

7 Examples

In this section, we will illustrate the worst-case response time analysis presented in Section 6 to determine the schedul ability
of tasks and task setsunder FPDS and arbitrary phasing of some examplesof Section 4 using theiterative procedure presented
in Theorem 13.

7.1 Schedulability of task 12 of 75

The schedulability of task T, of task set 7 is the topic of this section. The characteristics of the tasks of 7, can be found in
Table 2 on page 8 in Section 4.2.
To determine the worst-case response time WR2D for task 1o, we first derive BY = 2 using Equation (17). Next, we

determi neWR(ZO) usingLemma?,i.e.
WRY = WRS o = WRE(BE + Co — o) + Fo = WRE(3) +2=5+2=7.

Because WR5; < D = 7 and WR5(BR +C2) = WR5(5) = 9> T2 = 7, i.e. thelevel-2 active period is not over yet, we proceed
with the 2™ job.
For the 2" job, we find
WRD; = WRE(BD +2C; — Fp) + Fo— To = WR5(6) - 5= 10— 5=5,

and therefore WR}" = max(WR,” ,WRD,) = max(7,5) = 7. Now WRS; = 5 < D2 and WRE(BD +2C2) = WRE(8) = 14 <
2T, = 14. Hence, we know that the level-2 active period is over, all jobs of task T, meet their deadlinesin that period, and
the worst-case response time WRD = 7.

7.2 Schedulability of task 12 of 74

We will determine the schedulability of task T, of task set 74 in this section. The characteristics of the tasks of 74 can be
found in Table 4 on page 10 in Section 4.3.2.

We first determi neWR<2°) usingLemma7,i.e.
WRY = WRS g = WOB(BS +Co — Fo) + Fo = WOB(2) + 2.1 = 4+ 2.1 = 6.1.

Because WRD, < Dz = 7 and WR5(BS + Cz) = WR5(4.1) = 8.1 > T, = 7, we proceed with the 2" job.
For the 2" job, we find

WRS; = WOB(BS +2C; — o) + o — T, = WO5(6.1) —4.9=121-4.9=7.2.

Because \/\/Rz'?1 > Dy = 7, we conclude that task T2 is not schedulable.

TU/e, CS-Report 07-11, April 2007 27

7.3 Schedulability of thetask set 75

In this section, we will determine the schedulability of the task set 75. The characteristics of the tasks of 75 can be found in
Table 5 on page 10 in Section 4.3.3.

To determine the worst-case response time WRY for task 11, we first derive BD = 3 using Equation (17). Next, we

determi neVVR(ZO) using Lemma?,i.e.

WR? = WRPy = WRE(BD +Cy — F) + Fy = 3+ 2=5.

Now WRE0 =D; and WR? (B +C;) = 5= Ty. Hence, we know that the level-1 active period is over, al jobs of task t1 meet
their deadlines, and the worst-case response time WRY = 5.
Next, we determine the worst-case response time \/\/R2D for task t2. To thisend, wefirst determine \NR(ZO) using Lemma7,
i.e
WRY = WRD o = WOB(BD +Co — Fo) + Fo = WOB(1.2) + 3= 32+ 3=6.2.
Because WRD, < D2 = 7 and WRS(BS +Cz) = 8.2 > T, = 7, we proceed with the 2™ job.
For the 2" job, we find

WRD; = WOB(BR +2C; — Fo) + Fo — T, = WO5(5.4) — 4= 9.4 4=154,

and therefore WR},” = max(WRY, WRD) = max(6.2, 5.4) = 6.2. Because WRY ; < Dz and WRE(BD +2C;) = 14.4 > 2T, =
14, we proceed with the 3" job.
For the 3" job, we find

WRE, = WOB(BS +3C; — Fo) + F2 — 2T, = WO5(9.6) — 11=17.6 - 11= 6.6,

and therefore WR = max(WRS", WRD,,) = max(6.2, 6.6) = 6.6. Because WRY,, < D2 and WRE(BD +3C;) = 22.6 > 3T, =
21, we proceed with the 41" job.
For the 4! job, wefind

WRS 3 = WOB(BS +4C; — F2) + F2 — 3T, = WO5(13.8) — 18 = 23.8— 18=5.8.

and therefore WRY = max(WRéz),MR23) = max(6.6,5.8) = 6.6. Because WR5 3 < D2 and WR5 (B +4C;) = 28.8 > 4T =
28, we proceed with the 5t job.
For the 51" job, we find

WRS, = WO (BD +5C; — F) + Fo — 4T, = WO3(18) — 25= 32— 25=7,

and therefore WR,,” = max(WRS”, WRD,) = max(6.6,7) = 7. Now WRD,, = D and WR5(BS + 5C;) = 35 = 5T,. Hencewe
know that the level-2 active period is over, all jobs of task T, meet their deadlinesin that period, and the worst-case response
time WRD = 7.

Because WRP < D; for all i < n, we concludethat 7s is schedulable under FPDS and arbitrary phasing when deadlines are
equal to periods.

8 Discussion

This section presents a theorem for the worst-case response time of the highest priority task, compares the notion of level-i
active period with similar notionsin the literature, and presents pessimistic variants for the worst-case response time analysis
of tasks under FPDS and arbitrary phasing.

8.1 Worst-caseresponsetime of highest priority task

In Section 4.4, we concluded that the optimism in the existing analysis does not occur for the highest priority task. The next
theorem provides a formal basis for that conclusion, by stating that the worst-case response time of the highest priority task
71 can be found by only considering thefirst job of t1 in alevel-1 active period started at an e-critical instant.

First, we prove the following lemma

TU/e, CS-Report 07-11, April 2007 28

Lemma 11. Thefirst job of task 11 in alevel-1 active period has the largest response time of all jobs of 14 in that period.

Proof. The highest priority task 11 experiences blocking of at most one subjob of alower priority task. If thefirst job of T4
inalevel-1 active period is blocked by an amount B, its responsetime r ’170(8) becomes

Now, assume the level-1 active period contains |1 > 1 jobs of task 11. The response time r’lﬁk(B) of job k, with 0 < k < I,
becomes

rik(B) = B+ (k+ 1)C1—kT1
= B+Ci+ k(Cl—Tl)
— B+Ci+kU;—1)Ty

When task 11 is blocked by alower priority task, U1 < 1. Hence, wefind
rik(B) < B+Ci=r14(B),

which provesthe lemma. O

Theorem 14. The worst-case response time\NR? of the highest priority task t1 under FPDSis equal to
WRP = BY +C;. (53)

Proof. From equationr o(B) = B+ Cy, we concludethat ry o(B) isastrictly increasing function of B. Hence, we derive

WRP = sgpr'l,o(s) (B+Cy) =B+,

= lim
B1BY
which proves the theorem. 0

8.2 A comparison with existing notions
We will now compare our notion of level-i active period with similar notionsin the literature.

8.2.1 Leve-ibusy periodin [27]

The notion of level-i busy period originates from [27], where it has been introduced as an expedient to determine the worst-
case response times of tasks for deadlines larger than periods under FPPS and arbitrary phasing. The level-i busy period is
defined as follows.

Definition 11. Alevel-i busy periodisatimeinterval [a, b] within whichjobs of priority i or higher are processed throughout
[a,b] but no jobs of level i or higher are processed in (a—e€,a) or (b,b+ ¢) for sufficiently small € > 0. O

Figure 9 aso shows the level-1 busy periods and level-2 busy periods for 771. The level-1 busy periods in this figure only
differ fromthelevel-1 active periods by the inclusion of the end-points of the intervals by the former. The difference between
level-2 busy periods and level-2 active periodsis more significant, however. Whereastheinterval [0,12) is constituted by four
level-2 active periods, i.e. [0,5), [5,7), [7,10), and [10,12), the interval is contained in a single level-2 busy period [0, 12].
Stated in other words, the level-2 busy period unifies four adjacent level-2 active periods. Similarly, the interval [20,27) is
constituted by two level-2 active periods, i.e. [20,25) and [25, 27), and theinterval is contained in asinglelevel-2 busy period
[20,27].

Figure 10 shows the level-1 busy periods and level-2 busy periods for 771. From this figure, we see that the level-2 busy
period never ends for U = 1, as also becomes immediately clear from Definition 11. Conversely, the level-2 active period
that started at timet = O ends at timet = 35; see also Assumption 1 and Theorem 7. We observe that the definition of level-i
busy periodisincluded in [24] (on page D-4, referring to [27]), and the notion is used in Technique 5 “ Cal culating Response
Time with Arbitrary Deadlines and Blocking.” As shown above, the busy period never ends for U = 1. Notably, in [24] on
page 4-35 it is only mentioned that we must be sure that the[...] utilization[...] isnot greater than one. In Step 6 “Decide
if the busy period is over” the notion is used to determine whether or not the iterative procedure can be stopped. Notably,

TU/e, CS-Report 07-11, April 2007 29

that decision is not based on the end of the busy period, but on the end of the level-i active period, i.e. when the (worst-case)
responsetime WRﬁL of job k of task t; isless than or equal to T;; see also Theorem 13.

There is another striking difference between the level-i active period and the level-i busy period. A level-i active period
may start when atask with alower priority is still being processed, asillustrated by the level-1 active period that starts at time
t = 5in Figure 10. The corresponding level-1 busy period does not start at timet = 5, but at timet = 6.2 instead.

The fundamental difference between both notions can be traced back to their definitions; a busy period is based on a
schedule, i.e. the definition refers to processing of jobs, whereas an active period is based on (pending) load or active jobs.

8.2.2 tj-busy period in [19]

In [19], the notion of busy period is slightly modified to accommodate the fact that a task T; may be composed of distinct
subtasks, each of which may have its own timing requirements and fixed priority. In the following definition, p ; denotes the
minimum priority of the subtasks of task ;.

Definition 12. A tj-idle instant is any time t such that all work of priority p; or higher started beforet and all t; jobs also
started beforet have completed at or beforet. O

Definition 13. A tj-busy period is an interval of time [A, B] such that both A and B are t;-idle instants and there is no time
t € (A,B) suchthatt isa ti-idleinstant. O

Thisnotion of tj-busy periodis similar to our level-i active period, with as main differencethat at;-busy periodisaclosed
interval rather than aright semi-open interval. Although this difference may be viewed as philosophical, we prefer the usage
of aright semi-open interval, which we will motivate by means of Figure 10. Given Definition 12 and 13, timet = 35 belongs
to two t2-busy periods, i.e. [0,35] and [35,70]. Moreover, timet = 35 is aso at-idleinstant. Hence, 1;-busy periods can
overlap, and when they overlap, the overlap istermed a ti-idleinstant. Thisis considered to be counter-intuitive.

8.2.3 Level-i busy periodin [18]

After a brief recapitulation of the notion of level-i busy period of [27] for FPPS, an informal description of a level-i busy

period for FPNS under discrete scheduling [4] is given in Appendix A.2 of [18]. Note that for discrete scheduling, all task

parameters are integers, i.e. Ti, Ci, D € Z" and ¢; € Z" U {0}, and preemptions are restricted to integer time points.
Unfortunately, there is an inconsistency in [18]. In Appendix A.2, the following definition is given.

Definition 14. Alevel-i busy period is a processor busy period in which only instances of tasks with a priority greater than
or equal to that of t; execute. O

Accordingly, the interval of time that a lower priority task blocks task t; and its higher priority tasks is not included in the
level-i busy periodin both the text of the proof of Lemma6in Section 4.3.1 and Figure 6, which isused toillustrate that proof,
Conversely, that interval isincluded in the equation to determine the length of the level-i busy period for the non-preemptive
case, as described in Appendix A.2in [18].

Note that [18] does not reproduce the definition of [27] (see Definition 11 above), but presents a new definition. Surpris-
ingly, the differences between these definitions are not discussed. As an example, a (synchronous processor) busy period in
[18] is described as aright semi-open interval on page 6, whereas the level-i busy period in [27] isaclosed interval .

The notion of level-i busy period for FPNS in [18] is similar to our notion of level-i active period under the assumption
that the equation to determine the length of a level-i busy period for the non-preemptive case properly reflects the intention
of the authors.

8.24 Level-wj busy interval in [30]

In [30], an analysis method is described to determine the schedulability of tasks under FPPS whose relative deadlines are
larger than their respective periods, using theterm level-rt; busy interval. A level-r; busy interval isdefined as aleft semi-open
interval (to,t], i.e. the partitioning of the timeline in [30] differs from ours. Given the description in [30], our definition of
level-i active period can be viewed as a slightly modified definition of level-it; busy interval to accommodate our scheduling
model for FPDS.

8.3 Pessimistic variants

Given Equation (47) in Lemma 7, we observe that the worst-case response time analysis is not uniform for all tasks. The
analysis can be made uniform at the cost of potentially introducing pessimism. This section presents two lemmas with
pessimistic variants for the worst-case response time analysis, one based on worst-case occupied times and one based on

TU/e, CS-Report 07-11, April 2007 30

worst-case response times. For both variants, the iterative procedure presented in Theorem 13 can be used, i.e. only the
equationsfor \/\IRR< change, not the iterative procedure. We conclude this section with a retrospect on the analysis for FPDS.

8.3.1 A uniform analysis based on WOP

Lemma 12. A pessimistic worst-case response time m?(of job k with 0 < k < wiP of a task 7 under FPDSand arbitrary
phasing is given by

—D

WRy = WOP(BP + (k+ 1)Gi —) + F — kT, (54)
where WOP(BP + (k+ 1)Ci — F) is the worst-case occupied time under FPPS of a task t/ with a computation time C/ =
BP + (k+1)Ci — F;, aperiod T/ = KT, + Dj — F;, and a deadline D} = T/’

Proof. By definition, WRP(C) < WOF(C), hence WRY, < WR;. Because WRE(C) = WOP(C), WR, is potentially pessimistic
forl<i<n.]

The pessimism isillustrated by the set 7> consisting of three tasks with characteristics as described in Table 2 on page 8.
For the worst-case response time @2 o Of thefirst job of task T, wefind

—D
WRy, = WO5(B+Co—Fo)+Fo
= WO5(2+3-2)+2

= WO5(3)+2=7+2=0.

Because @20 > Dy, 7 is considered unschedulable under FPDS based on Lemma 12. Conversely, application of Lemma7
yieldsavalue WRD = 7 < D».

We observe that @20 isequal to sz as determined in Section 4.2 by means of the existing analysis as presented in [12]
and [15]. Thisequality is not a coincidence, for the following two reasons. Firstly, remember that because the characteristics

of the tasks of 77 are integral multiples of avalue 6 = 1 and A = 0.2 < 9, the value for sz does not change when A is
reduced to an arbitrary small positivevalue, i.e.

WR, = lim (WRE(BR +C; — (F2 — &) + (R~ 4)

Secondly, we can make the following derivation using Equation (10)

lim (WRy (B3 +Co— (2= 4)) + (Re—4)) = 1Im(WRE(BZ +Cz— (R —4))) + 2
= {(10)} WOS(BY +Co—Fo)+F»
= szp

These two results show that @20 —WR, for .

8.3.2 A uniform analysis based on WRP

We will give another pessimistic approach that is uniform for all tasks, which assumes a small positive value A and is based
on WR”.

—D
Lemma 13. A pessimistic worst-case response time WR;, of job k with 0 < k < wiP of a task 7; under FPDS and arbitrary
phasing is given by

WRy = WRE(B + (k-+ 1)Ci — (F &) + (i~ &) —kT (55

where

(i) WRP(BP + (k+1)Ci — (F — A)) is the worst-case response time under FPPS of a task T/ with a computation time
C/ =BP + (k+1)C— (F — A), aperiod T/ = KT + Dj — (F — A), and a deadline D} = T/;

(i) A isa sufficiently small positive number.

TU/e, CS-Report 07-11, April 2007 31

—D _p
Proof. Because WRE(C) = WOF(C) =C, WRy o =WR o= WRY. Hence, this approach is not pessimistic for i = 1. We will

now prove that WRP(C + A) — A > WOP(C) for 1 < i < n. The potential additional pessimism introduced by Equation (55)
—D
now immediately followsfrom Lemma 12, i.e. WR;, > \NRE(.
By definition, task t; can start executing an additional amount of computation time A after having executed an amount C at

time WO (C). Because execution of that additional computation time A takes at |east an amount of time A, we immediately
get WRP(C + A) > WOF(C) + A, which proves the theorem. O

Based on Equatlon (20), we first conclude that both lemmas are similar for an arbitrary small positive value of A, i.e.

IlmAwWR”(= VVRk The additional pessimism potentially introduced by Lemma 13 is illustrated by the set 77 consist-
ing of three tasks with characteristics as described in Table 7. For this example, the task characteristics are integral multiples

Ti=Di G
T1 6.5 3
T2 9 3
13 30 3

Table 7. Task characteristics of 77.

—D
of 6 =0. 5 For A= 0.6 > 3, we find WR; ; = 12, which is larger than t,’s deadline. Conversely, the worst-case response

tlmeVVR2 of task 12 determined by means of Theorem 13 using Lemma12 yields VVR2 = WRD 9< Dy ForA=0.4<3,

we find \/\/R20 = 9. For this value of A, VVR2 0= WR2 = WRD = 9 < D, and reducing the value of A will not change the
—D
value found for WR2 0
The next lemma prowdes asufficient condition to guarantee that Lemma 13 introduces no additional pessimism compared

toLemmal2.

Lemma 14. If the greatest common divisor (gcdw) of the periods and computation times of the tasks exists, and isequal to 9,
then A < ¢ isa sufficient condition to guarantee that Lemma 13 introduces no additional pessimism compared to Lemma 12.

Proof. To provethe lemma, it sufficesto prove

A<8=WR(BP 4 (k+1)Ci — (F —A)) —A=WOFP(BP + (k+1)Ci — F).
From Theorem 2, we derive that WRP(BP + (k+ 1)Cj — (F; — A)) is given by the smallest x € R+ that satisfies the following
equation, provided that x is a most kT + D; — (F — A),

x=BP + (k+1)C — (F — A+Z{Tj

j<i

By substituting x = X' + A, we get

X,:BD +(k+1)C |+Z’7

j<i

X+ﬂ
Tj

When the greatest common divisor (gcdw) of the periods and computation times of the tasks exists and is equal to 9, all
task parameters are integral multiples of & (by definition), and x” will also be an integral multiple of 5. Let X’ =n,, -8 and
Tj=nr, -& for an arbitrary j < i, whereny, nr € N*. Now we get

[X/_'_A—‘ e+ 5
TJ' nTj)

A Ny + 5 Ny
O<=<l= | 23| =|X| 41
) I’]‘rj I’]‘rj

Moreover,

TU/e, CS-Report 07-11, April 2007 32

Hence, if the gcd]R+ exists and is equal to & > A, the smallest X' € R* satisfying the recursive equation given above is a
solution for both WRP(BP + (k4 1)Ci — (Fi — A)) — A and WO (BP + (k+ 1)Ci —), which proves the lemma. O

We finally observe that the analysis presented in Lemma 13 is similar to the revised schedulability analysis for CAN
presented in [17]. Thelatter analysisis an evolutionary improvement of the analysis given by Tindell in [38, 37, 39]. A fixed
valuefor A isused in [17], corresponding to the transmission time for asingle bit on CAN .

8.3.3 A retrospect

Using our notation, the worst-case response time of atask t; under FPDS, arbitrary phasing, and deadlines |ess than or equal
to periods, as described in [30] can be given by V\/RiP(B}D +Gi). Asobserved in [14], this analysisis pessimistic, because a
task 1; cannot be preempted while executing its last subjob, i.e. Fi. The original improvement of the worst-case responsetime
of atask 1j under FPDS as presented in [14] was not based on BP as given in Equation (17), but on the maximum length of

deferred preemption, i.e. ablocking time B given by

B= max max Cj. (56)
1<j<nicksm;

Though pessimistic, this original improvement is correct, i.e. not optimistic. The problem with the analysisin [12, 15] is
caused by the fact that the non-preemptive behavior of the final subjob of task t; itself is not taken into account, asillustrated
by Figure 7 on page 11. As described in [17] in the context of schedulability analysis for CAN, this problem can therefore
be resolved at the cost of potentially introducing additional pessimism by using E:D, whichis given by

B’ = max(BP, F). (57)

Conversely, the problem with the analysisin [12, 15] does not occur when @P =BP,i.e. whenBP > F,.

8.4 An advanced model for FPDS

The model for FPDS described in Section 2.2 assumes that each job of a task t; consists of a sequence of m; subjobs. In
this section, we will illustrate by means of an example how our analytical results can be applied in a context where atask T
consists of a (rooted and connected) directed acyclic graph (DAG) of m; subjobs.

Consider Figure 11, with a DAG of subjobs representing the flow graph of task t;. The nodes of this graph represent the
subjobs and the edges represent the successor relationships of subjobs. The graph has a single root node, with a computation
time of C; 1, and two leaf nodes, with computation times C; 7 and C; 9, respectively. During the execution of a job, asingle
path from the root node to a leef is traversed. Hence, ajob will either execute the subjobs with computation times C; » and
Ci 3 or the subjob with computation time Cj 4. Similarly, ajob will either execute C s and Cj 7 or Cj g and C; 9. The structure

ol od
(<)
Figure 11. An example of a DAG of subjobs, representing the flow graph of task 7.

of task 1; plays arole during the analysis of the task itself, and for a lower priority task. The analysis of tasks with a higher
priority than 1; is similar to the case where a job consists of a sequence of subjobs. For the analysis of a task with a lower
priority than t;, we need to determine the longest computation time C; of 1; for al possible paths through the graph. For our
example, thisis equal to

G =Ci1+max(Ci2+Ci3,Ci4) +Ci s+ max(Cisg+Ci7,Cig+Cig).

For the analysis of task t; itself, every leaf node of the DAG givesrise to a case that needs to be examined individually. For
our example, we therefore get two cases, afirst case for the leaf nodeC; 7, i.e.

C = Ci1+max(Ci2+Ci3,Cia)+Cis+Cie+Ci7

F = Gy,

TU/e, CS-Report 07-11, April 2007 33

and a second case for the leaf nodeCi g, i.e.

C' = Cai+max(Ci2+4GCi3,C4)+Cis+Cig+Cio

Fill — C|.9
The worst-case response time WRP of task 1; is the maximum of the worst-case response times of these two cases. Note that
ifC'—F >C'—F"andF/ > F", thenit sufficesto consider thefirst case only. Similarly,if C' —F" >C/ —F andF" > F/,
then it suffices to consider only the second case. As an aternative, we can also take a pessimistic approach, and determine

WRP based on

max(Ci — F,G’ — F") + max(F/, ")
maX(Fi/v FI//)'

ay O
|

We will now illustrate the analysis for t; with a numerical example. Consider the set 7g in Table 8. Assume a structure of

=D G
T1 16 2
T2 24 15
T3 36 3

Table 8. Task characteristics of 7g.

each job of 12 asillustrated in Figure 11, and | et the computation times of the subjobs of task T2 begivenby C21 =1,Co2 =3,
C3=4,C4=6C5=10Cp=3C7=2Cog=1Co9=5 Wenow find C/z =1+ max(3+4, 6) +1+3+2=14,
F,=2,C) =1+ max(3+4,6)+1+1+5=15andF, =5. BecauseC, —F; =12>CJ —F) =10and F; =2 < F) =5,
we have to determine the worst-case response times for both cases. Using the analysis presented in Section 6, we find 21
for the first case and 20 for the second case. The worst-case response time of 15 is therefore assumed for the first case,
i.e. WRD = 21. For the pessimistic approach, we find C, = max(12,10) + max(2,5) = 17, F = 5, and derive aworst-case
response time for task t, equal to 24.

9 Conclusions

In this paper, we revisited existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods. We showed by means of a number of examples that existing analysis is
pessimistic and/or optimistic, both for FPDS as well as for FPNS, being a specia case of FPDS. From these examples, we
concluded that the worst-case response time of atask is not necessarily assumed for the first job of atask when released at
acritical instant. The reason for thisis that the final subjob of a task can defer the execution of higher priority tasks, which
can potentialy give rise to higher interference for subsequent jobs of that task. This problem can therefore arise for all tasks,
except for the highest priority task. We observed that Gonzalez Harbour et al. [19] identified the same influence of jobs of a
task for relative deadlines at most equal to periodsin the context of FPPS of periodic tasks with varying execution priority.

We provided revised worst-case response time analysis, resolving the problems with existing approaches. The analysis
is based on known concepts of critical instant and busy period for FPPS, for which we gave dightly modified definitions to
accommodate for our scheduling model for FPDS. To prevent confusion with existing definitions of busy period, we used the
term active period for our definition in this document. We discussed conditions for the termination of an active period, and
presented a sufficient condition with aformal proof.

We showed that the critical instant, longest active period, and worst-case response time for atask are suprema rather than
maximafor all tasks, except for the lowest priority task, i.e. that instant, period, and response time cannot be assumed. These
anomaliesfor the lowest priority task are caused by the fact that only the lowest priority task cannot be blocked. We expressed
worst-case response times under FPDS in terms of worst-case response times and worst-case occupied time under FPPS, and
presented an iterative procedure to determine worst-case response times under FPDS.

We briefly compared the notion of level-i active period with similar notionsin theliterature. We concluded that the notions
of Ti-busy periodin[19], level-i busy periodin [18], and level-wt; busy interval in[30] are similar to our notion of level-i active
period. There are striking differences with the notion of busy period in [27], however. In particular, the level-n busy period
never ends for a utilization factor U = 1. Moreover, we observed that although [24] refersto the notion of busy period from
[27] in their description of a method to determine worst-case response times of tasks under FPPS, arbitrary phasing and
deadlines larger than periods, their termination condition is actually based on the notion of active period rather than busy

TU/e, CS-Report 07-11, April 2007 34

period. We also presented uniform, but pessimistic variants of our worst-case response time analysis, and showed that the
evolutionary improvement of the analysis for CAN as presented in [17] corresponds to one of these variants. Finally, we
illustrated our analysis for amodel for FPDS, where tasks are structured as flow graphs of subjobs rather than sequences.

Acknowledgements

We thank Alan Burns and Robert I. Davis from the University of York for discussions, and the | ST-004527 funded ARTIST 2
Network of Excellence on Embedded Systems Design for making those discussions possible. We also thank the anonymous
referees of the ECRTS (European Conference on Real-Time Systems) for their comments on a paper derived from [10].
Those comments required an extension of [10] and therefore resulted in this document.

References

[1] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Hard rea-time scheduling: The deadline monotonic
approach. In Proc. 8" |EEE Workshop on Real-Time Operating Systems and Software (RTOSS), pages 133-137, May
1991.

[2] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.

[3] S.Baruah. The limited-preemption uniprocessor scheduling of sporadic systems. In Proc. 17 ™" Euromicro Conference
on Real-Time Systems (ECRTS), pages 137-144, July 2005.

[4] SK. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems, 2(4):301-324, November 1990.

[5] R.J. Bril. Real-time scheduling for media processing using conditionally guaranteed budgets. PhD thesis, Technische
Universiteit Eindhoven (TU/e), The Netherlands, July 2004. http://alexandria.tue.nl/extra2/200412419.pdf.

[6] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemption istoo optimistic. Technical Report CS 06-05, Department of Mathematics and Computer Science, Technis-
che Universiteit Eindhoven (TU/e), The Netherlands, February 2006.

[7] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemption refuted. In Proc. Work-in-Progress (WP) session of the 18" Euromicro Conference on Real-Time Systems
(ECRTY), pages 1-5, July 2006.

[8] R.J. Bril, JJ. Lukkien, R.I. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. Technical Report CS 06-19, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 2006.

[9] R.J. Bril, J.J. Lukkien, R.I. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. In (to appear) Proc. 51" International Workshop on Real Time Networks (RTN), 2006.

[10] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption revisited. Technical Report CS 06-34, Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven (TU/e), The Netherlands, December 2006.

[11] R.J. Bril, W.FJ. Verhaegh, and J.J. Lukkien. Exact worst-case response times of real-time tasks under fixed-priority
scheduling with deferred preemption. In Proc. Work-in-Progress (WP) session of the 16" Euromicro Conference
on Real-Time Systems (ECRTS), Technical Report from the University of Nebraska-Lincoln, Department of Computer
Science and Engineering (TR-UNL-CSE-2004-0010), pages 57-60, June 2004.

[12] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In S. Son, editor, Advancesin
Real-Time Systems, pages 225-248. Prentice-Hall, 1994.

[13] A.Burns. Defining new non-preemptivedispatching and locking policiesfor Ada. In Proc. 6t Ada-Europe | nternational
Conference, Lecture Notesin Computer Science (LNCS) 2043, pages 328—-336, May 2001.

[14] A.Burns, M. Nicholson, K. Tindell, and N. Zhang. Allocating and scheduling hard real-time tasks on a point-to-point
distributed system. In Proc. 13Wbrkshop on Parallel and Distributed Real-Time Systems, pages 11-20, April 1993.

[15] A. Burns and A.J. Wellings. Restricted tasking models. In Proc. 81" International Real-Time Ada Workshop, pages
27-32,1997.

[16] G.C. Buttazzo. Hard real-time computing systems - predictable scheduling algorithms and applications (2" edition).
Springer, 2005.

TU/e, CS-Report 07-11, April 2007 35

[17] R.l. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedulability analysis: Refuted,
revisited and revised. Real-Time Systems, 35(3):239-272, April 2007.

[18] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-time uni-processor scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et en Automatique (INRIA), France, September 1996.

[19] M. Gonzalez Harbour, M.H. Klein, and J.P. Lehoczky. Fixed-priority scheduling with varying execution priority. In
Proc. 12t |EEE Real-Time Systems Symposium (RTSS), pages 116128, December 1991.

[20] R. Gopalakrishnan and G.M. Parulkar. Bringing real-time scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sgmetrics Conference on Measurement & Modeling of Computer Systems, pages 1-12, May
1996.

[21] J-F. Hermant, L. Leboucher, and N. Rivierre. Real-time fixed and dynamic priority driven scheduling algorithms:
theory and practice. Technical Report 3081, Institut National de Recherche et Informatique et en Automatique (INRIA),
France, December 1996.

[22] J. Hooman. Specification and Compositional \erification of Real-Time Systems. PhD thesis, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 1991.

[23] M. Joseph and P. Pandya. Finding response timesin area-time system. The Computer Journal, 29(5):390-395, 1986.

[24] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Harbour. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.

[25] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255-299, November
1990.

[26] S.Lee, C.-G.Lee M. Lee, SL.Min, and C.-S. Kim. Limited preemptible scheduling to embrace cache memory in real-
time systems. In Proc. ACM Sgplan Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES),
Lecture Notes in Computer Science (LNCS) 1474, pages 51-64, June 1998.

[27] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proc. 11" IEEE Real-Time
Systems Symposium (RTSS), pages 201-209, December 1990.

[28] J.Y.T.LeungandJ. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-timetasks. Performance
Evaluation, 2(4):237-250, December 1982.

[29] C.L. Liuand JW. Layland. Scheduling algorithms for multiprogramming in a real-time environment. Journal of the
ACM, 20(1):46-61, January 1973.

[30] JW.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[31] A.K. Mok and W.-C. Poon. Non-preemptive robustness under reduced system load. In Proc. 26" IEEE Real-Time
Systems Symposium (RTSS), pages 200-209, December 2005.

[32] J.C. Palencia and M. Gonzélez Harbour. Offset-based response time analysis of distributed systems scheduled under
EDF. In Proc. 15" Euromicro Conference on Real-Time Systems (ECRTS 03), pages 3—12, July 2003.

[33] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to timing faults. In Proc. 23" |EEE
Real-Time Systems Symposium (RTSS), pages 315-326, December 2002.

[34] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols. an approach to real-time synchronisation. IEEE
Transactions on Computers, 39(9):1175-1185, September 1990.

[35] J. Simonson and J.H. Patel. Use of preferred preemption points in cache-based real-time systems. In Proc. IEEE
International Computer Performance and Dependability Symposium (IPDS), pages 316-325, April 1995.

[36] M. Spuri. Analysis of deadline scheduled real-time systems. Technical Report 2772, Institut National de Recherche et
Informatique et en Automatique (INRIA), France, January 1996.

[37] K.Tindell and A. Burns. Guaranteeing message | atencies on Controller AreaNetwork (CAN). In Proc. 1 ¥ International
CAN Conference, pages 1-11, September 1994.

[38] K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (CAN) message response times. Control
Engineering Practice, 3(8):1163-1169, August 1995.

[39] K. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communications: Controller area network (CAN). In
Proc. 15" IEEE Real-Time Systems Symposium (RTSS), pages 259263, December 1994.

[40] Y. Wand and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In Proc. 6" International Con-
ference on Real-Time Computing Systems and Applications (RTCSA), pages 328-335, December 1999.

TU/e, CS-Report 07-11, April 2007 36

A Auxiliary definitions and lemmas

Thisappendix presents auxiliary definitionsfor greatest common divisor and least common multiple for both positiverational
numbers and positive real numbers. Moreover, it presents auxiliary lemmas for a strictly increasing function f(x).

Definition 15. The least common multiple for positive rational numbers (Icm@+) is defined as
Ich+(r1,...,r|) :min{r €Q+|r =np-ri=...=n-rpwithng,...,n €N+}, (58)
wherel e Nand| > 2,andrq,...,r € Qt. O

Definition 16. The greatest common divisor for positive rational numbers (gcd Q+) is defined as
gcd@(rl,...,n) =max{r e Qtjng-r=ryq,....,n-r=rywithny,...,n € N*}, (59)
wherel e Nand| > 2,andrq,...,r € Qt. O

Definition 17. The least common multiple for positive real numbers(lcmw) is defined as
Icmw(rl,...,n) =min{reR"r=ny-ry=...=n-rwithng,...,m e N*}, (60)
wherel e Nand| > 2,andry,...,r ¢ R™.]

Definition 18. The greatest common divisor for positive real numbers (gcdw) is defined as
gcdw(rl,...,n) =max{r e R¥|ny-r =rq,...,n-r =r withng,...,n € NT}, (62)
wherel ¢ Nandl > 2,andry,...,r ¢ R™. O

Unlike gcd@+ and lcm?", the greatest common divisor for positive real numbers gcd E" and the least common multi plefor
positiverea numbers lcm® " need not exist.

Lemma 15 (Lemma4.3 of [5]). Let f(x) be defined and strictly non-decreasing in an interval [a,b] with f(a) > a and
f(b) < b. Thenthereexistsa valuec € (a,b) suchthat f(c) = c.
Proof. See[5]. O

Lemma 16 (Lemma4.5in [5]). When limy x f(x) is defined, and f(x) is strictly increasing in an interval (X, X+) for
sufficiently small y € R, then the following equation holds.

Ixilr)r(ﬁf(x)} = {Ixilr)rgf(x)J +1 (62)

Proof. See[5]. O

Lemma17. When limy;x f(x) is defined, and f(x) is strictly increasing in an interval (X —v,X) for a sufficiently small
v € R, then the following equation holds.

imi 1] = [lim () (63

Proof. The proof uses the definition of limit:

imf(x)=Y< v 3 v |[f(X)-Y|<e.
xIX £>08>0xe(X—8,X)

Wefirst provethe relation

f(x) <Y,
X—y<x<X

and subsequently prove the lemma.

TU/e, CS-Report 07-11, April 2007 37

The proof of therelation is based on acontradiction argument. Because limy;x (x) isdefined, we may writelim,x f(x) =
Y. Assume f(xq1) >Y for an x; € (X —7,X). Choose an x2 € (x1,X). Because f(x) is strictly increasing in (X — v, X),
f(x2) > f(x1) > Y. Now choosee = f(x2) —Y, then

VXE(XZX)f(X) > f(Xz) >Y
and hence
T =Y[>[f(x2) —Y[=¢,

which contradicts the fact that limy;x f(x) =Y.

For the proof of the lemma, we consider two maincases. Y € ZandY ¢ Z. LetY € Z. According to the relation proved
above, 0 <Y — f(x) foral xe (X —v,X). Lete € (0,1]. Now thereexistsad € (0,y) suchthat 0 <Y — f(x) <& < 1forall
X€ (X—981,X), henceY > f(x) >Y —1ie [f(X)] =Y =[Y]. So,

lim[f(x)] =lim[Y] =[Y] = Pimf(xﬂ .

XX XX XX
Next, letY ¢ Z. Lete € (0,Y — | Y |]. Now thereexistsadz € (0,7) such that for all x € (X — 32, X)
O<Y-f(x)<e<Y-—|Y],

hence
Y>fx)>Y—-e>|Y],

For this second main case we therefore also find

imrf091 =lim Y1 = Y] = |lim (]

which provesthe lemma. O

The proofs of the following two lemmas are similar to the proofs of the previoustwo lemmas.

Lemma 18. When limy;x f(x) is defined, and f(x) is strictly increasing in an interval (X —v,X) for a sufficiently small
v € R, then the following equation holds.

XX XX

lim[f(x)] = [limf(xﬂ ~1 (64)
O

Lemma 19. Whenlimyx f(x) isdefined, and f (x) isstrictly increasingin aninterval (X, X+) for sufficiently small ye R,
then the following equation holds.

lim|f(x)] = anf(x)J (65)

x| X x| X
(I

B Ontermination of alevel-n active period

In this appendix, we give two examples of task sets with a utilization equal to 1 where the level-n active period does not
end upon a simultaneous release of the tasks. For the first example, the least common multiple of the periods does not
exist. Hence, the example shows that when Assumption 1 does not hold, the level-n active period need not end. The second
example requires an extension of the scheduling model presented in Section 2 with activation (or release) jitter. For this
extended model, it illustrates that even when the least common multiple of the periods exists, the level-n active period does
not necessarily end for a processor utilizationU = 1.

TU/e, CS-Report 07-11, April 2007 38

T G o
71 2 1
2 n 5 0

Table 9. Task characteristics of 7g.

B.1 Least common multiple of the periods does not exist
Consider thetask set 7g with task characteristicsas givenin Table 9. The utilization U of 79 isequal to % + %2 _ 1. Because

the ratio of the periods of the tasksisirrational, the least common multiple of the periods does not exist. WeTc will now show
that the following relation holds for the finalization time f ;, « Of job k of task to under FPPS and a simultaneous release of 11
andty attimet =0

(k+Dr < f5) < (k+1)m+1 fork>0. (66)

Based on Corollary 7, we therefore conclude that the level -2 active period doesnot end. Now letD 1 =Ty =2and D, =n+ 1.
Given Equation (66), we derive
T =n<R <n+1=D, fork>0,

and therefore know that the task set is schedulable under FPPS. However, if we try to determine whether or not the task set
is schedulable under FPPS by means of the iterative procedure as described in, for example, [24], we find that the procedure
does not terminate. Thisis because the termination condition of the procedure never holds, i.e. the response time of every job
of task 12 is smaller than the deadline D, and larger than the period Ta.

We will now prove Equation (66). Task t1 is executing in the intervals [IT1,1T1 4+ C1) = [2,21 + 1) for | € N, and the
finalization time f;k of job k of task 1 is therefore in a complementary interval [IT1 +Cy, (1 +1)T1) = [21 +1,21 + 2). Let
jobk of T2 completein theinterval [2m+ 1,2m+ 2) for someme N, i.e.

2m+1< f5, <2m+2.

Because the utilization is 1 and we assume the tasks to be non-idling, thereis no idletime in theinterval [0, f ; «)- Therefore,
theinterval [0, szf 1) contains exactly m+ 1 executions of task T1 and k+ 1 executions of task 12, i.e.

k= (M+1Cu+ (k+ 1)Cz = (m+ 1) + (k+ 1) 5.
Substituting this latter equation in the former relation yields
2m+1< (m+1)+(k+l)g <2m+2&m< (k—s—l)g <m+1

Because k,m € N, we get
m+1> (k+1)

NI a

and therefore
T

for = (m+1)+ (k+1) 5

> (k+1)m.

Moreover, because m < (k+ 1) 7, we derive
T
k= (M+ 1)+ (k+ D3 < (k+m+1.

Together, these latter two relations for fZF’ « prove Equation (66).

B.2 Activation jitter

With activation (or release) jitter, the rel eases of atask t; do not take place strictly periodically, with period T;, but we assume
they take place somewherein aninterval of length AJ; that is repeated with period T;. More specifically, the activations satisfy

Sl‘<J|p(aik—aa|—(k—|)Ti)§AJi- (67)

TU/e, CS-Report 07-11, April 2007 39

T G A
1 4 2 1
T 4 2 0

Table 10. Task characteristics of 71¢.
Z 7/ 7 7

task T, l L l

task T, l y Y

B NG N -
5 S S

0 5 10 time

Figure 12. Activations for 719 and processor pending load P(t).

Consider task set 7109 with task characteristics as given in Table 10. The least common multiple of the periods T1 and T> is
given by lem(Tq, T2) = 4. Figure 12 shows the activations for task 1 and 12, withaj o =AJ1 =1, a3 = I+ 1) Ty forl € N,
and a0 = 1, and the processor pending load P(t). These activations correspond to a critical instant for task t, for FPPS
and FPDS. For this example, the pending load is periodic, i.e. P(t +4) = P(t) fort > 1. Because P(t) > O fort > 1, the
level-2 active period never ends. As a consequence, the worst-case response time of T, cannot be determined by means of an
iterative procedure in which the response times of all activationsin the level-2 active period are considered, irrespective of
the scheduling algorithm. Hence, the common approach to determine the worst-case responsetime for 1 2 under FPPS, FPDS,
and EDF [36] does not work.

Without proof, we merely state that the worst-case length WL, of the level-n active period under arbitrary phasing and
activation jitter is given by the smallest x € R satisfying the following equation

where AJ; is the activation jitter of task t;. As mentioned in [32], there exists a positive solution for this recursive equation
if U < 1. The proof of thislatter claim is similar to the proof of Lemma 2 on page 16.
Figure 13 shows timelinesfor 719 under FPPS, FPDS, and EDF. The figureillustrates that 719 is schedulable under FPDS

7 7/ 7/ 7
task T, %

R,;=6 Rio=2 Ri.=3 Ri.=3

Ryo=4 R, =4 R,=4

(a) Timeline under FPPS (b) Timeline under EDF and FPDS

Figure 13. Timelines for 719 under FPPS, FPDS, and EDF with release jitter and a simultaneous release of both tasks at time
t=1

and EDF for the given activations. Moreover, the scheduleis periodic, i.e. 6(t +4) = o(t) fort > 1. 7T1g is aso schedulable
under FPPS when the deadline D, > 6 for task 2. Under FPPS, the scheduleis aso periodic, i.e. 6(t +4) = o(t) fort > 3.
Because the schedule is periodic, the worst-case response time of task t2 can be determined by considering the response
times of al jobs of 1, ina‘sufficiently long’ interval, e.g. similar to the approach described in [28].

