
Existing worst-case response time analysis of real-time tasks
under fixed-priority scheduling with deferred preemption refuted

Reinder J. Bril

Technische Universiteit Eindhoven (TU/e),
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

r.j.bril@tue.nl

Abstract

This paper revisits worst-case response time analysis
of real-time tasks under fixed priority scheduling with de-
ferred preemption (FPDS), arbitrary phasing, and dead-
lines within periods. We show that existing worst-case re-
sponse time analysis, as presented in [3, 4, 5], is too opti-
mistic. In particular, the worst-case response time of a task
is not necessarily assumed for the first job of that task when
released at an ε-critical instant.

1. Introduction

Based on the seminal paper of Liu and Layland [11],
many results have been achieved in the area of analysis
for fixed-priority preemptive scheduling (FPPS). Arbitrary
preemption of real-time tasks has a number of drawbacks,
though. In particular in systems using cache memory, e.g. to
bridge the speed gap between processors and main memory,
arbitrary preemptions induce additional cache flushes and
reloads. As a consequence, system performance and pre-
dictability are degraded, which complicates system design,
analysis and testing [5, 6, 9, 12]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these prob-
lems, it generally leads to reduced schedulability compared
to FPPS. Therefore, alternative scheduling schemes have
been proposed between the extremes of arbitrary preemp-
tion and no preemption. These schemes are also known as
deferred preemption or co-operative scheduling [4], and are
denoted by fixed-priority scheduling with deferred preemp-
tion (FPDS) in the remainder of this paper.

Worst-case response time analysis of periodic real-time
tasks under FPDS, arbitrary phasing, and deadlines with pe-
riods has been addressed in a number of papers [3, 4, 5, 9].
In this paper, we will show that the existing analysis is not
exact. Whereas it has been shown in [3] that the analysis
presented in [4, 5, 9] is pessimistic, we will show by means

of an example consisting of just two tasks that the analysis
presented in [3, 4, 5] is optimistic. We explore the example
by presenting the worst-case response times of both tasks as
a function of the relative phasing between the tasks. The ex-
ploration reveals that, although the example refutes the ex-
isting analysis, it does not refute the conjecture in [3] about
an ε-critical instant.

This paper is organized as follows. Section 2 briefly de-
scribes a real-time scheduling model for FPDS. Response
time analysis for FPDS is recapitulated in Section 3. In Sec-
tion 4, we present an example that refutes existing worst-
case response time analysis under FPDS. We subsequently
present the results of the exploration. The paper is con-
cluded in Section 5.

2. Real-time scheduling models

This section describes a basic scheduling model for
FPPS and a refined model for FPDS. Most of the definitions
and assumptions of these models originate from [11].

2.1. Basic model for FPPS

We assume a single processor and a set T of n periodi-
cally released, independent tasks τ1,τ2, . . . ,τn. At any mo-
ment in time, the processor is used to execute the highest
priority task that has work pending.

Each task τi is characterized by a (release) period Ti ∈
R

+, a computation time Ci ∈ R
+, a (relative) deadline Di ∈

R
+, where Ci ≤ min(Di,Ti), and a phasing ϕi ∈ R. An acti-

vation (or release) time is a time at which a task τi becomes
ready for execution. A release of a task is also termed a job.
The job of task τi with release time ϕi serves as a reference
activation, and is referred to as job zero. The release of job
k of τi therefore takes place at time aik = ϕi + kTi, k ∈ Z.
The deadline of job k of τi takes place at dik = aik +Di. The
set of phasings ϕi is termed the phasing ϕ of the task set T .

The response interval of job k of τi is defined as the time
span between the activation time of that job and its com-
pletion time cik, i.e. [aik,cik). The response time rik of job
k of τi is defined as the length of its response interval, i.e.
rik = cik −aik. The worst-case response time WRi of a task
τi is the largest response time of any of its jobs, i.e.

WRi = sup
ϕ,k

rik. (1)

A critical instant of a task is defined as an (hypothetical)
instant that leads to the worst-case response time for that
task.

We assume that we do not have control over the phas-
ing ϕ, for instance since the tasks are released by external
events, so we assume that any arbitrary phasing may oc-
cur. This assumption is common in real-time scheduling
literature [7, 8, 11]. We also assume other standard basic
assumptions [11], i.e. tasks are ready to run at the start of
each period and do no suspend themselves, tasks will be
preempted instantaneously when a higher priority task be-
comes ready to run, a job of a task does not start before
its previous job is completed, and the overhead of context
switching and task scheduling is ignored. Finally, we as-
sume that the deadlines are hard, i.e. each job of a task must
be completed before its deadline. Hence, a set T on n peri-
odic tasks can be scheduled if and only if

WRi ≤ Di (2)

for all i = 1, . . . ,n.
For notational convenience, we assume that the tasks are

given in order of decreasing priority, i.e. task τ 1 has highest
priority and task τn has lowest priority.

2.2. Refined model for FPDS

For FPDS, we need to refine our basic model of Section
2.1. Each job of task τi is now assumed to consist of mi

subjobs. The jth subjob of τi is characterized by a computa-
tion time Ci, j ∈ R

+, where Ci = ∑mi
j=1Ci, j . We assume that

subjobs are non-preemptable. Hence, tasks can only be pre-
empted at subjob boundaries, i.e. at so-called preemption
points. For convenience, we will use the term Fi to denote
the computation time Ci,mi of the final subjob of τi. Note
that when mi = 1 for all i, we have FPNS as special case.

3. Recapitulation of response time analysis

In this section, we recapitulate worst-case response time
analysis for both FPPS and FPDS. Because we will express
response times under FPDS in terms of response times un-
der FPPS, we will use subscripts D and P to denote FPDS
and FPPS, respectively. Moreover, we will use a functional
notation for response times when needed, e.g. WRi(Ci).

3.1. Worst-case analysis for FPPS

To determine worst-case response times under arbitrary
phasing, it suffices to consider only critical instants. For
FPPS, critical instants are given by time points at which all
tasks have a simultaneous release [11].

From this notion of critical instants, Joseph and Pandya
[7] have derived that for deadlines within periods (i.e. D i ≤
Ti) the worst-case response time WRP

i of a task τi is given
by the smallest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

⌈
x
Tj

⌉
Cj. (3)

To calculate worst-case response times, we can use an iter-
ative procedure based on recurrence relationships [1]. The
procedure starts with a lower bound.

wr(0)
i = Ci

wr(k+1)
i = Ci + ∑

j<i

⌈
wr(k)

i

Tj

⌉
Cj

The procedure is stopped when the same value is found for
two successive iterations of k or when the deadline Di is ex-
ceeded. In the former case, it yields the smallest solution of
the recursive equation, i.e. the worst-case response time of
τi. In the latter case the task is not schedulable. Termina-
tion of the procedure is ensured by the fact that the sequence

wr(k)
i is bounded (from below by Ci, and from above by Di)

and non-decreasing, and that different values for successive
iterations differ at least min j<iCj.

The interested reader is referred to [8, 10, 13] for tech-
niques to derive worst-case response times for arbitrary
deadlines. The main difference with deadlines within pe-
riods is that for arbitrary deadlines the worst-case response
time of a task is not necessarily assumed for the first job that
is released at the critical instant.

3.2. Worst-case analysis for FPDS

In this section, we recapitulate response time analysis for
FPDS and arbitrary phasing for deadlines within periods as
described in [3, 4, 5].

The non-preemptive nature of subjobs may cause block-
ing of a task by at most one lower priority task. The maxi-
mum blocking Bi of task τi by a lower priority task is equal
to the longest computation time of any subjob of a task with
a priority lower than task τi, i.e.

Bi = max
j>i

max
1≤k≤m(j)

Cj,k. (4)

The worst-case response time W̃R
D
i under FPDS and arbi-

trary phasing presented in [4] and [5] is given by

W̃R
D
i (∆) = WRP

i (Bi +Ci − (Fi−∆))+ (Fi−∆). (5)

0 10 20 305 15 25 35

task τ1

task τ2

time

2.0 3.2 4.4 2.6 2.6 3.8 2.0

6.2 5.4 6.6 5.8 7.0

Figure 1. Timeline for T1 under FPDS with a simultaneous release at time zero. The numbers at the
top right corner of the boxes denote the response times of the respective releases.

According to [5], ∆ is an arbitrary small positive value
needed to ensure that the final subjob has actually started,
i.e. 0 < ∆ � Fi. Hence, when task τi has consumed
Ci − (Fi−∆), the final subjob has (just) started.

As described in [3], the analysis in [4, 5] does not take
into account that τi can only be blocked by a subjob of a
lower priority task if that subjob starts an amount of time
∆ before the simultaneous release of τi and all tasks with a
higher priority than τi. That paper therefore revisits critical
instants, and postulates the following conjecture.

Conjecture 1 An ε-critical instant of a task τi under FPDS
and arbitrary phasing occurs when that task is released si-
multaneously with all tasks with a higher priority than τ i,
and the subjob with the longest computation time of all
lower priority tasks starts an infinitesimal time ε > 0 before
that simultaneous release.

From this conjecture, it is concluded that a critical instant
for FPDS is a supremum for all but the lowest priority task,
i.e. that instant can not be assumed. The results in [4, 5] are
identical to the results in [3] for the lowest priority task, and
the results become similar for the other tasks by replacing
Bi in (5) by (Bi −∆)+, i.e.

WRD
i (∆) = WRP

i ((Bi−∆)+ +Ci−(Fi−∆))+(Fi−∆). (6)

Here, the notation w+ stands for max(w,0), which is used
to indicate that the blocking time can not become negative
for the lowest priority task. According to [3], the worst-case
response time is actually a supremum for all but the lowest
priority task, i.e.

WRD
i = lim

∆↓0
WRD

i (∆). (7)

4. A counterexample

The task characteristics of our counterexample are given
in Table 1. The table includes the results of the exploration.
Note that the (processor) utilization factor U of the task set
T1 is given by U = 2

5 + 4.2
7 = 1.

4.1. Existing analysis is too optimistic

We will now show that the worst-case response time of
task τ2 as determined by (6) is too optimistic.

task T C D WRD

τ1 5 2 5 5
τ2 7 1.2 + 3 6.8 7

Table 1. Task characteristics of T1 and worst-
case response times under FPDS.

Based on (6) and using ∆ = 0.1, we derive

WRD
2 (∆) = WRP

2((B2 −∆)+ +C2 − (F2 −∆))+ (F2−∆)
= WRP

2(0+ 4.2− (3.0−0.1))+(3.0−0.1)
= WRP

2(1.3)+ 2.9 = 6.2,

which is smaller than the deadline D2 = 6.8 of task τ2.
Figure 1 shows a timeline with the executions of the two

tasks of T1 in an interval of length 35, i.e. equal to the hy-
perperiod H of the tasks, which is equal to the least com-
mon multiple (lcm) of the periods. The schedule in [0,35)
is repeated in the intervals [hH,(h + 1)H) with h ∈ Z, i.e.
the schedule is periodic with period H. As illustrated in
Figure 1, the derived value for WRD

2 (∆) corresponds with
the response time of the 1st job of task τ2 upon a simulta-
neous release with task τ1, i.e. when task τ2 is released at
an ε-critical instant. However, the response time of the 5 th

job of task τ2 is equal to 7 in that figure, which is larger
than the deadline D2 = 6.8 of τ2. Task τ2 is therefore not
schedulable, which illustrates that the existing analysis is
too optimistic.

4.2. Exploration

Above, we have shown that even when deadlines are
within periods, we cannot restrict ourselves to the response
time of a single job of a task when determining the worst-
case response time of that task under FPDS. The reason for
this is that the final subjob of a task τi can defer the execu-
tion of higher priority tasks, which can potentially give rise
to higher interference for subsequent jobs of task τ i.

We will now explore the example in more detail, by con-
sidering the worst-case response times for both tasks under
FPDS for specific phasings. To this end, we vary the relative
phasing ϕR of task τ2 with respect to τ1, i.e. ϕR = ϕ2 −ϕ1.
Because the greatest common divisor of T1 and T2 is equal
to 1, we can restrict ϕR to values in the interval [0,1). In

this section, we will vary the phasing ϕ2 of τ2 and keep the
phasing ϕ1 of task τ1 equal to zero, i.e. ϕR = ϕ2.

The worst-case response times of both task τ1 and task
τ2 under FPDS are shown as a function of the phasing in
Figure 2. WRD

2 is equal to 7.0 and assumed for a relative

WR
D
2 (ϕR)

WR
D
1 (ϕR)

7

6

5

4
0 1.00.80.60.40.2 ϕ

R

Figure 2. Worst-case response times under
FPDS as a function of the relative phasing ϕR.

phasing ϕR = 0, i.e. when task τ2 is released at an ε-critical
instant. Note that WRD

1 , given by

WRD
1 = sup

ϕR

WRD
1 (ϕR) = lim

ϕR↑1
WRD

1 (ϕR) = 5.0,

is a supremum and not a maximum, i.e. that value can not be
assumed. We therefore conclude that although the example
refutes the worst-case response time analysis, it does not
refute Conjecture 1 concerning an ε-critical instant.

5. Conclusion

In this document, we revisited worst-case response time
analysis of real-time tasks under FPDS and arbitrary phas-
ing. We showed by means of an example consisting of just
two tasks that existing worst-case response time analysis for
deadlines within periods as presented in [3, 4, 5] is too op-
timistic. Notably, the example does not refute Conjecture 1
from [3] concerning the notion of ε-critical instant. The
example merely reveals that the worst-case response time
of a task scheduled under FPDS is not necessarily assumed
for the first job of that task when released at an ε-critical
instant. This is a similar result as presented in [10] for criti-
cal instants of tasks under FPPS with arbitrary phasing and
deadlines greater than periods.

Worst-case response time analysis under FPDS and ar-
bitrary phasing is a topic of future work. We are currently
investigating the possibility to determine the worst-case re-
sponse time of a task τi based on the response times of
jobs of τi in a so-called level-i active period that starts at
an ε-critical instant [2]. Initial results suggest that the tech-
nique is similar to existing techniques for FPPS with arbi-
trary phasing and arbitrary deadlines [8, 10, 13].

Acknowledgement

First of all, I thank my son Wander for his inspiration;
the problem with the existing analysis occurred to me while
watching him play in a sandpit. Next, I thank Wim F.J. Ver-
haegh from Philips Research and Johan J. Lukkien from the
TU/e for discussions. Finally, I thank Alan Burns from the
University of York and Gerhard Fohler from the University
of Kaiserslautern for suggestions and remarks.

References

[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
Hard real-time scheduling: The deadline monotonic ap-
proach. In Proc. 8th IEEE Workshop on Real-Time Operat-
ing Systems and Software (RTOSS), pp. 133–137, May 1991.

[2] R. Bril. Existing worst-case response time analysis of real-
time tasks under fixed-priority scheduling with deferred pre-
emption is too optimistic. CS-Report 06-05, Technische
Universiteit Eindhoven (TU/e), February 2006.

[3] R. Bril, W. Verhaegh, and J. Lukkien. Exact worst-case re-
sponse times of real-time tasks under fixed-priority schedul-
ing with deferred preemption. In Proc. Work-in-Progress
(WiP) session of the 16th Euromicro Conf. on Real-Time Sys-
tems (ECRTS), pp. 57–60, June 2004.

[4] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pp. 225–248. Prentice-Hall, 1994.

[5] A. Burns and A. Wellings. Restricted tasking models. In
Proc. 8th Int. Real-Time Ada Workshop, pp. 27–32, 1997.

[6] R. Gopalakrishnan and G. Parulkar. Bringing real-time
scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sigmetrics Conf. on Measurement &
Modeling of Computer Systems, pp. 1–12, May 1996.

[7] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, 1986.

[8] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González-
Harbour. A Practitioner’s Handbook for Real-Time Analy-
sis: Guide to Rate Monotonic Analysis for Real-Time Sys-
tems. Kluwer Academic Publishers, 1993.

[9] S. Lee, C.-G. Lee, M. Lee, S. Min, and C.-S. Kim. Lim-
ited preemptible scheduling to embrace cache memory in
real-time systems. In Proc. ACM Sigplan Workshop on
Languages, Compilers and Tools for Embedded Systems
(LCTES), LNCS 1474, pp. 51–64, June 1998.

[10] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In Proc. 11th IEEE Real-Time Sys-
tems Symposium (RTSS), pp. 201–209, December 1990.

[11] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[12] J. Simonson and J. Patel. Use of preferred preemption points
in cache-based real-time systems. In Proc. IEEE Int. Com-
puter Performance and Dependability Symposium (IPDS),
pp. 316–325, April 1995.

[13] K. Tindell. An extendible approach for analysing fixed pri-
ority hard real-time tasks. Report YCS 189, Department of
Computer Science, University of York, December 1992.

