
Worst-case response time analysis of real-time tasks
under fixed-priority scheduling with deferred preemption revisited

– with extensions for ECRTS’07 –∗

Reinder J. Bril and Johan J. Lukkien

Technische Universiteit Eindhoven (TU/e),
Den Dolech 2, 5600 AZ Eindhoven,

The Netherlands
{r.j.bril, j.j.lukkien}@tue.nl

Wim F.J. Verhaegh

Philips Research Laboratories,
High Tech Campus 11, 5656 AE Eindhoven,

The Netherlands
wim.verhaegh@philips.com

Abstract

Fixed-priority scheduling with deferred preemption (FPDS) has been proposed in the literature as a viable alternative to
fixed-priority pre-emptive scheduling (FPPS), that obviates the need for non-trivial resource access protocols and reduces
the cost of arbitrary preemptions.

This paper shows that existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods is pessimistic and/or optimistic. The same problem also arises for fixed-
priority non-pre-emptive scheduling (FPNS), being a special case of FPDS. This paper provides a revised analysis, resolving
the problems with the existing approaches. The analysis is based on known concepts of critical instant and busy period for
FPPS. To accommodate for our scheduling model for FPDS, we need to slightly modify existing definitions of these concepts.
The analysis assumes a continuous scheduling model, which is based on a partitioning of the timeline in a set of non-empty,
right semi-open intervals. It is shown that the critical instant, longest busy period, and worst-case response time for a task
are suprema rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time
cannot be assumed. Moreover, it is shown that the analysis is not uniform for all tasks, i.e. the analysis for the lowest priority
task differs from the analysis of the other tasks. These anomalies for the lowest priority task are an immediate consequence of
the fact that only the lowest priority task cannot be blocked. To build on earlier work, the worst-case response time analysis
for FPDS is expressed in terms of known worst-case analysis results for FPPS. The paper includes pessimistic variants of the
analysis, which are uniform for all tasks.

1 Introduction
1.1 Motivation

Based on the seminal paper of Liu and Layland [29], many results have been achieved in the area of analysis for fixed-priority
preemptive scheduling (FPPS). Arbitrary preemption of real-time tasks has a number of drawbacks, though. In systems
requiring mutual access to shared resources, arbitrary preemptions induce the need for non-trivial resource access protocols,
such as the priority ceiling protocol [34]. In systems using cache memory, e.g. to bridge the speed gap between processors and
main memory, arbitrary preemptions induce additional cache flushes and reloads. As a consequence, system performance and
predictability are degraded, complicating system design, analysis and testing [15, 20, 26, 31, 35]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these problems, it generally leads to reduced schedulability compared to
FPPS. Therefore, alternative scheduling schemes have been proposed between the extremes of arbitrary preemption and no
preemption. These schemes are also known as deferred preemption or co-operative scheduling [12], and are denoted by
fixed-priority scheduling with deferred preemption (FPDS) in the remainder of this paper.

∗This document is an extension of [10], addressing the comment of the reviewers of the Euromicro Conference of Real-Time Systems 2007 (ECRTS’07)
on a paper derived from [10].

TU/e, CS-Report 07-11, April 2007 2

Worst-case response time analysis of periodic real-time tasks under FPDS, arbitrary phasing, and relative deadlines within
periods has been addressed in a number of papers [11, 12, 15, 26]. The existing analysis is not exact, however. In [11],
it has already been shown that the analysis presented in [12, 15, 26] is pessimistic. More recently, it has been shown in
[6, 7] that the analysis presented in [11, 12, 15] is optimistic. Unlike the implicit assumptions in those latter papers, the
worst-case response time of a task under FPDS and arbitrary phasing is not necessarily assumed for the first job of that task
upon its critical instant. Hence, the existing analysis may provide guarantees for tasks that in fact miss their deadlines in
the worst-case. In [8, 9], it has been shown that the latter problem also arises for FPNS, being a special case of FPDS, and
its application for the schedulability analysis of controller area networks (CAN) [37, 38, 39]. Revised analysis for CAN
resolving the problem with the original approach in an evolutionary fashion can be found in [17].

1.2 Contributions

This paper resolves the problems with the existing approaches by presenting a novel worst-case response time analysis for
hard real-time tasks under FPDS, arbitrary phasing and arbitrary relative deadlines. The analysis assumes a continuous
scheduling model rather than a discrete scheduling model [4], e.g. all task parameters are taken from the real numbers. The
motivation for this assumption stems from the observation that a discrete view on time is in many situations insufficient; see
for example [2, 22, 25]. The scheduling model is based on a partitioning of the timeline in a set of non-empty, right semi-open
intervals [16, 22]. The analysis is based on the concepts of critical instant [29] and busy period [27]. To accommodate for
our scheduling model for FPDS, we need to slightly modify the existing definitions of these concepts. To prevent confusion
with the existing definition of busy period, we use the term active period for our definition in this document.

In this document, we discuss conditions for termination of an active period, and present a sufficient condition with a formal
proof. Moreover, we show that the critical instant, longest active period, and worst-case response time for a task are suprema
rather than maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time cannot be
assumed. Our worst-case response time analysis is not uniform for all tasks. In particular, the analysis for the lowest priority
task differs from the analysis for the other tasks. These anomalies for the lowest priority task are an immediate consequence
of the fact that, unlike the other tasks, the lowest priority task cannot be blocked. To build on earlier results, worst-case
response times under FPDS are expressed in terms of worst-case response times and worst-case occupied times [5] under
FPPS. We also present pessimistic variants of the analysis, which are indeed uniform for all tasks, and show that the revised
analysis for CAN presented in [17] conforms to a pessimistic variant.

1.3 Related work

Next to continuous scheduling models, one can find discrete scheduling models in the literature, e.g. in [18, 21], and models
in which domains are not explicitly specified [16, 24, 30]. Because the equations for response time analysis depend on the
model, we prefer to be explicit about the domains in our model. As mentioned above, our scheduling model is based on a
partitioning of the timeline in a set of non-empty, right semi-open intervals. Alternatively, the scheduling model in [30] is
based on left semi-open intervals.

In this paper, we assume that each job (or activation) of a task consists of a sequence of non-preemptable subjobs, where
each subjob has a known worst-case computation time, and present novel worst-case response time analysis to determine
schedulability of tasks under FPDS. Similarly, George et al. assume in [18] that the worst-case computation time of each
non-preemptive job is known, and present worst-case response time analysis of tasks under FPNS. Conversely, Baruah [3]
determines the largest non-preemptive ‘chunks’ into which jobs of a task can be broken up to still ensure feasibility under
earliest deadline first (EDF).

For worst-case response time analysis of tasks under FPPS, arbitrary phasing, and relative deadlines at most equal to
periods, it suffices to determine the response time of the first job of a task upon its critical instant. For tasks with relative
deadlines larger than their respective periods, Lehoczky [27] introduced the concept of a busy period, and showed that all
jobs of a task in a busy period need to be considered to determine its worst-case response time. Hence, when the relative
deadline of a task is larger than its period, the worst-case response time of that task is not necessarily assumed for the first
job of a task when released at a critical instant. Similarly, González Harbour et al. [19] showed that if relative deadlines are
at most equal to periods, but priorities vary during execution, then again multiple jobs must be considered to determine the
worst-case response time. Initial work on pre-emption thresholds [40] failed to identify this issue. The resulting flaw was
later corrected by Regehr [33]. Worst-case response time analysis of tasks under EDF and relative deadlines at most equal to
periods described by Spuri [36] is also based on the concept of busy period.

TU/e, CS-Report 07-11, April 2007 3

1.4 Structure

This paper has the following structure. First, in Section 2, we present basic real-time scheduling models for FPPS and FPDS.
Next, worst-case analysis for FPPS is briefly recapitulated in Section 3. Section 4 presents various examples refuting the
existing worst-case response time analysis for FPDS. The notion of active period is the topic of Section 5. We present a
formal definition of active period and theorems with a recursive equation for the length of an active period and an iterative
procedure to determine its value. Worst-case analysis for FPDS is addressed in Section 6. We present a theorem for critical
instant and theorems to determine the worst-case response time of a task under FPDS and arbitrary phasing. Section 7
illustrates the worst-case response time analysis by applying it to some examples presented in Section 4. Section 8 compares
the notion of level-i active period with similar definitions in the literature, presents pessimistic variants of the worst-case
response time analysis, and illustrates the revised analysis for an advanced model for FPDS. The paper is concluded in
Section 9.

2 Real-time scheduling models
This section starts with a presentation of a basic real-time scheduling model for FPPS. Next, that basic model is refined for
FPDS. The section is concluded with remarks.

2.1 Basic model for FPPS

We assume a single processor and a set T of n periodically released, independent tasks τ 1,τ2, . . . ,τn with unique, fixed
priorities. At any moment in time, the processor is used to execute the highest priority task that has work pending. So, when
a task τi is being executed, and a release occurs for a higher priority task τ j, then the execution of τi is preempted, and will
resume when the execution of τ j has ended, as well as all other releases of tasks with a higher priority than τ i that have taken
place in the meantime.

A schedule is an assignment of the tasks to the processor. A schedule can be defined as an integer step function σ : R →
{0,1, . . . ,n}, where σ(t) = i with i > 0 means that task τi is being executed at time t, while σ(t) = 0 means that the processor
is idle. More specifically, we define σ(t) as a right-continuous and piece-wise constant function, i.e. σ partitions the timeline
in a set of non-empty, right semi-open intervals {[t j, t j+1)} j∈Z. At times t j, the processor performs a context switch. Figure 1
shows an example of the execution of a set T of three periodic tasks and the corresponding value of the schedule σ(t).

task τ3

time

task τ2

task τ1

t

σ(t)

preemptions by
higher priority tasks
execution

release

Legend:

Figure 1. An example of the execution of a set T of three independent periodic tasks τ1, τ2, and τ3, where task τ1 has highest
priority, and task τ3 has lowest priority, and the corresponding value of σ(t).

Each task τi is characterized by a (release) period Ti ∈ R+, a computation time Ci ∈ R+, a (relative) deadline Di ∈ R+,
where Ci ≤ min(Di,Ti), and a phasing ϕi ∈ R+ ∪{0}. An activation (or release) time is a time at which a task τ i becomes
ready for execution. A release of a task is also termed a job. The first job of task τ i is released at time ϕi and is referred to as
job zero. The release of job k of τ i therefore takes place at time aik = ϕi + kTi, k ∈ N. The (absolute) deadline of job k of τ i

takes place at dik = aik +Di. The begin (or start) time bik and finalization (or completion) time f ik of job k of τi is the time at
which τi actually starts and ends the execution of that job, respectively. The set of phasings ϕ i is termed the phasing ϕ of the
task set T .

The active (or response) interval of job k of τ i is defined as the time span between the activation time of that job and
its finalization time, i.e. [aik, fik). The response time rik of job k of τi is defined as the length of its active interval, i.e.
rik = fik −aik. Figure 2 illustrates the above basic notions for an example job of task τ i.

TU/e, CS-Report 07-11, April 2007 4

task τi

time

Ti

Di

aik fik

rik

dik ai,k+1

preemptions by
higher priority tasks
execution

release

deadline

Legend:

bik

Figure 2. Basic model for task τi.

The worst-case response time WRi of a task τi is the largest response time of any of its jobs, i.e.

WRi = sup
ϕ,k

rik. (1)

In many cases, we are not interested in the worst-case response time of a task for a particular computation time, but in the
value as a function of the computation time. We will therefore use a functional notation when needed, e.g. WR i(Ci). A critical
instant of a task is defined to be an (hypothetical) instant that leads to the worst-case response time for that task. Typically,
such an instant is described as a point in time with particular properties. As an example, a critical instant for tasks under
FPPS is given by a point in time for which all tasks have a simultaneous release.

We assume that we do not have control over the phasing ϕ, for instance since the tasks are released by external events, so
we assume that any arbitrary phasing may occur. This assumption is common in real-time scheduling literature [23, 24, 29].
We also assume other standard basic assumptions [29], i.e. tasks are ready to run at the start of each period and do no suspend
themselves, tasks will be preempted instantaneously when a higher priority task becomes ready to run, a job of task τ i does
not start before its previous job is completed, and the overhead of context switching and task scheduling is ignored. Finally,
we assume that the deadlines are hard, i.e. each job of a task must be completed at or before its deadline. Hence, a set T of n
periodic tasks can be scheduled if and only if

WRi ≤ Di (2)

for all i = 1, . . . ,n. For notational convenience, we assume that the tasks are given in order of decreasing priority, i.e. task τ 1

has highest priority and task τn has lowest priority.
The (processor) utilization factor U is the fraction of the processor time spent on the execution of the task set [29]. The

fraction of processor time spent on executing task τ i is Ci/Ti, and is termed the utilization factor U τ
i of task τi, i.e.

Uτ
i =

Ci

Ti
. (3)

The cumulative utilization factor Ui for tasks τ1 till τi is the fraction of processor time spent on executing these tasks, and is
given by

Ui = ∑
j≤i

Uτ
j . (4)

Therefore, U is equal to the cumulative utilization factor Un for n tasks.

U = Un = ∑
j≤n

Uτ
j = ∑

j≤n

Cj

Tj
. (5)

In [29], the following necessary condition is determined for the schedulability of a set T of n periodic tasks under any
scheduling algorithm.

U ≤ 1. (6)

Unless explicitly stated otherwise, we assume in this document that task sets satisfy this condition.

2.2 Refined model for FPDS

For FPDS, we need to refine our basic model of Section 2.1. Each job of task τ i is now assumed to consist of a sequence
of mi subjobs. The kth subjob of τi is characterized by a computation time Cik ∈ R+, where Ci = ∑mi

k=1Cik. We assume that
subjobs are non-preemptable. Hence, tasks can only be preempted at subjob boundaries, i.e. at so-called preemption points.
For convenience, we will use the term Fi to denote the computation time Ci,mi of the final subjob of τi. Note that when mi = 1
for all i, we have FPNS as special case.

TU/e, CS-Report 07-11, April 2007 5

2.3 Concluding remarks

In this document, we will use the superscript P to denote FPPS, e.g. WRP
i denotes the worst-case response time of task τ i

under FPPS and arbitrary phasing. Similarly, we will use the superscripts D and N to denote FPDS and FPNS, respectively.
In our basic model for FPPS, we introduced notions for points in time with a subscript identifying a task and optionally

a job of that task, e.g. aik is the release time of job k of task τi. In this document, we will need similar notions that are
expressed relative to a particular moment in time, e.g. the relative release time of the first job of a task at or after time t s. We
will therefore also use relative versions of the notions, where relative can refer to the identification of the job and/or to the
particular moment in time, depending on the notion. As an example, let φ i(t) denote the earliest (absolute) activation of a job
of task τi at or after time t, i.e.

φi(t) = ϕi +
(⌈

t −ϕi

Ti

⌉)+

·Ti.

Here, the notation x+ stands for max(x,0), which is used to indicate that there are no releases of τ i before time ϕi. Because

ϕi ≥ 0, the term
(⌈

t−ϕi
Ti

⌉)+
is equal to the number of releases of τ i in [0, t). Given φi(t), the relative phasing ϕi(t) is given

by ϕi(t) = φi(t)− t. The release of job k of task τi relative to t takes place at the relative activation time aik(t) = ϕi(t)+ kTi,
k ∈ N. For aik(t), both the identification of the job and the time are therefore relative to t. Similarly, the notions relative begin
time bik(t) and relative finalization time fik(t) denote a time relative to t and concern the job k of task τ i relative to t. For the
relative response time rik(t), only the identification of the job is relative to t. We will use abbreviated representations for the
relative notions using a prime (′) when the particular moment in time is clear from the context. As an example, in a context
concerning a particular moment ts, the relative activation time a′

ik denotes aik(ts).

3 Recapitulation of worst-case analysis for FPPS
For the analysis under FPPS, we only consider cases where the deadlines of tasks are less than or equal to the respective
periods. For illustration purposes, we will use a set T1 of two independent periodic tasks τ1 and τ2 with characteristics as
given in Table 1.

Ti = Di Ci

τ1 5 2
τ2 7 3

Table 1. Task characteristics of T1.

Figure 3 shows an example of the execution of the tasks τ1 and τ2 under FPPS. Note that even an infinitesimal increase of
the computation time of either task τ1 or τ2 will immediately cause the job of task τ2 released at time 0 to miss its deadline
at time 7.

0 10 20 305 15 25 35

task τ1

task τ2

time

2

5 3 5 4 5

2 2 2 2 2 2

Figure 3. Timeline for T1 under FPPS with a simultaneous release of both tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective releases.

3.1 Worst-case response times

This section presents theorems for the notion of critical instant and to determine worst-case response times of tasks. Although
these theorems are taken from [5], most of these results were already known; see for example [1, 23, 29]. Auxiliary lemmas
on which the proofs of these theorems and theorems in subsequent sections are based are included in Appendix A.

Theorem 1 (Theorem 4.1 in [5]). In order to have a maximal response time for an execution k of task τ i, i.e. to have fik −
aik = WRi, we may assume without loss of generality that the phasing ϕ is such that ϕ j = aik for all j < i. In other words, the
phasing of the tasks’ release times is such that the release of the considered execution of τ i coincides with the simultaneous
release for all higher priority tasks. This latter point in time is called a critical instant for task τ i. �

TU/e, CS-Report 07-11, April 2007 6

Given this theorem, we conclude that time 0 in Figure 3 is a critical instant for both task τ 1 and τ2. From this figure, we
therefore derive that the worst-case response times of tasks τ1 and τ2 are 2 and 5, respectively. The next theorems can be
used to determine the worst-case response times analytically.

Theorem 2 (Theorem 4.2 in [5]). The worst-case response time WRi of a task τi is given by the smallest x∈R+ that satisfies
the following equation, provided that x is at most Ti.

x = Ci + ∑
j<i

⌈
x
T j

⌉
Cj (7)

�

Theorem 3 (Theorem 4.3 in [5]). The worst-case response time WRi of task τi can be found by the following iterative pro-
cedure.

WR(0)
i = Ci (8)

WR(l+1)
i = Ci + ∑

j<i

⌈
WR(l)

i

Tj

⌉
Cj, l = 0,1, . . . (9)

The procedure is stopped when the same value is found for two successive iterations of l, or when the deadline D i is exceeded.
�

3.2 Worst-case occupied times

In Figure 3, task τ2 is preempted at time 15 due to a release of task τ1, and resumes its execution at time 17. The span of time
from a task τ’s release till the moment in time that τ can start or resume its execution after completion of a computation time
C is termed occupied time. The worst-case occupied time (WO) of a task τ is the longest possible span of time from a release
of τ till the moment in time that τ can start or resume its execution after completion of a computation C. In [5], it has been
shown that the worst-case occupied time can be described in terms of the worst-case response time as follows.

WOi(Ci) = lim
x↓Ci

WRi(x). (10)

Considering Figure 3, we derive that worst-case occupied times WO 2(0) and WO2(C2) of task τ2 are equal to 2 and 7,
respectively. The next theorems can be used to determine the worst-case occupied times analytically.

Theorem 4 (Theorem 4.4 in [5]). When the smallest positive solution of (7) for a computation time C ′
i is at most Di, the

worst-case occupied time WOi of a task τi with a computation time Ci ∈ [0,C′
i] is given by the smallest non-negative x ∈ R

that satisfies

x = Ci + ∑
j<i

(⌊
x
T j

⌋
+ 1

)
Cj. (11)

�

Theorem 5 (Theorem 4.5 in [5]). The worst-case occupied time WOi of task τi can be found by the following iterative
procedure.

WO(0)
i =

{
∑
j<i

C j for Ci = 0

WRi for Ci > 0
(12)

WO(l+1)
i = Ci + ∑

j<i

(⌊
WO(l)

i

Tj

⌋
+ 1

)
Cj, l = 0,1, . . . (13)

The procedure is stopped when the same value is found for two successive iterations of l. �

TU/e, CS-Report 07-11, April 2007 7

3.3 Concluding remarks

The proof of Theorem 4 derives Equation (11) by starting from Equation (10) and subsequently using Lemma 16.
Similarly to Equation 10, we can express WRi in terms of WOi, i.e.

WRi(Ci) = lim
x↑Ci

WOi(x). (14)

The next two equations express that WRi(Ci) and WOi(Ci) are left-continuous and right-continuous, respectively.

WRi(Ci) = lim
x↑Ci

WRi(x) (15)

WOi(Ci) = lim
x↓Ci

WOi(x) (16)

Lemmas related to these latter three equations can be found in Appendix A.

4 Existing response time analysis for FPDS refuted
In this section, we first recapitulate existing response time analysis under FPDS. Next, we show that the existing analysis
is pessimistic. We subsequently give examples refuting the analysis, i.e. examples that show that the existing analysis is
optimistic.

4.1 Recapitulation of existing worst-case response time analysis for FPDS

In this section, we recapitulate existing worst-case response time analysis for FPDS with arbitrary phasing and deadlines
within periods as described in [12, 15]. We include a recapitulation of the analysis for FPNS as presented in [39]. The main
reason for including the latter is that it looks different from the analysis for FPDS and is a basis for the analysis of controller
area network (CAN).

4.1.1 Existing analysis for FPDS

The non-preemptive nature of subjobs may cause blocking of a task by at most one lower priority task under FPDS. Moreover,
a task can be blocked by at most one subjob of a lower priority task. The maximum blocking B D

i of task τi by a lower priority
task is therefore equal to the longest computation time of any subjob of a task with a priority lower than task τ i. This blocking
time is given by

BD
i = max

j>i
max

1≤k≤mj
Cj,k. (17)

Strictly spoken, this blocking time is a supremum (and not a maximum) for all tasks, except for the lowest priority task, i.e.
that value cannot be assumed for i < n.

The worst-case response time W̃R
D
i of a task τi under FPDS, arbitrary phasing, and deadlines less than or equal to periods,

as presented in [12] and [15], is given by

W̃R
D
i = WRP

i (BD
i +Ci − (Fi−∆))+ (Fi−∆), (18)

where WRP
i denotes the worst-case response time of τ i under FPPS. According to [15], ∆ is an arbitrary small positive value

needed to ensure that the final subjob has actually started. Hence, when task τ i has consumed Ci − (Fi −∆), the final subjob
has (just) started.

4.1.2 Existing analysis for FPNS

In this section, we first recapitulate the update of [23] given in [39] to take account of tasks being non-preemptive. Next, we
show that the update is very similar to the analysis for FPDS as given by Equation (18).

The non-preemptive nature of tasks may cause blocking of a task by at most one lower priority task. The maximum
blocking BN

i of task τi by a lower priority task is equal to the longest computation time of a task with a priority lower than
task τi, i.e.

BN
i = max

j>i
Cj. (19)

Similarly to BD
i , BN

i is a supremum for all tasks, except for the lowest priority task, i.e. that value cannot be assumed for i < n.

TU/e, CS-Report 07-11, April 2007 8

The worst-case response time W̃R
N
i is given by

W̃R
N
i = wi +Ci, (20)

where wi is the smallest x ∈ R+ that satisfies

x = BN
i + ∑

j<i

⌈
x+ τres

Tj

⌉
Cj. (21)

In this latter equation, τres is the resolution with which time is measured. To calculate wi, an iterative procedure based on

recurrence relationships can be used. An appropriate initial value of this procedure is w (0)
i = BN

i + ∑ j<iCj.
We now show that these results for FPNS are similar to the existing analysis for FPDS. To this end, we substitute w i =

w′
i − τres, x = x′ − τres, and τres = ∆ in equations (20) and (21). Hence, the worst-case response time W̃R

N
i is given by

W̃R
N
i = w′

i +(Ci −∆),

where w′
i is the smallest x′ ∈ R+ that satisfies

x′ = BN
i + ∆ +∑

j<i

⌈
x′

Tj

⌉
Cj.

Reusing the results for FPPS, we therefore get

W̃R
N
i = WRP

i (B
N
i + ∆)+ (Ci−∆). (22)

Because we have Fi = Ci and BD
i = BN

i for FPNS, Equation (22) for FPNS is similar to Equation (18) for FPDS. There is
an aspect requiring further attention, however. In particular, Equation (18) is based on an arbitrary small positive value ∆
whereas the analysis for FPNS is based on the resolution τres with which time is measured. We will return to this issue in
Section 8.3.

4.2 Existing analysis is pessimistic

Consider the set T2 consisting of three tasks with characteristics as described in Table 2. Based on (18) we derive

Ti Di Ci

τ1 5 4 2
τ2 7 7 1 + 2
τ3 30 30 2 + 2

Table 2. Task characteristics of T2.

W̃R
D
2 = WRP

2(B
D
2 +C2 − (F2 −∆))+ (F2−∆)

= WRP
2(2+ 3− (2−∆))+(2−∆)

= WRP
2(3+ ∆)+ (2−∆)= 7+ ∆ +(2−∆)= 9.

However, the existing analysis does not take into account that τ i can only be blocked by a subjob of a lower priority task if
that subjob starts before the simultaneous release of τ i and all tasks with a higher priority than τ i. This aspect can be taken
into account in the analysis by replacing BD

i in (18) by (BD
i −∆)+. The notation x+ is used to indicate that the blocking time

can not become negative for the lowest priority task. The worst-case response time of τ 2 now becomes 7−∆, as illustrated
in Figure 4. For ∆ ↓ 0, we therefore find a supremum (and not a maximum) equal to 7 for the worst-case response time of τ 2.
As a result, the existing analysis is pessimistic.

4.3 Existing analysis is optimistic

We will give three examples illustrating that the existing analysis is optimistic. For all three examples, deadlines are equal to
periods, i.e. Di = Ti. The first section shows an obvious example, i.e. an example with a utilization factor U > 1. The second
section shows an example with U < 1. The third section shows an example with U = 1.

For all three examples, the task set consists of just two tasks. For such task sets, the worst-case response time analysis

under FPDS presented in [12, 13, 15] and in [11] is very similar. In particular, the worst-case response time W̃R
D
2 of task τ2

is determined by looking at the response time of the first job of task τ 2 upon a simultaneous release with task τ1. However,
the worst-case response time of task τ2 is not assumed for the first job for all three examples.

TU/e, CS-Report 07-11, April 2007 9

1 7

task τ1

task τ2

time

task τ3

∆ ∆ ∆
53

4−∆

2

7−∆

Figure 4. Timeline for T2 under FPDS with a release of tasks τ1 and τ2 at time t = 1 and a release of task τ3 at time t = 1−∆.

4.3.1 An example with U > 1

An example refuting the worst-case response time analysis is given in Table 3. Note that the utilization factor U of this set of
tasks T3 is given by U = 2

5 + 4.5
7 > 1. Hence, the task set is not schedulable. Based on (18), we derive

Ti = Di Ci

τ1 5 2
τ2 7 1.5 + 3

Table 3. Task characteristics of T3.

W̃R
D
2 = WRP

2(B2 +C2 − (F2 −∆))+ (F2−∆)
= WRP

2(0+ 4.5− (3−∆))+(3−∆)
= WRP

2(1.5+ ∆)+ (3−∆)= 3.5+ ∆ +(3−∆)= 6.5.

This value corresponds with the response time of the first job of task τ 2 upon a simultaneous release with task τ1, as illustrated
in Figure 5. However, the same figure also illustrates that the second job of τ 2 misses its deadline. Stated in other words, the
existing worst-case response time analysis is optimistic.

0 5 10 15

task τ1

task τ2

time

2

6.5

3.5 2

8

Figure 5. Timeline for T3 under FPDS with a simultaneous release of both tasks at time zero.

4.3.2 An example with U < 1

Another example refuting the worst-case response time analysis is given in Table 4. Note that the utilization factor U of this

set of tasks T4 is given by U = 2
5 + 4.1

7 < 1. Hence, the task set could be schedulable. Applying (18) yields W̃R
D
2 = 6.1,

which corresponds with the response time of the first job of task τ 2 upon a simultaneous release with task τ1; see Figure 6.
However, the same figure also illustrates that the second job of task τ2 misses its deadline.

4.3.3 An example with U = 1

Consider task set T5 given in Table 5. The utilization factor U of this set of tasks is given by U = 2
5 + 4.2

7 = 1. The task set
is not schedulable by FPPS, as we showed in Section 3 that the task set is only schedulable when C 2 is at most 3. Figure 7
shows a timeline with the executions of these two tasks under FPDS with a simultaneous release at time zero in an interval of
length 35, i.e. equal to the hyperperiod of the tasks. Applying (18) yields W̃R

D
2 = 6.2, which corresponds with the response

time of the first job of task τ2 in Figure 7. However, the response time of the 5 th job of task τ2 is equal to 7, illustrating once
again that the existing analysis is too optimistic. Nevertheless, the task set is schedulable under FPDS for this phasing.

TU/e, CS-Report 07-11, April 2007 10

Ti = Di Ci

τ1 5 2
τ2 7 2 + 2.1

Table 4. Task characteristics of T4.

0 5 10 15

task τ1

task τ2

time

2

6.1

3.1 2.1

7.2

Legend:

deadline miss

Figure 6. Timeline for T4 under FPDS with a simultaneous release of all tasks at time zero.

Now, consider task set T6 given in Table 6, which is similar to task set T5 given in Table 5, except for the fact that rather
than having a second subjob for task τ2 it has a task τ3. Figure 8 shows a timeline with the executions of these three tasks
under FPNS with a simultaneous release at time zero in an interval of length 35, i.e. equal to the hyperperiod of the tasks.

Applying (18) yields W̃R
D
3 = 6.2, which corresponds to the response time of the first job of task τ 3 in Figure 8. However,

the response time of the 5th job of task τ3 is equal to 7, illustrating once again that the existing analysis is too optimistic.
Nevertheless, the task set is schedulable under FPNS for this phasing.

4.4 Concluding remark

We have shown that we cannot restrict ourselves to the response time of the first job of a task when determining the worst-
case response time of that task under FPDS. The reason for this is that the final subjob of a task τ i can defer the execution of
higher priority tasks, which can potentially give rise to higher interference for subsequent jobs of task τ i. This problem can
therefore arise for all tasks, except for the highest priority task. González Harbour et al. [19] identified the same influence of
jobs of a task for relative deadlines at most equal to periods in the context of FPPS of periodic tasks with varying execution
priority.

Considering Figure 7, we see that every job of task τ2 in the interval [0,26.8) defers the execution of a job of task τ 1.
Moreover, that deferred job of task τ1 subsequently gives rise to additional interference for the next job of task τ 2. This
situation ends when the job of τ2 is started at time t = 28, i.e. the 5th job of τ2 does not defer the execution of a job of τ1.
Viewed in a different way, we may state that the active intervals of the jobs of tasks τ 1 and τ2 overlap in the interval [0,35).
Note that this overlapping starts at time t = 0 and ends at time t = 35, and we therefore term this interval [0,35) a level-2
active period. Informally, a level-i active period is a smallest interval that only contains entire active intervals of jobs of task
τi and jobs of tasks with a higher priority than task τ i. Hence, the active interval of every job of a task τ i is contained in a
level-i active period. To determine the worst-case response time of a task τ i, we therefore only have to consider level-i active
periods. However, as illustrated by the examples shown in this section and mentioned above, we cannot restrict ourselves to
the response time of the first job of a task τ i when determining the worst-case response time of that task under FPDS. Instead,
we have to consider the response times of all jobs in a level-i active period. In a subsequent section, we will show that it
suffices to consider only the response times of jobs in a level-i active period that starts at a so-called ε-critical instant.

5 Active period
This section presents a formal definition of a level-i active period, which is based on the notion of pending load, and theorems
to determine the length of a level-i active period. As mentioned before, a level-i active period may contain multiple jobs of
τi. We therefore also define the notion of a level-(i,k) active period, and present a theorem to determine the length of such a

Ti = Di Ci

τ1 5 2
τ2 7 1.2 + 3

Table 5. Task characteristics of T5.

TU/e, CS-Report 07-11, April 2007 11

0 10 20 305 15 25 35

task τ1

task τ2

time

2.0 3.2 4.4 2.6 2.6 3.8 2.0

6.2 5.4 6.6 5.8 7.0

Figure 7. Timeline for T5 under FPDS with a simultaneous release of all tasks at time zero.

Ti Ci

τ1 5 2
τ2 7 1.2
τ3 7 3

Table 6. Task characteristics of T6.

period. Informally, a level-(i,k) active period is a smallest interval that contains k successive active intervals of jobs of task τ i

and all jobs of tasks with a higher priority than task τ i. These notions and theorems form the basis for the worst-case analysis
for FPDS in the next section.

We start with the definition of the notion level-i active period in Section 5.1. Next, we provide examples of level-i active
periods in Section 5.2. The length of a level-i active period is the topic of Section 5.3. We refine the notion of level-i active
period to level-(i,k) active period in Section 5.4, and conclude with a theorem to determine its length in Section 5.4.3.

5.1 Level-i active period

The notion of level-i active period is defined in terms of the notion of pending load, which on its turn is defined in terms of
the notion of active job.

5.1.1 Active job and pending load

Definition 1. A job k of a task τi is active at time t if and only if t ∈ [aik, fik), where aik and fik are the activation (or release)
time and the finalization (or completion) time of that job, respectively. �

The active interval of job k of task τi is defined as the time span between the activation time of that job and its completion,
i.e. [aik, fik). We now define the notion of pending load in terms of active job, and derive properties for the pending load.

Definition 2. The pending load Pτ
i (t) is the amount of processing at time t that still needs to be performed for the active jobs

of tasks τi that are released before time t, i.e.

Pτ
i (t) =

(⌈
t −ϕi

Ti

⌉)+

·Ci −
Z t

0
στ

i (t
′)dt ′, (23)

0 10 20 305 15 25 35

task τ1

task τ2

time

2.0 3.2 4.4 2.6 2.6 3.8 2.0

6.2 5.4 6.6 5.8 7.0

task τ3

3.2 2.4 1.6 2.8 2.0

Figure 8. Timeline for T6 under FPNS with a simultaneous release of all tasks at time zero. The numbers to the top right corner
of the boxes denote the response times of the respective releases.

TU/e, CS-Report 07-11, April 2007 12

where

στ
i (t) =

{
1 if task τi is being executed at time t, i.e. σ(t) = i
0 otherwise.

�

Note that the term
(⌈

t−ϕi
Ti

⌉)+
·Ci in (23) is equal to the amount of processing that needs to be performed due to releases of

task τi in [0, t). The term
R t

0 στ
i (t

′)dt ′ is equal to the amount of processing that has been performed for τ i. The righthand side
of (23) is therefore equal to the amount of processing at time t due to releases of jobs of task τ i before t that still needs to be
performed.

We subsequently define the notions of (cumulative) pending load Pi(t) and (processor) pending load P(t).

Definition 3. The (cumulative) pending load Pi(t) is the amount of processing at time t that still needs to be performed for
the active jobs of tasks τ j with j ≤ i that are released before time t, i.e.

Pi(t) = ∑
j≤i

Pτ
j (t) = ∑

j≤i

(⌈
t −ϕ j

Tj

⌉)+

·Cj −
Z t

0
σi(t ′)dt ′, (24)

where

σi(t) = ∑
j≤i

στ
j(t) =

{
1 if σ(t) ∈ {1, . . . , i}
0 otherwise.

�

Definition 4. The (processor) pending load P(t) is the amount of processing at time t that still needs to be performed for the
active jobs of all tasks that are released before time t, i.e.

P(t) = Pn(t). (25)

�

Corollary 1. The order in which the tasks τ j with j ≤ i are executed is immaterial for the cumulative pending load Pi. �

For i < n, the cumulative pending load Pi also depends on blocking due to a lower priority task. As an example, let Pi(ts) = 0,
then Pi(t) = Cs for all t ∈ (ts,t ′s) under FPDS if the following three conditions hold:

• a task τs with s ≤ i is released at time ts,

• no other releases of τ j for j ≤ i take place in [ts, t ′s), and

• a subjob of a lower priority task is executing at time t s and blocks task τs during [ts, t ′s) due to the non-preemptive nature
of the subjob.

Because blocking due to a lower priority task does not play a role for the (processor) pending load, P(t) only depends on the
activations of tasks.

Corollary 2. The (processor) pending load P(t) is independent of the scheduling algorithm, provided that the algorithm is
non-idling. �

5.1.2 Definition of a level-i active period

We now define the notion of level-i active period in terms of the pending load Pi(t).

Definition 5. A level-i active period is an interval [ts, te) with the following three properties.

1. Pi(ts) = 0;

2. Pi(te) = 0;

3. Pi(t) > 0 for all t ∈ (ts,te).
�

Let the blocking time Bi(ts) of a level-i active period that starts at time ts be defined as the length of the (optionally empty)
initial interval during which the tasks τ j with j ≤ i are blocked by a subjob of a task with a lower priority. Note that B n(ts) = 0
and 0 ≤ Bi(ts) < BD

i for i < n.

TU/e, CS-Report 07-11, April 2007 13

Lemma 1. If a level-i active period starts at time ts and ends at time te, then the following properties hold:
(i) Tasks τ j with j ≤ i are continuously executing in [ts, te), except for an (optionally empty) initial interval [t s, ts +Bi(ts))

during which the tasks are blocked by a lower priority task.
(ii) The length Li(ts) of that level-i active period is at least Bi(ts)+Cs, where a task τs is released at time ts.
(iii) The order in which the tasks τ j with j ≤ i are executed is immaterial for the length Li(ts).

Proof. (i) This property follows immediately from the non-preemptive nature of subjobs and the assumptions for fixed-
priority scheduling.

(ii) By definition, Pi(ts) = 0. Because the tasks τ j with j ≤ i are blocked in the (optionally empty) initial interval [t s,ts +
Bi(ts)), and the level-i active period contains at least the active interval of task τ s, the length Li(ts) of that level-i active period
is at least Bi(ts)+Cs.

(iii) This property follows immediately from the definition of a level-i active period and Corollary 1. �

From this definition of the level-i active period in terms of the pending load Pi(t), we draw the following conclusion.

Corollary 3. The level-n active period is independent of the scheduling algorithm, provided that the algorithm is non-idling.
�

Note that a level-i active period may, but need not, contain activations of task τ i. In the sequel, we will call a level-i active
period that contains an activation of task τ i a proper level-i active period. Similarly, we call a level-i active period that does
not contain an activation of τi an improper level-i active period. Unless explicitly stated otherwise, we use the phrase ‘level-i
active period’ to denote a proper level-i active period in the remainder of this document.

5.2 Examples

We will now consider two examples, one for FPPS based on the timeline in Figure 3 for T 1 and one for FPDS based on the
timeline in Figure 7 for T5.

Consider Figure 9, with a timeline for T1 under FPPS, pending loads P1(t), Pτ
2(t), and P2(t), and level-i active periods.

Note that P1(t) is equal to Pτ
1(t) by definition. From the graph for P1(t), we find that the interval [0,35) contains seven level-1

active periods, corresponding with the seven activations of task τ 1, i.e. [0,5), [5,7), [10,12), [15,17), [20,22), [25,27), and
[30,32). The horizontal line fragments in the graph for P τ

2(t) are caused by the fact that τ2 is preempted by a job of task
τ1. From the graph for the pending load P2(t), we find that the interval [0,35) contains eight level-2 active periods, i.e.
[0,5), [5,7), [7,10), [10,12), [14,19), [20,25), [25,27), and [28,33). From these eight level-2 active periods, [0,5), [7,10),
[14,19), [20,25), and [28,33) are proper, i.e. contain activations of task τ 2, and [5,7), [10,12), and [25,27) are improper. As
mentioned before, the level-2 active period only depends on the activations of τ 1 and τ2, and is independent of the scheduling
algorithm.

Consider Figure 10, with a timeline for T5 under FPDS, pending loads P1(t), Pτ
2(t), and P2(t), and level-i active periods.

From the graph for P1(t), we find that the interval [0,35) contains seven level-1 active periods, corresponding with the
seven activations of task τ1, i.e. [0,2), [5,8.2), [10,14.4), [15,17.6), [20,22.6), [25,28.8), and [30,32). The horizontal line
fragments in the graph for P1(t) are caused by the fact that τ1 is blocked by a subjob of task τ2. From the graph for the
pending load P2(t), we find that the interval [0,35) contains a single level-2 active period, i.e. [0,35).

5.3 Length of a level-i active period

This section presents three theorems for the length of a level-i active period. A first theorem presents a recursive equation
for the length of a level-i active period. A next theorem states that under the following assumption a level-i active period that
starts will also end.

Assumption 1. Either U < 1 or U ≤ 1 and the least common multiple (lcm) of the periods of the tasks of T exists. �

Hence, the assumption is a sufficient condition to guarantee that a level-i active period will end when it starts. Because we
assume ϕi ≥ 0 for all i≤ n, Pi(0) = 0 for all i≤ n. We therefore conclude that, when Assumption 1 holds, the timeline consists
of a sequence of level-i active periods, optionally preceded by and separated by idle-periods. A final theorem provides an
iterative procedure to determine the length of a level-i active period.

Appendix B shows an example illustrating that the level-n active period need not end when Assumption 1 does not hold.

TU/e, CS-Report 07-11, April 2007 14

0 10 20 305 15 25 35
time

5

P2(t)

0 10 20 305 15 25 35
time

2

P1(t)

0 10 20 305 15 25 35
time

3

P
τ
2(t)

level-1
active period

level-2
active period

level-2
busy period

level-1
busy period

0 10 20 305 15 25 35

task τ1

task τ2

time

2

5 3 5 4 5

2 2 2 2 2 2

Figure 9. Timeline for T1 under FPPS, pending loads P1(t), Pτ
2(t), and P2(t), and level-i active periods and level-i busy periods.

From the eight level-2 active periods in the interval [0,35), five are proper, i.e. [0,5), [7,10), [14,19), [20,25), and [28,33) contain
activations of task τ2. The other three are improper, i.e. [5,7), [10,12), and [25,27).

5.3.1 A recursive equation

Theorem 6. The length Li(ts) of a level-i active period that starts at time ts is found for the smallest x ∈ R+ that satisfies the
following equation

x = Bi(ts)+ ∑
j≤i

(⌈
x−ϕ j(ts)

Tj

⌉)+

·Cj. (26)

Proof. Because the level-i active period starts at time ts, Pi(ts) = 0 by definition. Now assume the level-i active period under
consideration ends at time te. Hence, time te is the smallest t larger than ts for which Pi(t) = 0, and the length Li(ts) of the

TU/e, CS-Report 07-11, April 2007 15

0 10 20 305 15 25 35

task τ1

task τ2

time

0 10 20 305 15 25 35
time

5

P2(t)

0 10 20 305 15 25 35
time

2

P1(t)

0 10 20 305 15 25 35
time

3

P
τ
2(t)

level-1
active period

level-2
active period

level-2
busy period

level-1
busy period

2

6.2

3.2

5.4

4.4 2.6 2.6 3.8 2.0

6.6 5.8 7.0

Figure 10. Timeline for T5 under FPDS, pending loads P1(t), Pτ
2(t), and P2(t), and level-i active periods and level-i busy periods.

active period becomes te − ts. We now derive (26) from Pi(te) = 0.

Pi(te) = {(24)} ∑
j≤i

(⌈
te −ϕ j

Tj

⌉)+

·Cj −
Z te

0
σi(t)dt

= Pi(ts)+ ∑
j≤i

(⌈
te − (ts + ϕ j(ts))

Tj

⌉)+

·Cj −
Z te

ts
σi(t)dt

= {Pi(ts) = 0} ∑
j≤i

(⌈
te − (ts + ϕ j(ts))

Tj

⌉)+

·Cj −
Z te

ts
σi(t)dt

= 0

From Lemma 1, we derive that the lower priority task is executing in [t s, ts +Bi(ts)), and only tasks τ j with j ≤ i are executing
in [ts +Bi(ts), te). Hence, we conclude that

Z te

ts
σi(t)dt = te − (ts +Bi(ts)).

TU/e, CS-Report 07-11, April 2007 16

Substituting this result in the former equation, we get

te − (ts +Bi(ts)) = ∑
j≤i

(⌈
te − (ts + ϕ j(ts))

Tj

⌉)+

·Cj,

and by subsequently substituting te = x+ ts, we get (26). Because time te is the smallest t (larger than ts) for which Pi(t) = 0,
x = te − ts is the smallest value in R+ that satisfies (26), which proves the theorem. �

5.3.2 End of a level-i active period

We now present a theorem which states that there exist positive solutions for the recursive equation (26) if Assumption 1
holds. To that end, we will use Lemma 4.3 from [5] (see Lemma 15 in Appendix A), and first prove two lemmas.

Lemma 2. There exists a positive solution for the recursive equation (26) for the length of the level-i active period if U i < 1.

Proof. We will prove that the condition Ui < 1 is sufficient by means of Lemma 4.3 of [5]. Let f be defined as

f (x) = Bi(ts)+ ∑
j≤i

(⌈
x−ϕ j(ts)

Tj

⌉)+

·Cj.

We choose a = min
l≤i

Cl
2 , hence

f (a) = f (min
l≤i

Cl

2
) = Bi(ts)+ ∑

j≤i

(⌈
minl≤i

Cl
2 −ϕ j(ts)
Tj

⌉)+

·Cj.

By definition, there is at least one task that is released at the start of the level-i active period. Let task τ k with k ≤ i be released
at time ts, i.e. ϕk(ts) = 0. We now get

f (a) ≥ Bi(ts)+

⌈
minl≤i

Cl
2

Tk

⌉
Ck = Bi(ts)+Ck > min

l≤i

Cl

2
= a,

hence f (a) > a. In order to choose an appropriate b, we make the following derivation.

f (x) ≤ Bi(ts)+ ∑
j≤i

⌈
x
Tj

⌉
Cj < Bi(ts)+ ∑

j≤i
(

x
Tj

+ 1)Cj = Bi(ts)+ xUi + ∑
j≤i

Cj.

As Ui < 1, the relation
x ≥ Bi(ts)+ xUi + ∑

j≤i
Cj

holds for

x ≥
Bi(ts)+ ∑

j≤i
Cj

1−Ui
.

We now choose

b =
Bi(ts)+ ∑

j≤i
Cj

1−Ui
,

and therefore get b > f (b). Now the conditions for Lemma 15 hold, i.e. the function f (x) is defined and strictly non-
decreasing in an interval [a,b] with f (a) > a and f (b) < b. Hence, there exists an

x ∈ (min
l≤i

Cl

2
,

Bi(ts)+ ∑
j≤i

Cj

(1−Ui)
)

such that x = f (x). �

TU/e, CS-Report 07-11, April 2007 17

Lemma 3. There exists a positive solution for the recursive equation (26) for the length of the level-n active period if U = 1
and the least common multiple of the periods of T exists.

Proof. We first observe that Bn(ts) = 0 for the level-n active period, i.e. the lowest priority task is never blocked. Next, we
distinguish two complementary cases, a first case with ϕ i(ts) = 0 for all i and a second case where this does not hold. We
prove the lemma by considering both cases separately.

For the first case, we prove that for Bi(ts) = 0 and ϕi(ts) = 0 for all i the value x = lcm(T1, . . . ,Tn) is a solution of (26).
For these values of Bi(ts) and ϕi(ts), equation (26) simplifies to

x = ∑
j≤n

⌈
x
Tj

⌉
Cj.

Because
⌈

lcm(T1,...,Tn)
Tj

⌉
Cj = lcm(T1, . . . ,Tn)

Cj
Tj

and ∑
j≤n

Cj
Tj

= U = 1, we immediately see that lcm(T1, . . . ,Tn) is a (positive)

solution.
For the second case, we prove that the condition U = 1 and lcm of the periods of T exists is sufficient by means of

Lemma 15. Let f be defined as

f (x) = ∑
j≤n

(⌈
x−ϕ j(ts)

Tj

⌉)+

·Cj.

We choose a = min j≤nCj/2. Similar to the proof of Lemma 2, we find f (a) > a. In order to choose an appropriate b, we
make the following derivation.

f (x) ≤ ∑
j≤n

⌈
x
Tj

⌉
Cj

We now consider two disjunct cases for x = lcm(T1, . . . ,Tn). If f (x) < ∑ j≤n

⌈
x
Tj

⌉
Cj, we choose b = lcm(T1, . . . ,Tn), and

therefore get b > f (b). Now the conditions for Lemma 15 hold, i.e. the function f (x) is defined and strictly non-decreasing

in an interval [a,b] with f (a) > a and f (b) < b. Hence, there exists an x ∈ (min j≤n
Cj
2 , lcm(T1, . . . ,Tn)) such that x = f (x). If

f (x) = ∑ j≤i

⌈
x
Tj

⌉
Cj, we found a (positive) solution and we are also done. �

Appendix B.1 presents an example consisting of two tasks with U = 1 and the least common multiple of the periods does not
exist, where the level-n active period does not end.

Theorem 7. If Assumption 1 holds, a level-i active period that is started at time t s is guaranteed to end.

Proof. The theorem follows immediately from Lemmas 2 and 3. �

5.3.3 An iterative procedure

The next theorem provides an iterative procedure to determine the length of a level-i active period.

Theorem 8. Let the level-i active period start with a release of a task τs at time ts. If Assumption 1 holds, the length Li(ts) of
that level-i active period can be found by the following iterative procedure.

L(0)
i (ts) = Bi(ts)+Cs (27)

L(l+1)
i (ts) = Bi(ts)+ ∑

j≤i

(⌈
L(l)

i (ts)−ϕ j(ts)
Tj

⌉)+

·Cj, l = 0,1, . . . (28)

Proof. From Lemma 2 and Lemma 3, we know that there exists a positive solution of Equation (26) when Assumption 1
holds. To prove the theorem, we first prove that the sequence is non-decreasing. Next, we prove that the procedure stops
when the length Li(ts) is reached, i.e. for the smallest solution of Equation (26). To that end, we show that all values in the

sequence L(l)
i (ts) are lower bounds on Li(ts). To show that the procedure terminates, we show that the sequence can only take

a finite number of values to reach that solution.

TU/e, CS-Report 07-11, April 2007 18

We prove that the sequence is non-decreasing, by induction. To this end,we start by noting that L (0)
i (ts) = Bi(ts)+Cs > 0,

and

L(1)
i (ts) = Bi(ts)+ ∑

j≤i

(⌈
L(0)

i (ts)−ϕ j(ts)
Tj

⌉)+

·Cj

≥ {ϕs(ts) = 0} Bi(ts)+Cs = L(0)
i (ts).

Next, if L(l+1)
i (ts) ≥ L(l)

i (ts), then we can conclude from Equation (28) that also L (l+2)
i (ts) ≥ L(l+1)

i (ts), as filling in a higher
value in the right-hand side of Equation (28) gives a higher or equal result.

We next prove L(l)
i (ts)≤ Li(ts), for all l = 0,1, . . ., by induction. From Lemma 1 item (ii) we know L (0)

i (ts) = Bi(ts)+Cs ≤
Li(ts). Next, if L(l)

i (ts) is a lower bound on Li(ts), then

∑
j≤i

(⌈
L(l)

i (ts)−ϕ j(ts)
Tj

⌉)+

·Cj

is a lower bound on the amount of processing that needs to be performed due to releases of task τ i and its higher priority tasks

in the interval of length L(l)
i (ts), and hence L(l+1)

i (ts) is also a lower bound on Li(ts).
Finally, we prove that the sequence can only take on a finite number of values. To this end, we note that L (l)

i (ts) is bounded
from below by Bi(ts)+Cs and from above by the solution. �

5.4 Level-(i,k) active period

Similar to a level-i active period, a level-(i,k) active period is defined in terms of the notion pending load. For the definition
of a level-(i,k) active period, we first need to refine the notion of pending load. We assume in this section that Assumption 1
holds.

5.4.1 A refinement of pending load

Let a level-i active period start at time ts. As described above, the length of that period is given by the smallest x > 0 satisfying
(26). Let the length of that period be Li(ts). The number of jobs li(ts) of task τi in that period is now given by

li(ts) =
⌈

Li(ts)−ϕi(ts)
Ti

⌉
. (29)

We now refine our notion of pending load Pi(t) by considering only the first k+1≤ li(ts) jobs of τi in the active period, where
k ∈ N.

Definition 6. The pending load Pik(t) in a level-i active period that started at time ts < t and ends at time te ≥ t is the amount
of processing at time t that still needs to be performed for at most the first k+1 ≤ l i(ts) jobs of τi and the jobs of tasks τ j with
j < i that are released in [ts,t), i.e.

Pik(t) = min(
(⌈

t − (ts + ϕi(ts))
Ti

⌉)+

,k + 1) ·Ci + ∑
j<i

(⌈
t − (ts + ϕ j(ts))

Tj

⌉)+

·Cj −
Z t

ts
σi(t ′)dt ′, (30)

with σi(t) as defined in Definition 3. At the start of a level-i active period and outside level-i active periods, Pik(t) is equal to
zero. �

5.4.2 Definition of a level-(i,k) active period

Similarly, we refine our notion of level-i active period to level-(i,k) active period.

Definition 7. A level-(i,k) active period is an interval [ts, te) with the following three properties.

1. Pik(ts) = 0;

2. Pik(te) = 0;

3. Pik(t) > 0 for t ∈ (ts,te).
�

TU/e, CS-Report 07-11, April 2007 19

5.4.3 Length of a level-(i,k) active period

Theorem 9. Let the number of jobs of task τi in a level-i active period that starts at time ts be given by li(ts). The length
Lik(ts) of that level-(i,k) active period with 0 ≤ k < li(ts) is the smallest x ∈ R+ satisfies the following equation

x = Bi(ts)+ (k + 1)Ci + ∑
j<i

(⌈
x−ϕ j(ts)

Tj

⌉)+

·Cj. (31)

Proof. The proof is similar to the proof of Theorem 6. �

6 Worst-case analysis for FPDS
This section provides theorems for the notions of critical instant and worst-case response times for tasks under FPDS and
arbitrary phasing, and theorems to determine the worst-case response times analytically. We assume in this section that As-
sumption 1 holds. Moreover, we consider an arbitrary level-i active period with a start at time t s. As described in Section 2.3,
we will use abbreviated representations for the relative notions using a prime (′) to denote the value of these notions relative
to time ts, e.g. we use a′ik to denote aik(ts).

6.1 A critical instant

Similar to Equation (1), the worst-case response time WRD
i of a task τi under FPDS is the largest response time under arbitrary

phasing, i.e.
WRD

i = sup
ϕ,k

rik.

We can refine this equation by taking blocking of tasks and the notion of level-i active period into account. In particular, we
observe that all active intervals of jobs of task τ i are contained in level-i active periods. Assuming the start of an arbitrary
level-i active period at time ts, the worst-case response time WRD

i of task τi can therefore be described as

WRD
i = sup

B′
i,ϕ

′
1,...,ϕ′

i

max
0≤k<l′i(B

′
i,ϕ

′
1,...,ϕ′

i)
r′ik(B

′
i,ϕ′

1, . . . ,ϕ′
i), (32)

where l ′i is the number of jobs of task τi in that level-i active period.
We will now first present a lemma to determine the response time of job k of task τ i in a level-i active period. We

subsequently present a theorem which states that given an infinitesimal time ε > 0, the maximum response time of task τ i is
assumed in a level-i active period which starts at an ε-critical instant. A next theorem refines Equation (32).

Lemma 4. The response time r′ik of job k of task τi in a level-i active period that starts at time ts with 0 ≤ k < l′i and l ′i the
number of jobs of task τi in that level-i active period is given by

r′ik(B
′
i,ϕ

′
1, . . . ,ϕ

′
i) = b′ik,mi

(B′
i,ϕ

′
1, . . . ,ϕ

′
i−1)+Fi− (kTi + ϕ′

i), (33)

where b′ik,mi
is the relative begin time of the final subjob of job k, given by the smallest non-negative x ∈ R satisfying

x = B′
i +(k + 1)Ci−Fi + ∑

j<i

(⌊
x−ϕ′

j

Tj

⌋
+ 1

)+

·Cj. (34)

Proof. We first look at the relative begin time b ′
ik,mi

of the final subjob of that job k, and subsequently describe r ′
ik in terms

of the relative begin time, the relative activation time a ′
ik and the computation time Fi of that final subjob.

The final subjob of job k of task τ i in the level-i active period that starts at time ts can begin at time ts +b′ik,mi
when

• the blocking subjob of the lower priority task has executed B ′
i;

• all higher priority tasks that are released in [ts, ts +b′ik,mi
] have a completion in that interval;

• all earlier jobs of task τi and all earlier subjobs of job k that are released in [t s, ts + b′ik,mi
] have a completion in that

interval.

TU/e, CS-Report 07-11, April 2007 20

Note that the order in which the subjobs in the interval [t s, ts + b′ik,mi
] are executed is irrelevant for the begin time of the

final subjob of job k of task τi. Stated in other words, the final subjob of job k of task τ i can start for the smallest ts + x ≥
ts + max(B′

i,a
′
ik) for which limt↓ts+x Pik(t) = Fi. We now derive

lim
t↓ts+x

Pik(t) = {(30)} lim
t↓ts+x

(
min(

(⌈
t − (ts + ϕ′

i)
Ti

⌉)+

,k + 1) ·Ci + ∑
j<i

(⌈
t − (ts + ϕ′

j)
Tj

⌉)+

·Cj −
Z t

ts
σi(t ′)dt ′

)

= min(
(

lim
t↓ts+x

⌈
t − (ts + ϕ′

i)
Ti

⌉)+

,k + 1) ·Ci + ∑
j<i

(
lim

t↓ts+x

⌈
t − (ts + ϕ′

j)
Tj

⌉)+

·Cj −
Z ts+x

ts
σi(t ′)dt ′

= {Lemma 16} min(
(⌊

x−ϕ′
i

Ti

⌋
+ 1

)+

,k + 1) ·Ci + ∑
j<i

(⌊
x−ϕ′

j

Tj

⌋
+ 1

)+

·Cj −
Z ts+x

ts
σi(t ′)dt ′

= {x ≥ max(B′
i,ϕ′

i + k ·Ti)} (k + 1) ·Ci + ∑
j<i

(⌊
x−ϕ′

j

Tj

⌋
+ 1

)+

·Cj − (x−B′
i)

= Fi.

The relative begin time b′
ik,mi

(B′
i,ϕ′

1, . . . ,ϕ
′
i−1) is therefore the smallest non-negative x ∈ R satisfying the following equation:

x = B′
i +(k + 1)Ci−Fi + ∑

j<i

(⌊
x−ϕ′

j

Tj

⌋
+ 1

)+

·Cj.

The relative completion time f ′ik of job k of τi is now given by the relative begin time b ′
ik,mi

plus the computation time Fi, i.e.
f ′ik = b′ik,mi

+Fi. The response time r′ik of the job k is given by the relative completion time f ′ik minus the relative activation
time a′ik, i.e.

r′ik(B
′
i,ϕ

′
1, . . . ,ϕ

′
i) = b′ik,mi

(B′
i,ϕ

′
1, . . . ,ϕ

′
i−1)+Fi− (kTi + ϕ′

i).

�

Theorem 10. Given an infinitesimal time ε > 0, the maximum response time of task τ i under FPDS and arbitrary phasing
is assumed when the level-i active period is started at an ε-critical instant, i.e. when τ i has a simultaneous release with all
higher priority tasks and a subjob of the lower priority tasks with computation time BD

i starts a time ε before that simultaneous
release.

Proof. Let R′
i(B

′
i,ϕ′

1, . . . ,ϕ′
i) denote max0≤k<l′i(B

′
i,ϕ

′
1,...,ϕ′

i)
r′ik(B

′
i,ϕ′

1, . . . ,ϕ′
i). We will prove that R′

i(B
′
i,ϕ′

1, . . . ,ϕ′
i) assumes a

maximum for ϕ′
j = 0 with j ≤ i and B′

i =
(
BD

i − ε
)+

. Hence, the maximum is assumed when τ i has a simultaneous release
with all higher priority tasks, and a subjob of a lower priority task with computation time B D

i starts an infinitesimal time ε > 0
before that simultaneous release, which proves the theorem.

Based on Theorem 7, i.e. termination of a level-i active period under Assumption 1, we conclude that

• only a finite number of jobs need to be considered to determine the worst-case response time of task τ i;

• every job of τi in a level-i active period has a finite response time.

We will now look at the value of the length L ′
i of the level-i active period, the number l ′i of jobs of task τi in the level-i

active period, and the response time r ′ik as a function of the relative phasing ϕ ′
j with j ≤ i and the blocking time B′

i. Consider

Equation (26) for the length L ′
i of a level-i active period. The term

⌈
x−ϕ′

j
Tj

⌉
in that equation is a strictly non-increasing

function of ϕ′
j with j ≤ i. Because ϕ′

j ≥ 0, a maximum of that term is assumed for ϕ ′
j = 0. Moreover, the righthand side

of Equation (26) is a strictly increasing function of B ′
i, and the length L′

i is therefore also a strictly increasing function of B ′
i.

The largest value of L′
i is found for the largest value of B ′

i under consideration, i.e. for B ′
i =
(
BD

i − ε
)+

. As a consequence, L′
i

assumes a maximum for ϕ′
j = 0 for all j ≤ i and B′

i =
(
BD

i − ε
)+

.
Given the behavior of L′

i and Equation (29), we conclude that the number of jobs l ′i of task τi in the level-i active period is
a strictly non-increasing function of ϕ ′

j with j ≤ i and a strictly non-decreasing function of B ′
i. As a consequence, l ′i assumes

a maximum for ϕ′
j = 0 for all j ≤ i and B′

i =
(
BD

i − ε
)+

.

TU/e, CS-Report 07-11, April 2007 21

From Equation (33), we conclude that r ′ik(B
′
i,ϕ′

1, . . . ,ϕ
′
i) is a strictly decreasing function of ϕ ′

i. Because ϕ′
i ≥ 0, a maximum

is assumed for ϕ′
i = 0. Now consider Equation (34) for the relative begin time b ′

ik,mi
. The term

⌊
x−ϕ′

j
Tj

⌋
in that equation is

a strictly non-increasing function of ϕ ′
j. Similarly to ϕ′

i, ϕ′
j ≥ 0, a maximum of that term is therefore assumed for ϕ ′

j = 0.
Hence, b′ik,mi

(B′
i,0, . . . ,0) dominates b′

ik,mi
(B′

i,ϕ′
1, . . . ,ϕ′

i−1) for all values of B′
i and all values of ϕ′

j with j < i. Moreover,
the righthand side of Equation (34) is a strictly increasing function of B ′

i, and b′ik,mi
(B′

i,0, . . . ,0) is therefore also a strictly
increasing function of B ′

i. The largest value of b′
ik,mi

(B′
i,0, . . . ,0) is found for the largest value of B ′

i under consideration, i.e.

for B′
i =
(
BD

i − ε
)+

. As a consequence, r′ik(B
′
i,ϕ′

1, . . . ,ϕ
′
i) also assumes a maximum for ϕ′

j = 0 for all j ≤ i and B′
i =
(
BD

i − ε
)+

.
From the values of L′

i, l′i and r′ik as a function of the relative phasing ϕ ′
j with j ≤ i and the blocking time B′

i, we conclude
that R′

i(B
′
i,ϕ′

1, . . . ,ϕ′
i) is a strictly non-increasing function of ϕ ′

1, . . . , ϕ′
i−1, a strictly decreasing function of ϕ ′

i, and a strictly

increasing function of B ′
i. As a result, R′

i(B
′
i,ϕ′

1, . . . ,ϕ′
i) assumes a maximum for ϕ′

j = 0 with j ≤ i and B′
i =
(
BD

i − ε
)+

, which
proves the theorem. �

Theorem 11. The worst-case response time WRD
i of task τi under FPDS and arbitrary phasing is given by

WRD
i = lim

ε↓0
max

0≤k<l′i((B
D
i −ε)+,0,...,0)

r′ik
((

BD
i − ε

)+
,0, . . . ,0

)
. (35)

Proof. Once again, let R′
i(B

′
i,ϕ′

1, . . . ,ϕ
′
i) denote max0≤k<l′i((B

D
i −ε)+,0,...,0) r′ik

((
BD

i − ε
)+

,0, . . . ,0
)

. From the proof of Theo-

rem 10, we derive that R′
i(B

′
i,0, . . . ,0) dominates R′

i(B
′
i,ϕ′

1, . . . ,ϕ′
i) for all values of B′

i and all values of ϕ′
j with j ≤ i, i.e.

WRD
i = sup

B′
i,ϕ

′
1,...,ϕ′

i

R′
i(B

′
i,ϕ′

1, . . . ,ϕ′
i)

= sup
B′

i

R′
i(B

′
i,0, . . . ,0)

Moreover, R′
i(B

′
i,ϕ′

1, . . . ,ϕ′
i) is a strictly increasing, i.e. monotonic, function of B ′

i. Hence,

WRD
i = sup

B′
i

R′
i(B

′
i,0, . . . ,0)

= lim
ε↓0

R′
i

((
BD

i − ε
)+

,0, . . . ,0
)

,

which proves the theorem. �

In the sequel, we will omit trailing zeros in the parameter list, e.g. we write r ′ik

((
BD

i − ε
)+)

when ϕ′
j = 0 for j ≤ i.

From the previous two theorems, we draw the following conclusions.

Corollary 4. The worst-case response time WRD
i is a supremum (and not a maximum) for all tasks, except for the lowest

priority task, i.e. that value cannot be assumed for i < n. �

Corollary 5. A critical instant is a supremum for all tasks, except for the lowest priority task, i.e. that instant cannot be
assumed for i < n. �

6.2 Worst-case response times

The next theorem describes WRD
i in terms of the worst-case response time WRP

i and worst-case occupied time WOP
i under

FPPS.
First, we present definitions and prove three lemmas for for the worst-case length WL D

i of a level-i active period, the
maximum number wlD

i jobs of task τi in a level-i active period, and the worst-case response time WRD
ik of job k of task τi.

Definition 8. The worst-case length WLD
i of level-i active period under FPDS is the largest length of that period under

arbitrary phasing, i.e.
WLD

i = sup
B′

i,ϕ
′
1,...,ϕ′

i

L′
i(B

′
i,ϕ

′
1, . . . ,ϕ

′
i). (36)

�

TU/e, CS-Report 07-11, April 2007 22

Definition 9. The worst-case number wlD
i of jobs of task τi in a level-i active period under FPDS is the largest number in

that period under arbitrary phasing, i.e.
wlD

i = sup
B′

i,ϕ
′
1,...,ϕ′

i

l′i(B
′
i,ϕ

′
1, . . . ,ϕ

′
i). (37)

�

Definition 10. The worst-case response time WRD
ik of job k of task τi, with 1 ≤ k < wlD

i , under FPDS is the largest response
time of job k of τi under arbitrary phasing, i.e.

WRD
ik = sup

B′
i,ϕ

′
1,...,ϕ′

i

r′ik(B
′
i,ϕ

′
1, . . . ,ϕ

′
i). (38)

�

Lemma 5. The worst-case length WLD
i of a level-i active period with i ≤ n under FPDS is given by the smallest x ∈ R+ that

satisfies the following equation

x = BD
i + ∑

j≤i

⌈
x
Tj

⌉
Cj. (39)

Proof. The term

⌈
x−ϕ′

j
Tj

⌉
in Equation (26) is a strictly non-increasing function of ϕ ′

j with j ≤ i. Because ϕ′
j ≥ 0, a maximum

of that term is assumed for ϕ′
j = 0. Now let L′

i(B
′
i) denote the length of a level-i active period with i ≤ n for a simultaneous

release of task τi with all tasks with a higher priority. Hence, L ′
i(B

′
i) is the smallest x ∈ R+ satisfying equation (26) with

ϕ′
j = 0, i.e. the smallest x ∈ R+ satisfying

x = B′
i + ∑

j≤i

⌈
x
Tj

⌉
Cj. (40)

We will now consider the cases i < n and i = n separately.
{i = n} The lowest priority task is never blocked, therefore B D

n = 0, and we immediately get (39) by substituting B ′
i = 0 in

equation (40) for i = n.
{i < n} The righthand side of equation (40) is a strictly increasing function of B ′

i, and L′
i(B

′
i) is therefore also a strictly

increasing function of B ′
i. The largest value for L′

i(B
′
i) is found for the largest value of B ′

i < BD
i . Hence, WLD

i is given by

WLD
i = lim

B′
i↑BD

i

L′
i(B

′
i). (41)

Given Lemma 17, we can make the following derivation starting from this equation.

WLD
i = {(40)} lim

B′
i↑BD

i

(
B′

i + ∑
j≤i

⌈
L′

i(B
′
i)

Tj

⌉
Cj

)

= BD
i + ∑

j≤i
lim

B′
i↑BD

i

⌈
L′

i(B
′
i)

Tj

⌉
Cj

= {Lemma 17} BD
i + ∑

j≤i

⌈
lim

B′
i↑BD

i

L′
i(B

′
i)

Tj

⌉
Cj

= {(41)} BD
i + ∑

j≤i

⌈
WLD

i

Tj

⌉
Cj

Hence, the worst-case length WLD
i is the smallest x ∈ R+ satisfying (39), which proves the lemma. �

Because BD
i is a supremum (and not a maximum) for all tasks, except for the lowest priority task, we draw the following

conclusion from the previous lemma.

Corollary 6. The worst-case length WLD
i is a supremum (and not a maximum) for all tasks, except for the lowest priority

task, i.e. that value cannot be assumed for i < n. �

TU/e, CS-Report 07-11, April 2007 23

Lemma 6. The maximum number wlD
i of jobs of task τi in a level-i active period with i ≤ n under FPDS is given by

wlD
i =

⌈
WLD

i

Ti

⌉
. (42)

Proof. We first derive Equation (42) and subsequently prove that wl D
i is a maximum.

As described in the proof of Theorem 10, l ′i(B
′
i) is a strictly non-decreasing function of the blocking time B ′

i. Because BD
i

is a supremum that cannot be assumed, the largest value for l ′i(B
′
i) is therefore found for the largest value of B ′

i < BD
i . Hence,

wlD
i is given by

wlD
i = lim

B′
i↑BD

i

l′i(B
′
i). (43)

Because L′i(B
′
i)

Ti
is a strictly increasing function of B ′

i, we can use Lemma 17 in the following derivation

lim
B′

i↑BD
i

l′i(B
′
i) = lim

B′
i↑BD

i

⌈
L′

i(B
′
i)

Ti

⌉

= {Lemma 17}
⌈

lim
B′

i↑BD
i

L′
i(B

′
i)

Ti

⌉

= {(41)}
⌈

WLD
i

Ti

⌉
.

Equation (42) immediately follows from Equation (43) and this latter equation.
The proof that wlD

i is a maximum consists of two steps. We first prove that l ′i(B
′
i) is left-continuous in BD

i , i.e.

l′i(B
D
i) = lim

B′
i↑BD

i

l′i(B
′
i), (44)

and subsequently prove that l ′i(B
′
i) is constant in an interval (BD

i − γ,BD
i] for a sufficiently small γ ∈ R+, i.e.

∀
BD

i −γ<B′
i≤BD

i

l′i(B
′
i) = wlD

i .

To prove that l ′i(B
′
i) is left-continuous in BD

i , we show that L′
i(B

D
i) is defined and equal to WLD

i , and subsequently show
that l′i(B

D
i) = wlD

i . From Theorem 7, we know that L ′
i(B

′
i) exists if Assumption 1 holds. Moreover, considering Theorem 6

and Lemma 5, we conclude that WLD
i and L′

i(B
D
i) are solutions of the same equation, i.e. L ′

i(B
D
i) = WLD

i . As a result, we get

l′i(B
D
i) =

⌈
L′

i(B
D
i)

Ti

⌉
=
⌈

WLD
i

Ti

⌉
= wlD

i .

To prove that l ′i(B
′
i) is constant in an interval (BD

i − γ,BD
i] for a sufficiently small γ ∈ R+, we use the definition of a limit:

lim
x↑X

f (x) = Y ⇔ ∀
ε>0

∃
δ>0

∀
x∈(X−δ,X)

| f (x)−Y | < ε.

Because l′i(B
′
i) is strictly non-decreasing and defined in BD

i , we have

∀
0≤B′

i≤BD
i

l′i(B
′
i) ≤ wlD

i .

Let ε ∈ (0,1]. Now there exists a δ ∈ (0,BD
i) such that 0 ≤ wlD

i − l′i(B
′
i) < ε ≤ 1 for all B′

i ∈ (BD
i − δ,BD

i], hence wlD
i ≥

l′i(B
′
i) > wlD

i −1. Because wlD
i , l′i(B

′
i) ∈ N, this completes the proof. �

Note that unlike WLD
i , the value for wlD

i can be assumed. Based on Lemma 6, we conclude that l ′i((B
D
i − γ)+) = wlD

i for a
sufficiently small γ ∈ R+, and we can therefore exchange the order of the operators in Equation (35), i.e.

WRD
i = max

0≤k<wlD
i

lim
ε↓0

r′ik
((

BD
i − ε

)+)
. (45)

Hence, WRD
ik is given by

WRD
ik = lim

ε↓0
r′ik
((

BD
i − ε

)+)
. (46)

TU/e, CS-Report 07-11, April 2007 24

Lemma 7. The worst-case response time WRD
ik of job k with 0 ≤ k < wlD

i of a task τi under FPDS and arbitrary phasing is
given by

WRD
ik =

{
WRP

i (B
D
i +(k + 1)Ci−Fi)+Fi− kTi for i < n

WOP
n((k + 1)Cn −Fn)+Fn− kTn for i = n

, (47)

where WRP
i (B

D
i +(k+1)Ci−Fi) and WOP

i (B
D
i +(k+1)Ci−Fi) are the worst-case response time and the worst-case occupied

time under FPPS of a task τ′i with a computation time C′
i = BD

i +(k + 1)Ci −Fi, a period T ′
i = kTi +Di −Fi and a deadline

D′
i = T ′

i .

Proof. Starting from Equation (46), we derive

WRD
ik = lim

ε↓0
r′ik
((

BD
i − ε

)+)
= {(33)} lim

ε↓0

(
b′ik,mi

((
BD

i − ε
)+)

+Fi− kTi

)
= lim

ε↓0
b′ik,mi

((
BD

i − ε
)+)

+Fi− kTi,

where b′ik,mi

((
BD

i − ε
)+)

denotes the relative begin time of the final subjob of job k of task τ i with 0 ≤ k < wli and ϕ′
j = 0

for j ≤ i as given in Equation (34). Hence, b ′
ik,mi

((
BD

i − ε
)+)

is the smallest x ∈ R+ satisfying

x =
((

BD
i − ε

)+)
+(k + 1)Ci−Fi + ∑

j<i

(⌊
x
Tj

⌋
+ 1

)
Cj.

Now let task set T ′ be identical to T except for the characteristics of task τ i, i.e. τ′i has characteristics C′
i =
(
BD

i − ε
)+ +(k+

1)Ci −Fi, T ′
i = kTi +Di −Fi, and D′

i = T ′
i . Hence, task τ′i of T ′ misses its deadline under FPPS and arbitrary phasing if and

only if job k of task τi of T misses its deadline under FPDS, and arbitrary phasing and an amount of blocking
(
BD

i − ε
)+

.
Based on Theorem 4, we can now write

b′ik,mi

((
BD

i − ε
)+)

= WOP
i

((
BD

i − ε
)+

+(k + 1)Ci−Fi

)
.

For i = n, we substitute BD
n = 0, and immediately arrive at Equation (47), which proves the lemma for i = n.

For i < n, we derive

WRD
ik = lim

ε↓0
WOP

i

((
BD

i − ε
)+

+(k + 1)Ci−Fi

)
+Fi − kTi

= {(14)} WRP
i

(
BD

i +(k + 1)Ci−Fi
)
+Fi − kTi,

which proves the lemma for i < n. �

Note that because the lowest priority task is the only task that cannot be blocked, i.e. B D
n = 0, the worst-case response time

analysis for FPDS is not uniform for all tasks. Moreover, note that WR D
ik is a supremum (and not a maximum) for all tasks,

except for the lowest priority task, i.e. that value cannot be assumed for i < n.

Theorem 12. The worst-case response time WRD
i of a task τi under FPDS and arbitrary phasing is given by

WRD
i = max

0≤k<wlD
i

WRD
ik. (48)

Proof. The theorem follows immediately from Equations (45) and (46), and requires Lemma 7. �

TU/e, CS-Report 07-11, April 2007 25

6.3 An iterative procedure

The next theorem provides an iterative procedure to determine the worst-case response time WR D
i for task τi under FPDS and

arbitrary phasing. The procedure is stopped when the worst-case response time WR D
ik of job k for task τi exceeds the deadline

Di or when the level-i active period is over. This latter condition is based on a property of WL D
i .

Lemma 8. The worst-case length WLD
ik of a level-(i,k) active period under FPDS is the smallest positive x ∈ R+ satisfying

the following equation

x = BD
i +(k + 1)Ci + ∑

j<i

⌈
x
Tj

⌉
Cj. (49)

Proof. The proof is similar to the proof of Lemma 5. �

Note that because BD
i is a supremum (and not a maximum) for all tasks, except the lowest priority task, WL D

ik is also supremum
(and not a maximum) for all tasks, except the lowest priority task, i.e. that value cannot be assumed for i < n.

Lemma 9. The worst-case length WLD
ik of a level-(i,k) active period under FPDS is given by

WLD
ik = WRP

i (B
D
i +(k + 1)Ci). (50)

where WRP
i (B

D
i +(k+1)Ci) is the worst-case response time under FPPS and arbitrary phasing of a task τ ′

i with a computation
time C′

i = BD
i +(k + 1)Ci, a period T ′

i = (k + 1)Ti +Di and a deadline D′
i = T ′

i .

Proof. The lemma follows from the similarity between Equations (7) and (49). The period and deadline of task τ ′
i

have been chosen to be equal to the deadline of job k + 1 of task τ i. Hence, when the iterative procedure to determine
WRP

i

(
BD

i +(k + 1)Ci
)

stops because the deadline D′
i is exceeded, the deadline di,k+1 will be exceeded as well. �

Lemma 10. Let k′ ∈ N be the smallest value for which WRP
i

(
BD

i +(k′ + 1)Ci
)
≤ (k′ +1)Ti. The worst-case length WLD

i of a
level-i active period is now given by WRP

i

(
BD

i +(k′ + 1)Ci
)
.

Proof. To prove the lemma, we will prove the following equivalent relation by means of a contradiction argument

∀
0≤k<wlD

i

(
WLD

ik ≤ (k + 1)Ti ⇒ k = wlD
i −1

)
.

We only consider k < wlD
i −1, because the proof for k = wlD

i −1 is similar.
Let WLD

i,k ≤ (k + 1)Ti for 0 ≤ k < wlD
i −1. Using Lemma 9, we derive WRP

i (B
D
i +(k + 1)Ci) ≤ (k + 1)Ti. Hence, task τ′i

has a completion at or before (k+1)Ti, and all higher priority tasks that are released in the interval [0,WR P
i

(
BD

i +(k + 1)Ci
)
)

have a completion in that interval. Because task τ ′i represents the executions of both the blocking lower priority task as well
as task τi, all executions of the corresponding jobs also have a completion in that interval. Hence, the level-i active period
that started with an ε-critical instant ends at time WRP

i

(
BD

i +(k + 1)Ci
)
. However, we now have that the length of the level-i

active period equals WLD
i,k, a value that is strictly smaller than WLD

i , which is a contradiction. Therefore, our assumption that

WLD
i,k ≤ (k + 1)Ti for 0 ≤ k < wlD

i −1 is wrong, which proves the lemma. �

From these lemmas, we draw the following conclusion.

Corollary 7. The level-i active period is over for the smallest k ′ ∈ N for which WRP
i (BD

i +(k′ + 1)Ci) ≤ (k′ + 1)Ti. �

Theorem 13. The worst-case response time WRD
i of a task τi can be found by the following iterative procedure under As-

sumption 1, using (47).

WR(0)
i = WRD

i,0 (51)

WR(l+1)
i = max(WR(l)

i ,WRD
i,l+1) l = 0,1, . . . (52)

The procedure is stopped when the worst-case response time WRD
ik of job k of task τi exceeds the deadline Di or when the

level-i active period is over, i.e. WRP
i (B

D
i +(k + 1)Ci) ≤ (k + 1)Ti.

TU/e, CS-Report 07-11, April 2007 26

Proof. Corollary 7 states that WRP
i (B

D
i +(k+1)Ci)≤ (k+1)Ti is a proper termination condition to determine whether or not

the level-i active period is over before the release of job k + 1. Because of Theorem 7, the level-i active periods ends under
Assumption 1, and we therefore have to consider at most a finite number wl D

i of jobs of task τi. As a result, the iterative
procedure ends. We observe that the iterative procedure also stops when the deadline D i is exceeded, by the worst-case
response time WRD

ik of job k of τi i.e. when the task set is not schedulable. �

Corollary 8. When Assumption 1 holds, we can derive the schedulability of a set of tasks T under FPDS and arbitrary
phasing by checking the schedulability criterion WRD

i ≤ Di using Theorem 13. �

Corollary 9. To check the schedulability criterion WRD
i ≤ Di we do not need to determine the length WLD

i of the worst-case
level-i active period under FPDS first. Instead, we can simply check whether or not the level-i active period is over after
every iteration. �

Finally note that

• WRD
i,k can be used as initial value to calculate WRP

i (B
D
i +(k+1)Ci) to determine whether or not the level-i active period

is over before the release of job k + 1;

• WRP
i (B

D
i +(k + 1)Ci) can be used as initial value to calculate WRP

i (B
D
i +(k + 2)Ci−Fi) to determine WRD

i,k+1.

7 Examples
In this section, we will illustrate the worst-case response time analysis presented in Section 6 to determine the schedulability
of tasks and task sets under FPDS and arbitrary phasing of some examples of Section 4 using the iterative procedure presented
in Theorem 13.

7.1 Schedulability of task τ2 of T2

The schedulability of task τ2 of task set T2 is the topic of this section. The characteristics of the tasks of T2 can be found in
Table 2 on page 8 in Section 4.2.

To determine the worst-case response time WRD
2 for task τ2, we first derive BD

2 = 2 using Equation (17). Next, we

determine WR(0)
2 using Lemma 7, i.e.

WR(0)
2 = WRD

2,0 = WRP
2(B

D
2 +C2 −F2)+F2 = WRP

2(3)+ 2 = 5+ 2 = 7.

Because WRD
2,0 ≤D2 = 7 and WRP

2(B
D
2 +C2) = WRP

2(5) = 9 > T2 = 7, i.e. the level-2 active period is not over yet, we proceed

with the 2nd job.
For the 2nd job, we find

WRD
2,1 = WRP

2(BD
2 + 2C2 −F2)+F2 −T2 = WRP

2(6)−5 = 10−5 = 5,

and therefore WR(1)
2 = max(WR(0)

2 ,WRD
2,1) = max(7,5) = 7. Now WRD

2,1 = 5 ≤ D2 and WRP
2(B

D
2 + 2C2) = WRP

2(8) = 14 ≤
2T2 = 14. Hence, we know that the level-2 active period is over, all jobs of task τ 2 meet their deadlines in that period, and
the worst-case response time WRD

2 = 7.

7.2 Schedulability of task τ2 of T4

We will determine the schedulability of task τ2 of task set T4 in this section. The characteristics of the tasks of T4 can be
found in Table 4 on page 10 in Section 4.3.2.

We first determine WR(0)
2 using Lemma 7, i.e.

WR(0)
2 = WRD

2,0 = WOP
2(BD

2 +C2 −F2)+F2 = WOP
2(2)+ 2.1 = 4+ 2.1 = 6.1.

Because WRD
2,0 ≤ D2 = 7 and WRP

2(B
D
2 +C2) = WRP

2(4.1) = 8.1 > T2 = 7, we proceed with the 2nd job.

For the 2nd job, we find

WRD
2,1 = WOP

2(B
D
2 + 2C2 −F2)+F2−T2 = WOP

2(6.1)−4.9 = 12.1−4.9 = 7.2.

Because WRD
2,1 > D2 = 7, we conclude that task τ2 is not schedulable.

TU/e, CS-Report 07-11, April 2007 27

7.3 Schedulability of the task set T5

In this section, we will determine the schedulability of the task set T5. The characteristics of the tasks of T5 can be found in
Table 5 on page 10 in Section 4.3.3.

To determine the worst-case response time WRD
1 for task τ1, we first derive BD

1 = 3 using Equation (17). Next, we

determine WR(0)
2 using Lemma 7, i.e.

WR(0)
1 = WRD

1,0 = WRP
1(BD

1 +C1 −F1)+F1 = 3+ 2 = 5.

Now WRD
1,0 = D1 and WRD

1 (BD
1 +C1) = 5 = T1. Hence, we know that the level-1 active period is over, all jobs of task τ 1 meet

their deadlines, and the worst-case response time WRD
1 = 5.

Next, we determine the worst-case response time WRD
2 for task τ2. To this end, we first determine WR(0)

2 using Lemma 7,
i.e.

WR(0)
2 = WRD

2,0 = WOP
2(BD

2 +C2 −F2)+F2 = WOP
2(1.2)+ 3 = 3.2+ 3 = 6.2.

Because WRD
2,0 < D2 = 7 and WRP

2(B
D
2 +C2) = 8.2 > T2 = 7, we proceed with the 2nd job.

For the 2nd job, we find

WRD
2,1 = WOP

2(BD
2 + 2C2 −F2)+F2 −T2 = WOP

2(5.4)−4 = 9.4−4 = 5.4,

and therefore WR(1)
2 = max(WR(0)

2 ,WRD
2,1) = max(6.2,5.4) = 6.2. Because WRD

2,1 < D2 and WRP
2(B

D
2 +2C2) = 14.4 > 2T2 =

14, we proceed with the 3rd job.
For the 3rd job, we find

WRD
2,2 = WOP

2(BD
2 + 3C2 −F2)+F2 −2T2 = WOP

2(9.6)−11 = 17.6−11 = 6.6,

and therefore WR(2)
2 = max(WR(1)

2 ,WRD
2,2) = max(6.2,6.6) = 6.6. Because WRD

2,2 < D2 and WRP
2(B

D
2 +3C2) = 22.6 > 3T2 =

21, we proceed with the 4th job.
For the 4th job, we find

WRD
2,3 = WOP

2(B
D
2 + 4C2 −F2)+F2 −3T2 = WOP

2(13.8)−18 = 23.8−18 = 5.8.

and therefore WR(3)
2 = max(WR(2)

2 ,WRD
2,3) = max(6.6,5.8) = 6.6. Because WRD

2,3 < D2 and WRP
2(B

D
2 +4C2) = 28.8 > 4T2 =

28, we proceed with the 5th job.
For the 5th job, we find

WRD
2,4 = WOP

2(BD
2 + 5C2 −F2)+F2 −4T2 = WOP

2(18)−25 = 32−25 = 7,

and therefore WR(4)
2 = max(WR(3)

2 ,WRD
2,4) = max(6.6,7) = 7. Now WRD

2,4 = D2 and WRP
2(B

D
2 +5C2) = 35 = 5T2. Hence we

know that the level-2 active period is over, all jobs of task τ 2 meet their deadlines in that period, and the worst-case response
time WRD

2 = 7.
Because WRD

i ≤ Di for all i ≤ n, we conclude that T5 is schedulable under FPDS and arbitrary phasing when deadlines are
equal to periods.

8 Discussion
This section presents a theorem for the worst-case response time of the highest priority task, compares the notion of level-i
active period with similar notions in the literature, and presents pessimistic variants for the worst-case response time analysis
of tasks under FPDS and arbitrary phasing.

8.1 Worst-case response time of highest priority task

In Section 4.4, we concluded that the optimism in the existing analysis does not occur for the highest priority task. The next
theorem provides a formal basis for that conclusion, by stating that the worst-case response time of the highest priority task
τ1 can be found by only considering the first job of τ 1 in a level-1 active period started at an ε-critical instant.

First, we prove the following lemma.

TU/e, CS-Report 07-11, April 2007 28

Lemma 11. The first job of task τ1 in a level-1 active period has the largest response time of all jobs of τ1 in that period.

Proof. The highest priority task τ1 experiences blocking of at most one subjob of a lower priority task. If the first job of τ 1

in a level-1 active period is blocked by an amount B, its response time r ′
1,0(B) becomes

r′1,0(B) = B+C1.

Now, assume the level-1 active period contains l1 > 1 jobs of task τ1. The response time r′1,k(B) of job k, with 0 ≤ k < l1,
becomes

r′1,k(B) = B+(k + 1)C1− kT1

= B+C1 + k(C1 −T1)
= B+C1 + k(U1 −1)T1

When task τ1 is blocked by a lower priority task, U1 < 1. Hence, we find

r′1,k(B) < B+C1 = r′1,0(B),

which proves the lemma. �

Theorem 14. The worst-case response time WRD
1 of the highest priority task τ1 under FPDS is equal to

WRD
1 = BD

1 +C1. (53)

Proof. From equation r ′1,0(B) = B+C1, we conclude that r′1,0(B) is a strictly increasing function of B. Hence, we derive

WRD
1 = sup

B
r′1,0(B) = lim

B↑BD
1

(B+C1) = BD
1 +C1,

which proves the theorem. �

8.2 A comparison with existing notions

We will now compare our notion of level-i active period with similar notions in the literature.

8.2.1 Level-i busy period in [27]

The notion of level-i busy period originates from [27], where it has been introduced as an expedient to determine the worst-
case response times of tasks for deadlines larger than periods under FPPS and arbitrary phasing. The level-i busy period is
defined as follows.

Definition 11. A level-i busy period is a time interval [a,b] within which jobs of priority i or higher are processed throughout
[a,b] but no jobs of level i or higher are processed in (a− ε,a) or (b,b+ ε) for sufficiently small ε > 0. �

Figure 9 also shows the level-1 busy periods and level-2 busy periods for T 1. The level-1 busy periods in this figure only
differ from the level-1 active periods by the inclusion of the end-points of the intervals by the former. The difference between
level-2 busy periods and level-2 active periods is more significant, however. Whereas the interval [0,12) is constituted by four
level-2 active periods, i.e. [0,5), [5,7), [7,10), and [10,12), the interval is contained in a single level-2 busy period [0,12].
Stated in other words, the level-2 busy period unifies four adjacent level-2 active periods. Similarly, the interval [20,27) is
constituted by two level-2 active periods, i.e. [20,25) and [25,27), and the interval is contained in a single level-2 busy period
[20,27].

Figure 10 shows the level-1 busy periods and level-2 busy periods for T 1. From this figure, we see that the level-2 busy
period never ends for U = 1, as also becomes immediately clear from Definition 11. Conversely, the level-2 active period
that started at time t = 0 ends at time t = 35; see also Assumption 1 and Theorem 7. We observe that the definition of level-i
busy period is included in [24] (on page D-4, referring to [27]), and the notion is used in Technique 5 “Calculating Response
Time with Arbitrary Deadlines and Blocking.” As shown above, the busy period never ends for U = 1. Notably, in [24] on
page 4–35 it is only mentioned that we must be sure that the [. . .] utilization [. . .] is not greater than one. In Step 6 “Decide
if the busy period is over” the notion is used to determine whether or not the iterative procedure can be stopped. Notably,

TU/e, CS-Report 07-11, April 2007 29

that decision is not based on the end of the busy period, but on the end of the level-i active period, i.e. when the (worst-case)
response time WRP

ik of job k of task τi is less than or equal to Ti; see also Theorem 13.
There is another striking difference between the level-i active period and the level-i busy period. A level-i active period

may start when a task with a lower priority is still being processed, as illustrated by the level-1 active period that starts at time
t = 5 in Figure 10. The corresponding level-1 busy period does not start at time t = 5, but at time t = 6.2 instead.

The fundamental difference between both notions can be traced back to their definitions; a busy period is based on a
schedule, i.e. the definition refers to processing of jobs, whereas an active period is based on (pending) load or active jobs.

8.2.2 τi-busy period in [19]

In [19], the notion of busy period is slightly modified to accommodate the fact that a task τ i may be composed of distinct
subtasks, each of which may have its own timing requirements and fixed priority. In the following definition, ρ i denotes the
minimum priority of the subtasks of task τ i.

Definition 12. A τi-idle instant is any time t such that all work of priority ρ i or higher started before t and all τi jobs also
started before t have completed at or before t. �

Definition 13. A τi-busy period is an interval of time [A,B] such that both A and B are τ i-idle instants and there is no time
t ∈ (A,B) such that t is a τi-idle instant. �

This notion of τi-busy period is similar to our level-i active period, with as main difference that a τ i-busy period is a closed
interval rather than a right semi-open interval. Although this difference may be viewed as philosophical, we prefer the usage
of a right semi-open interval, which we will motivate by means of Figure 10. Given Definition 12 and 13, time t = 35 belongs
to two τ2-busy periods, i.e. [0,35] and [35,70]. Moreover, time t = 35 is also a τ 2-idle instant. Hence, τi-busy periods can
overlap, and when they overlap, the overlap is termed a τ i-idle instant. This is considered to be counter-intuitive.

8.2.3 Level-i busy period in [18]

After a brief recapitulation of the notion of level-i busy period of [27] for FPPS, an informal description of a level-i busy
period for FPNS under discrete scheduling [4] is given in Appendix A.2 of [18]. Note that for discrete scheduling, all task
parameters are integers, i.e. Ti, Ci, Di ∈ Z+ and ϕi ∈ Z+ ∪{0}, and preemptions are restricted to integer time points.

Unfortunately, there is an inconsistency in [18]. In Appendix A.2, the following definition is given.

Definition 14. A level-i busy period is a processor busy period in which only instances of tasks with a priority greater than
or equal to that of τi execute. �

Accordingly, the interval of time that a lower priority task blocks task τ i and its higher priority tasks is not included in the
level-i busy period in both the text of the proof of Lemma 6 in Section 4.3.1 and Figure 6, which is used to illustrate that proof,
Conversely, that interval is included in the equation to determine the length of the level-i busy period for the non-preemptive
case, as described in Appendix A.2 in [18].

Note that [18] does not reproduce the definition of [27] (see Definition 11 above), but presents a new definition. Surpris-
ingly, the differences between these definitions are not discussed. As an example, a (synchronous processor) busy period in
[18] is described as a right semi-open interval on page 6, whereas the level-i busy period in [27] is a closed interval.

The notion of level-i busy period for FPNS in [18] is similar to our notion of level-i active period under the assumption
that the equation to determine the length of a level-i busy period for the non-preemptive case properly reflects the intention
of the authors.

8.2.4 Level-πi busy interval in [30]

In [30], an analysis method is described to determine the schedulability of tasks under FPPS whose relative deadlines are
larger than their respective periods, using the term level-π i busy interval. A level-πi busy interval is defined as a left semi-open
interval (t0, t], i.e. the partitioning of the timeline in [30] differs from ours. Given the description in [30], our definition of
level-i active period can be viewed as a slightly modified definition of level-π i busy interval to accommodate our scheduling
model for FPDS.

8.3 Pessimistic variants

Given Equation (47) in Lemma 7, we observe that the worst-case response time analysis is not uniform for all tasks. The
analysis can be made uniform at the cost of potentially introducing pessimism. This section presents two lemmas with
pessimistic variants for the worst-case response time analysis, one based on worst-case occupied times and one based on

TU/e, CS-Report 07-11, April 2007 30

worst-case response times. For both variants, the iterative procedure presented in Theorem 13 can be used, i.e. only the
equations for WRD

ik change, not the iterative procedure. We conclude this section with a retrospect on the analysis for FPDS.

8.3.1 A uniform analysis based on WOP

Lemma 12. A pessimistic worst-case response time ŴR
D
ik of job k with 0 ≤ k < wlD

i of a task τi under FPDS and arbitrary
phasing is given by

ŴR
D
ik = WOP

i (B
D
i +(k + 1)Ci−Fi)+Fi− kTi, (54)

where WOP
i (BD

i + (k + 1)Ci −Fi) is the worst-case occupied time under FPPS of a task τ ′i with a computation time C′
i =

BD
i +(k + 1)Ci−Fi, a period T ′

i = kTi +Di −Fi, and a deadline D′
i = T ′

i .

Proof. By definition, WRP
i (C) ≤ WOP

i (C), hence WRD
ik ≤ ŴR

D
ik. Because WRP

1(C) = WOP
1(C), ŴR

D
ik is potentially pessimistic

for 1 < i < n. �

The pessimism is illustrated by the set T2 consisting of three tasks with characteristics as described in Table 2 on page 8.

For the worst-case response time ŴR
D
2,0 of the first job of task τ2 we find

ŴR
D
2,0 = WOP

2(B
D
2 +C2 −F2)+F2

= WOP
2(2+ 3−2)+ 2

= WOP
2(3)+ 2 = 7+ 2 = 9.

Because ŴR
D
2,0 > D2, T2 is considered unschedulable under FPDS based on Lemma 12. Conversely, application of Lemma 7

yields a value WRD
2 = 7 ≤ D2.

We observe that ŴR
D
2,0 is equal to W̃R

D
2 as determined in Section 4.2 by means of the existing analysis as presented in [12]

and [15]. This equality is not a coincidence, for the following two reasons. Firstly, remember that because the characteristics

of the tasks of T2 are integral multiples of a value δ = 1 and ∆ = 0.2 ≤ δ, the value for W̃R
D
2 does not change when ∆ is

reduced to an arbitrary small positive value, i.e.

W̃R
D
2 = lim

∆↓0

(
WRP

2(BD
2 +C2 − (F2 −∆))+ (F2−∆)

)
.

Secondly, we can make the following derivation using Equation (10)

lim
∆↓0

(
WRP

2(BD
2 +C2 − (F2 −∆))+ (F2−∆)

)
= lim

∆↓0

(
WRP

2(B
D
2 +C2 − (F2 −∆))

)
+F2

= {(10)} WOP
2(BD

2 +C2 −F2)+F2

= ŴR
D
2,0.

These two results show that ŴR
D
2,0 = W̃R

D
2 for T2.

8.3.2 A uniform analysis based on WRP

We will give another pessimistic approach that is uniform for all tasks, which assumes a small positive value ∆ and is based
on WRP.

Lemma 13. A pessimistic worst-case response time
̂̂
WR

D

ik of job k with 0 ≤ k < wlD
i of a task τi under FPDS and arbitrary

phasing is given by ̂̂
WR

D

ik = WRP
i (B

D
i +(k + 1)Ci− (Fi −∆))+ (Fi−∆)− kTi (55)

where
(i) WRP

i (BD
i + (k + 1)Ci − (Fi −∆)) is the worst-case response time under FPPS of a task τ′i with a computation time

C′
i = BD

i +(k + 1)Ci− (Fi−∆), a period T ′
i = kTi +Di − (Fi −∆), and a deadline D′

i = T ′
i ;

(ii) ∆ is a sufficiently small positive number.

TU/e, CS-Report 07-11, April 2007 31

Proof. Because WRP
1(C) = WOP

1(C) = C, ̂̂WR
D

1,0 = ŴR
D
1,0 = WRD

1 . Hence, this approach is not pessimistic for i = 1. We will
now prove that WRP

i (C + ∆)−∆ ≥ WOP
i (C) for 1 < i ≤ n. The potential additional pessimism introduced by Equation (55)

now immediately follows from Lemma 12, i.e. ̂̂WR
D

ik ≥ ŴR
D
ik.

By definition, task τi can start executing an additional amount of computation time ∆ after having executed an amount C at
time WOP

i (C). Because execution of that additional computation time ∆ takes at least an amount of time ∆, we immediately
get WRP

i (C + ∆)≥ WOP
i (C)+ ∆, which proves the theorem. �

Based on Equation (10), we first conclude that both lemmas are similar for an arbitrary small positive value of ∆, i.e.

lim∆↓0
̂̂
WR

D

ik = ŴR
D
ik. The additional pessimism potentially introduced by Lemma 13 is illustrated by the set T 7 consist-

ing of three tasks with characteristics as described in Table 7. For this example, the task characteristics are integral multiples

Ti = Di Ci

τ1 6.5 3
τ2 9 3
τ3 30 3

Table 7. Task characteristics of T7.

of δ = 0.5. For ∆ = 0.6 > δ, we find ̂̂WR
D

2,0 = 12, which is larger than τ2’s deadline. Conversely, the worst-case response

time ŴR
D
2 of task τ2 determined by means of Theorem 13 using Lemma 12 yields ŴR

D
2 = WRD

2 = 9 ≤ D2. For ∆ = 0.4 < δ,

we find ̂̂WR
D

2,0 = 9. For this value of ∆, ̂̂WR
D

2,0 = ŴR
D
2 = WRD

2 = 9 ≤ D2, and reducing the value of ∆ will not change the

value found for ̂̂WR
D

2,0.
The next lemma provides a sufficient condition to guarantee that Lemma 13 introduces no additional pessimism compared

to Lemma 12.

Lemma 14. If the greatest common divisor (gcdR+
) of the periods and computation times of the tasks exists, and is equal to δ,

then ∆ < δ is a sufficient condition to guarantee that Lemma 13 introduces no additional pessimism compared to Lemma 12.

Proof. To prove the lemma, it suffices to prove

∆ < δ ⇒ WRP
i (BD

i +(k + 1)Ci− (Fi −∆))−∆ = WOP
i (B

D
i +(k + 1)Ci−Fi).

From Theorem 2, we derive that WRP
i (BD

i +(k + 1)Ci − (Fi −∆)) is given by the smallest x ∈ R+ that satisfies the following
equation, provided that x is at most kTi +Di − (Fi−∆),

x = BD
i +(k + 1)Ci− (Fi−∆)+∑

j<i

⌈
x
Tj

⌉
Cj.

By substituting x = x′ + ∆, we get

x′ = BD
i +(k + 1)Ci−Fi + ∑

j<i

⌈
x′ + ∆

Tj

⌉
Cj.

When the greatest common divisor (gcdR+
) of the periods and computation times of the tasks exists and is equal to δ, all

task parameters are integral multiples of δ (by definition), and x ′ will also be an integral multiple of δ. Let x ′ = nx′ · δ and
Tj = nTj ·δ for an arbitrary j < i, where nx′ ,nTj ∈ N+. Now we get⌈

x′ + ∆
Tj

⌉
=

⌈
nx′ + ∆

δ
nTj

⌉
.

Moreover,

0 <
∆
δ

< 1 ⇒
⌈

nx′ + ∆
δ

nTj

⌉
=

⌊
nx′

nTj

⌋
+ 1.

TU/e, CS-Report 07-11, April 2007 32

Hence, if the gcdR+
exists and is equal to δ > ∆, the smallest x′ ∈ R+ satisfying the recursive equation given above is a

solution for both WRP
i (B

D
i +(k + 1)Ci− (Fi−∆))−∆ and WOP

i (BD
i +(k + 1)Ci−Fi), which proves the lemma. �

We finally observe that the analysis presented in Lemma 13 is similar to the revised schedulability analysis for CAN
presented in [17]. The latter analysis is an evolutionary improvement of the analysis given by Tindell in [38, 37, 39]. A fixed
value for ∆ is used in [17], corresponding to the transmission time for a single bit on CAN .

8.3.3 A retrospect

Using our notation, the worst-case response time of a task τ i under FPDS, arbitrary phasing, and deadlines less than or equal
to periods, as described in [30] can be given by WR P

i (B
D
i +Ci). As observed in [14], this analysis is pessimistic, because a

task τi cannot be preempted while executing its last subjob, i.e. Fi. The original improvement of the worst-case response time
of a task τi under FPDS as presented in [14] was not based on BD

i as given in Equation (17), but on the maximum length of

deferred preemption, i.e. a blocking time ̂̂B given by

̂̂B = max
1≤ j≤n

max
1≤k≤mj

Cj,k. (56)

Though pessimistic, this original improvement is correct, i.e. not optimistic. The problem with the analysis in [12, 15] is
caused by the fact that the non-preemptive behavior of the final subjob of task τ i itself is not taken into account, as illustrated
by Figure 7 on page 11. As described in [17] in the context of schedulability analysis for CAN, this problem can therefore

be resolved at the cost of potentially introducing additional pessimism by using B̂
D
i , which is given by

B̂
D
i = max(BD

i ,Fi). (57)

Conversely, the problem with the analysis in [12, 15] does not occur when B̂
D
i = BD

i , i.e. when BD
i ≥ Fi.

8.4 An advanced model for FPDS

The model for FPDS described in Section 2.2 assumes that each job of a task τ i consists of a sequence of mi subjobs. In
this section, we will illustrate by means of an example how our analytical results can be applied in a context where a task τ i

consists of a (rooted and connected) directed acyclic graph (DAG) of m i subjobs.
Consider Figure 11, with a DAG of subjobs representing the flow graph of task τ i. The nodes of this graph represent the

subjobs and the edges represent the successor relationships of subjobs. The graph has a single root node, with a computation
time of Ci,1, and two leaf nodes, with computation times Ci,7 and Ci,9, respectively. During the execution of a job, a single
path from the root node to a leaf is traversed. Hence, a job will either execute the subjobs with computation times C i,2 and
Ci,3 or the subjob with computation time Ci,4. Similarly, a job will either execute Ci,6 and Ci,7 or Ci,8 and Ci,9. The structure

Ci,1

Ci,2 Ci,3 Ci,6 Ci,7

Ci,5

Ci,4 Ci,8 Ci,9

Figure 11. An example of a DAG of subjobs, representing the flow graph of task τi.

of task τi plays a role during the analysis of the task itself, and for a lower priority task. The analysis of tasks with a higher
priority than τi is similar to the case where a job consists of a sequence of subjobs. For the analysis of a task with a lower
priority than τi, we need to determine the longest computation time Ci of τi for all possible paths through the graph. For our
example, this is equal to

Ci = Ci,1 + max(Ci,2 +Ci,3,Ci,4)+Ci,5 + max(Ci,6 +Ci,7,Ci,8 +Ci,9).

For the analysis of task τi itself, every leaf node of the DAG gives rise to a case that needs to be examined individually. For
our example, we therefore get two cases, a first case for the leaf node Ci,7, i.e.

C′
i = Ci,1 + max(Ci,2 +Ci,3,Ci,4)+Ci,5 +Ci,6 +Ci,7

F ′
i = Ci,7,

TU/e, CS-Report 07-11, April 2007 33

and a second case for the leaf node Ci,9, i.e.

C′′
i = Ci,1 + max(Ci,2 +Ci,3,Ci,4)+Ci,5 +Ci,8 +Ci,9

F ′′
i = Ci,9.

The worst-case response time WRD
i of task τi is the maximum of the worst-case response times of these two cases. Note that

if C′
i −F ′

i ≥C′′
i −F ′′

i and F ′
i ≥ F ′′

i , then it suffices to consider the first case only. Similarly, if C ′′
i −F ′′

i ≥C′
i −F ′

i and F ′′
i ≥ F ′

i ,
then it suffices to consider only the second case. As an alternative, we can also take a pessimistic approach, and determine
WRD

i based on

Ĉi = max(C′
i −F ′

i ,C
′′
i −F ′′

i)+ max(F ′
i ,F

′′
i)

F̂i = max(F ′
i ,F

′′
i).

We will now illustrate the analysis for τi with a numerical example. Consider the set T8 in Table 8. Assume a structure of

Ti = Di Ci

τ1 16 2
τ2 24 15
τ3 36 3

Table 8. Task characteristics of T8.

each job of τ2 as illustrated in Figure 11, and let the computation times of the subjobs of task τ 2 be given by C2,1 = 1, C2,2 = 3,
C2,3 = 4, C2,4 = 6, C2,5 = 1, C2,6 = 3, C2,7 = 2, C2,8 = 1, C2,9 = 5. We now find C′

2 = 1 + max(3 + 4,6)+ 1 + 3 + 2 = 14,
F ′

2 = 2, C′′
2 = 1+ max(3+ 4,6)+ 1+ 1+ 5 = 15, and F ′′

2 = 5. Because C′
2 −F ′

2 = 12 > C′′
2 −F ′′

2 = 10 and F ′
2 = 2 < F ′′

2 = 5,
we have to determine the worst-case response times for both cases. Using the analysis presented in Section 6, we find 21
for the first case and 20 for the second case. The worst-case response time of τ 2 is therefore assumed for the first case,
i.e. WRD

2 = 21. For the pessimistic approach, we find Ĉ2 = max(12,10)+ max(2,5) = 17, F̂2 = 5, and derive a worst-case
response time for task τ2 equal to 24.

9 Conclusions
In this paper, we revisited existing worst-case response time analysis of hard real-time tasks under FPDS, arbitrary phasing
and relative deadlines at most equal to periods. We showed by means of a number of examples that existing analysis is
pessimistic and/or optimistic, both for FPDS as well as for FPNS, being a special case of FPDS. From these examples, we
concluded that the worst-case response time of a task is not necessarily assumed for the first job of a task when released at
a critical instant. The reason for this is that the final subjob of a task can defer the execution of higher priority tasks, which
can potentially give rise to higher interference for subsequent jobs of that task. This problem can therefore arise for all tasks,
except for the highest priority task. We observed that González Harbour et al. [19] identified the same influence of jobs of a
task for relative deadlines at most equal to periods in the context of FPPS of periodic tasks with varying execution priority.

We provided revised worst-case response time analysis, resolving the problems with existing approaches. The analysis
is based on known concepts of critical instant and busy period for FPPS, for which we gave slightly modified definitions to
accommodate for our scheduling model for FPDS. To prevent confusion with existing definitions of busy period, we used the
term active period for our definition in this document. We discussed conditions for the termination of an active period, and
presented a sufficient condition with a formal proof.

We showed that the critical instant, longest active period, and worst-case response time for a task are suprema rather than
maxima for all tasks, except for the lowest priority task, i.e. that instant, period, and response time cannot be assumed. These
anomalies for the lowest priority task are caused by the fact that only the lowest priority task cannot be blocked. We expressed
worst-case response times under FPDS in terms of worst-case response times and worst-case occupied time under FPPS, and
presented an iterative procedure to determine worst-case response times under FPDS.

We briefly compared the notion of level-i active period with similar notions in the literature. We concluded that the notions
of τi-busy period in [19], level-i busy period in [18], and level-π i busy interval in [30] are similar to our notion of level-i active
period. There are striking differences with the notion of busy period in [27], however. In particular, the level-n busy period
never ends for a utilization factor U = 1. Moreover, we observed that although [24] refers to the notion of busy period from
[27] in their description of a method to determine worst-case response times of tasks under FPPS, arbitrary phasing and
deadlines larger than periods, their termination condition is actually based on the notion of active period rather than busy

TU/e, CS-Report 07-11, April 2007 34

period. We also presented uniform, but pessimistic variants of our worst-case response time analysis, and showed that the
evolutionary improvement of the analysis for CAN as presented in [17] corresponds to one of these variants. Finally, we
illustrated our analysis for a model for FPDS, where tasks are structured as flow graphs of subjobs rather than sequences.

Acknowledgements
We thank Alan Burns and Robert I. Davis from the University of York for discussions, and the IST-004527 funded ARTIST 2
Network of Excellence on Embedded Systems Design for making those discussions possible. We also thank the anonymous
referees of the ECRTS (European Conference on Real-Time Systems) for their comments on a paper derived from [10].
Those comments required an extension of [10] and therefore resulted in this document.

References
[1] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Hard real-time scheduling: The deadline monotonic

approach. In Proc. 8th IEEE Workshop on Real-Time Operating Systems and Software (RTOSS), pages 133–137, May
1991.

[2] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.

[3] S. Baruah. The limited-preemption uniprocessor scheduling of sporadic systems. In Proc. 17 th Euromicro Conference
on Real-Time Systems (ECRTS), pages 137–144, July 2005.

[4] S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems, 2(4):301–324, November 1990.

[5] R.J. Bril. Real-time scheduling for media processing using conditionally guaranteed budgets. PhD thesis, Technische
Universiteit Eindhoven (TU/e), The Netherlands, July 2004. http://alexandria.tue.nl/extra2/200412419.pdf.

[6] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemption is too optimistic. Technical Report CS 06-05, Department of Mathematics and Computer Science, Technis-
che Universiteit Eindhoven (TU/e), The Netherlands, February 2006.

[7] R.J. Bril. Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred
preemption refuted. In Proc. Work-in-Progress (WiP) session of the 18 th Euromicro Conference on Real-Time Systems
(ECRTS), pages 1–5, July 2006.

[8] R.J. Bril, J.J. Lukkien, R.I. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. Technical Report CS 06-19, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 2006.

[9] R.J. Bril, J.J. Lukkien, R.I. Davis, and A. Burns. Message response time analysis for ideal controller area network
(CAN) refuted. In (to appear) Proc. 5 th International Workshop on Real Time Networks (RTN), 2006.

[10] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption revisited. Technical Report CS 06-34, Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven (TU/e), The Netherlands, December 2006.

[11] R.J. Bril, W.F.J. Verhaegh, and J.J. Lukkien. Exact worst-case response times of real-time tasks under fixed-priority
scheduling with deferred preemption. In Proc. Work-in-Progress (WiP) session of the 16 th Euromicro Conference
on Real-Time Systems (ECRTS), Technical Report from the University of Nebraska-Lincoln, Department of Computer
Science and Engineering (TR-UNL-CSE-2004-0010), pages 57–60, June 2004.

[12] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pages 225–248. Prentice-Hall, 1994.

[13] A. Burns. Defining new non-preemptive dispatching and locking policies for Ada. In Proc. 6 th Ada-Europe International
Conference, Lecture Notes in Computer Science (LNCS) 2043, pages 328–336, May 2001.

[14] A. Burns, M. Nicholson, K. Tindell, and N. Zhang. Allocating and scheduling hard real-time tasks on a point-to-point
distributed system. In Proc. 1stWorkshop on Parallel and Distributed Real-Time Systems, pages 11–20, April 1993.

[15] A. Burns and A.J. Wellings. Restricted tasking models. In Proc. 8 th International Real-Time Ada Workshop, pages
27–32, 1997.

[16] G.C. Buttazzo. Hard real-time computing systems - predictable scheduling algorithms and applications (2 nd edition).
Springer, 2005.

TU/e, CS-Report 07-11, April 2007 35

[17] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedulability analysis: Refuted,
revisited and revised. Real-Time Systems, 35(3):239–272, April 2007.

[18] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-time uni-processor scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et en Automatique (INRIA), France, September 1996.

[19] M. González Harbour, M.H. Klein, and J.P. Lehoczky. Fixed-priority scheduling with varying execution priority. In
Proc. 12th IEEE Real-Time Systems Symposium (RTSS), pages 116–128, December 1991.

[20] R. Gopalakrishnan and G.M. Parulkar. Bringing real-time scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sigmetrics Conference on Measurement & Modeling of Computer Systems, pages 1–12, May
1996.

[21] J.-F. Hermant, L. Leboucher, and N. Rivierre. Real-time fixed and dynamic priority driven scheduling algorithms:
theory and practice. Technical Report 3081, Institut National de Recherche et Informatique et en Automatique (INRIA),
France, December 1996.

[22] J. Hooman. Specification and Compositional Verification of Real-Time Systems. PhD thesis, Technische Universiteit
Eindhoven (TU/e), The Netherlands, May 1991.

[23] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer Journal, 29(5):390–395, 1986.

[24] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.

[25] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–299, November
1990.

[26] S. Lee, C.-G. Lee, M. Lee, S.L. Min, and C.-S. Kim. Limited preemptible scheduling to embrace cache memory in real-
time systems. In Proc. ACM Sigplan Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES),
Lecture Notes in Computer Science (LNCS) 1474, pages 51–64, June 1998.

[27] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proc. 11 th IEEE Real-Time
Systems Symposium (RTSS), pages 201–209, December 1990.

[28] J.Y.T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2(4):237–250, December 1982.

[29] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a real-time environment. Journal of the
ACM, 20(1):46–61, January 1973.

[30] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[31] A.K. Mok and W.-C. Poon. Non-preemptive robustness under reduced system load. In Proc. 26 th IEEE Real-Time
Systems Symposium (RTSS), pages 200–209, December 2005.

[32] J.C. Palencia and M. González Harbour. Offset-based response time analysis of distributed systems scheduled under
EDF. In Proc. 15th Euromicro Conference on Real-Time Systems (ECRTS’03), pages 3–12, July 2003.

[33] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to timing faults. In Proc. 23 rd IEEE
Real-Time Systems Symposium (RTSS), pages 315–326, December 2002.

[34] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: an approach to real-time synchronisation. IEEE
Transactions on Computers, 39(9):1175–1185, September 1990.

[35] J. Simonson and J.H. Patel. Use of preferred preemption points in cache-based real-time systems. In Proc. IEEE
International Computer Performance and Dependability Symposium (IPDS), pages 316–325, April 1995.

[36] M. Spuri. Analysis of deadline scheduled real-time systems. Technical Report 2772, Institut National de Recherche et
Informatique et en Automatique (INRIA), France, January 1996.

[37] K. Tindell and A. Burns. Guaranteeing message latencies on Controller Area Network (CAN). In Proc. 1 st International
CAN Conference, pages 1–11, September 1994.

[38] K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (CAN) message response times. Control
Engineering Practice, 3(8):1163–1169, August 1995.

[39] K. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communications: Controller area network (CAN). In
Proc. 15th IEEE Real-Time Systems Symposium (RTSS), pages 259–263, December 1994.

[40] Y. Wand and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In Proc. 6 th International Con-
ference on Real-Time Computing Systems and Applications (RTCSA), pages 328–335, December 1999.

TU/e, CS-Report 07-11, April 2007 36

A Auxiliary definitions and lemmas
This appendix presents auxiliary definitions for greatest common divisor and least common multiple for both positive rational
numbers and positive real numbers. Moreover, it presents auxiliary lemmas for a strictly increasing function f (x).

Definition 15. The least common multiple for positive rational numbers (lcm Q+
) is defined as

lcmQ+
(r1, . . . ,rl) = min{r ∈ Q+|r = n1 · r1 = . . . = nl · rl with n1, . . . ,nl ∈ N+}, (58)

where l ∈ N and l ≥ 2, and r1, . . . ,rl ∈ Q+. �

Definition 16. The greatest common divisor for positive rational numbers (gcd Q+
) is defined as

gcdQ+
(r1, . . . ,rl) = max{r ∈ Q+|n1 · r = r1, . . . ,nl · r = rl with n1, . . . ,nl ∈ N+}, (59)

where l ∈ N and l ≥ 2, and r1, . . . ,rl ∈ Q+. �

Definition 17. The least common multiple for positive real numbers (lcm R+
) is defined as

lcmR+
(r1, . . . ,rl) = min{r ∈ R+|r = n1 · r1 = . . . = nl · rl with n1, . . . ,nl ∈ N+}, (60)

where l ∈ N and l ≥ 2, and r1, . . . ,rl ∈ R+. �

Definition 18. The greatest common divisor for positive real numbers (gcd R+
) is defined as

gcdR+
(r1, . . . ,rl) = max{r ∈ R+|n1 · r = r1, . . . ,nl · r = rl with n1, . . . ,nl ∈ N+}, (61)

where l ∈ N and l ≥ 2, and r1, . . . ,rl ∈ R+. �

Unlike gcdQ+
and lcmQ+

, the greatest common divisor for positive real numbers gcd R+
and the least common multiple for

positive real numbers lcmR+
need not exist.

Lemma 15 (Lemma 4.3 of [5]). Let f (x) be defined and strictly non-decreasing in an interval [a,b] with f (a) > a and
f (b) < b. Then there exists a value c ∈ (a,b) such that f (c) = c.
Proof. See [5]. �

Lemma 16 (Lemma 4.5 in [5]). When limx↓X f (x) is defined, and f (x) is strictly increasing in an interval (X ,X + γ) for
sufficiently small γ ∈ R+, then the following equation holds.

lim
x↓X

� f (x)� =
⌊

lim
x↓X

f (x)
⌋

+ 1 (62)

Proof. See [5]. �

Lemma 17. When limx↑X f (x) is defined, and f(x) is strictly increasing in an interval (X − γ,X) for a sufficiently small
γ ∈ R+, then the following equation holds.

lim
x↑X

� f (x)� =
⌈

lim
x↑X

f (x)
⌉

(63)

Proof. The proof uses the definition of limit:

lim
x↑X

f (x) = Y ⇔ ∀
ε>0

∃
δ>0

∀
x∈(X−δ,X)

| f (x)−Y | < ε.

We first prove the relation
∀

X−γ<x<X
f (x) < Y,

and subsequently prove the lemma.

TU/e, CS-Report 07-11, April 2007 37

The proof of the relation is based on a contradiction argument. Because lim x↑X f (x) is defined, we may write limx↑X f (x) =
Y . Assume f (x1) ≥ Y for an x1 ∈ (X − γ,X). Choose an x2 ∈ (x1,X). Because f (x) is strictly increasing in (X − γ,X),
f (x2) > f (x1) ≥ Y . Now choose ε = f (x2)−Y , then

∀x∈(x2,X) f (x) > f (x2) > Y

and hence
| f (x)−Y | > | f (x2)−Y | = ε,

which contradicts the fact that limx↑X f (x) = Y .
For the proof of the lemma, we consider two main cases: Y ∈ Z and Y �∈ Z. Let Y ∈ Z. According to the relation proved

above, 0 < Y − f (x) for all x ∈ (X − γ,X). Let ε ∈ (0,1]. Now there exists a δ1 ∈ (0,γ) such that 0 < Y − f (x) < ε ≤ 1 for all
x ∈ (X − δ1,X), hence Y > f (x) > Y −1, i.e. � f (x)� = Y = �Y�. So,

lim
x↑X

� f (x)� = lim
x↑X

�Y� = �Y� =
⌈

lim
x↑X

f (x)
⌉

.

Next, let Y �∈ Z. Let ε ∈ (0,Y −�Y�]. Now there exists a δ2 ∈ (0,γ) such that for all x ∈ (X − δ2,X)

0 < Y − f (x) < ε ≤ Y −�Y� ,

hence
Y > f (x) > Y − ε ≥ �Y� ,

i.e.
� f (x)� = �Y� .

For this second main case we therefore also find

lim
x↑X

� f (x)� = lim
x↑X

�Y� = �Y� =
⌈

lim
x↑X

f (x)
⌉

,

which proves the lemma. �

The proofs of the following two lemmas are similar to the proofs of the previous two lemmas.

Lemma 18. When limx↑X f (x) is defined, and f(x) is strictly increasing in an interval (X − γ,X) for a sufficiently small
γ ∈ R+, then the following equation holds.

lim
x↑X

� f (x)� =
⌈

lim
x↑X

f (x)
⌉
−1 (64)

�

Lemma 19. When limx↓X f (x) is defined, and f (x) is strictly increasing in an interval (X ,X +γ) for sufficiently small γ∈R+,
then the following equation holds.

lim
x↓X

� f (x)� =
⌊

lim
x↓X

f (x)
⌋

(65)

�

B On termination of a level-n active period
In this appendix, we give two examples of task sets with a utilization equal to 1 where the level-n active period does not
end upon a simultaneous release of the tasks. For the first example, the least common multiple of the periods does not
exist. Hence, the example shows that when Assumption 1 does not hold, the level-n active period need not end. The second
example requires an extension of the scheduling model presented in Section 2 with activation (or release) jitter. For this
extended model, it illustrates that even when the least common multiple of the periods exists, the level-n active period does
not necessarily end for a processor utilization U = 1.

TU/e, CS-Report 07-11, April 2007 38

Ti Ci ϕi

τ1 2 1 0
τ2 π π

2 0

Table 9. Task characteristics of T9.

B.1 Least common multiple of the periods does not exist

Consider the task set T9 with task characteristics as given in Table 9. The utilization U of T9 is equal to 1
2 + π/2

π = 1. Because
the ratio of the periods of the tasks is irrational, the least common multiple of the periods does not exist. We will now show
that the following relation holds for the finalization time f P

2,k of job k of task τ2 under FPPS and a simultaneous release of τ1

and τ2 at time t = 0
(k + 1)π < f P

2,k < (k + 1)π + 1 for k ≥ 0. (66)

Based on Corollary 7, we therefore conclude that the level-2 active period does not end. Now let D 1 = T1 = 2 and D2 = π+1.
Given Equation (66), we derive

T2 = π < RP
2,k < π + 1 = D2 for k ≥ 0,

and therefore know that the task set is schedulable under FPPS. However, if we try to determine whether or not the task set
is schedulable under FPPS by means of the iterative procedure as described in, for example, [24], we find that the procedure
does not terminate. This is because the termination condition of the procedure never holds, i.e. the response time of every job
of task τ2 is smaller than the deadline D2, and larger than the period T2.

We will now prove Equation (66). Task τ1 is executing in the intervals [lT1, lT1 +C1) = [2l,2l + 1) for l ∈ N, and the
finalization time f P

2,k of job k of task τ2 is therefore in a complementary interval [lT1 +C1,(l + 1)T1) = [2l + 1,2l + 2). Let
job k of τ2 complete in the interval [2m+ 1,2m+ 2) for some m ∈ N, i.e.

2m+ 1 < f P
2,k ≤ 2m+ 2.

Because the utilization is 1 and we assume the tasks to be non-idling, there is no idle time in the interval [0, f P
2,k). Therefore,

the interval [0, f P
2,k) contains exactly m+ 1 executions of task τ1 and k + 1 executions of task τ2, i.e.

f P
2,k = (m+ 1)C1 +(k + 1)C2 = (m+ 1)+ (k + 1)

π
2
.

Substituting this latter equation in the former relation yields

2m+ 1 < (m+ 1)+ (k + 1)
π
2
≤ 2m+ 2 ⇔ m < (k + 1)

π
2
≤ m+ 1.

Because k,m ∈ N, we get

m+ 1 > (k + 1)
π
2

and therefore
f P
2,k = (m+ 1)+ (k + 1)

π
2

> (k + 1)π.

Moreover, because m < (k + 1) π
2 , we derive

f P
2,k = (m+ 1)+ (k + 1)

π
2

< (k + 1)π + 1.

Together, these latter two relations for f P
2,k prove Equation (66).

B.2 Activation jitter

With activation (or release) jitter, the releases of a task τi do not take place strictly periodically, with period Ti, but we assume
they take place somewhere in an interval of length AJ i that is repeated with period Ti. More specifically, the activations satisfy

sup
k,l

(aik −ail − (k− l)Ti) ≤ AJi. (67)

TU/e, CS-Report 07-11, April 2007 39

Ti Ci AJi

τ1 4 2 1
τ2 4 2 0

Table 10. Task characteristics of T10.

task τ1

task τ2

2

P(t)

50 time10

Figure 12. Activations for T10 and processor pending load P(t).

Consider task set T10 with task characteristics as given in Table 10. The least common multiple of the periods T1 and T2 is
given by lcm(T1,T2) = 4. Figure 12 shows the activations for task τ1 and τ2, with a1,0 = AJ1 = 1, a1l = (l + 1)T1 for l ∈ N,
and a2,0 = 1, and the processor pending load P(t). These activations correspond to a critical instant for task τ 2 for FPPS
and FPDS. For this example, the pending load is periodic, i.e. P(t + 4) = P(t) for t > 1. Because P(t) > 0 for t > 1, the
level-2 active period never ends. As a consequence, the worst-case response time of τ 2 cannot be determined by means of an
iterative procedure in which the response times of all activations in the level-2 active period are considered, irrespective of
the scheduling algorithm. Hence, the common approach to determine the worst-case response time for τ 2 under FPPS, FPDS,
and EDF [36] does not work.

Without proof, we merely state that the worst-case length WLn of the level-n active period under arbitrary phasing and
activation jitter is given by the smallest x ∈ R+ satisfying the following equation

x = ∑
j≤n

⌈
x+AJ j

Tj

⌉
Cj,

where AJ j is the activation jitter of task τ j. As mentioned in [32], there exists a positive solution for this recursive equation
if U < 1. The proof of this latter claim is similar to the proof of Lemma 2 on page 16.

Figure 13 shows timelines for T10 under FPPS, FPDS, and EDF. The figure illustrates that T10 is schedulable under FPDS

0 5

task τ1

task τ2

time10

R2,0 = 6
R2,1 = 6

(a) Timeline under FPPS

0 5

task τ1

task τ2

R1,0 = 2 R1,1 = 3

R2,0 = 4 R2,1 = 4

(b) Timeline under EDF and FPDS

time10

R2,2 = 4

R1,2 = 3

Figure 13. Timelines for T10 under FPPS, FPDS, and EDF with release jitter and a simultaneous release of both tasks at time
t = 1.

and EDF for the given activations. Moreover, the schedule is periodic, i.e. σ(t + 4) = σ(t) for t ≥ 1. T 10 is also schedulable
under FPPS when the deadline D2 ≥ 6 for task τ2. Under FPPS, the schedule is also periodic, i.e. σ(t + 4) = σ(t) for t ≥ 3.
Because the schedule is periodic, the worst-case response time of task τ2 can be determined by considering the response
times of all jobs of τ2 in a ‘sufficiently long’ interval, e.g. similar to the approach described in [28].

