
Towards best-case response times of real-time tasks
under fixed-priority scheduling with deferred preemption

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e),

Den Dolech 2, 5600 AZ Eindhoven,
The Netherlands
r.j.bril@tue.nl

Wim F.J. Verhaegh
Philips Research Laboratories,

Prof. Holstlaan 4, 5656 AA Eindhoven,
The Netherlands

wim.verhaegh@philips.com

Abstract

In this paper, we present lower bounds for best-case re-
sponse times of periodic tasks under fixed-priority schedul-
ing with deferred preemption (FPDS) and arbitrary phas-
ing. Our analysis is based on a dedicated conjecture for a
∆-optimal instant, and uses the notion of best-case occupied
time. We briefly compare best-case analysis and worst-case
analysis for FPDS and arbitrary phasing.

1 Introduction

Based on the seminal paper of Liu and Layland [8],
many results have been achieved in the area of analysis
for fixed-priority preemptive scheduling (FPPS). Arbitrary
preemption of real-time tasks has a number of drawbacks,
though. In particular in systems using cache memory, e.g.
to bridge the speed gap between processors and main mem-
ory, arbitrary preemptions induce additional cache flushes
and reloads. As a consequence, system performance and
predictability are degraded, complicating system design,
analysis and testing [4, 5, 7, 10]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these prob-
lems, it generally leads to reduced schedulability compared
to FPPS. Therefore, alternative scheduling schemes have
been proposed between the extremes of arbitrary preemp-
tion and no preemption. These schemes are also known as
deferred preemption or co-operative scheduling [3], and are
denoted by fixed-priority scheduling with deferred preemp-
tion (FPDS) in the remainder of this paper.

Worst-case response time analysis of periodic real-time
tasks under FPDS and arbitrary phasing has been addressed
in a number of papers [3, 7, 2]. Best-case response time
analysis received considerably less attention, and is the
topic of this paper. It is based on a dedicated theorem for
a so-called ∆-optimal instant, and uses a notion which we

term best-case occupied time. For space considerations, we
only discuss results; proofs will appear elsewhere. Applica-
tion of best-case response times, e.g. to analyze jitter in dis-
tributed multiprocessor systems, also falls outside the scope
of this paper.

This paper is organized as follows. Section 2 describes
best-case analysis of periodic tasks under FPPS and arbi-
trary phasing. For completeness reasons, we start with a re-
capitulation of best-case response times. We subsequently
address best-case occupied times. In Section 3, we present
our results for FPDS and arbitrary phasing. In Section 4,
we briefly compare the approaches for best-case analysis
and worst-case analysis.

2 Best-case analysis for FPPS

2.1 Basic model

We assume a single processor and a set Γ of n periodic,
independent tasks τ1,τ2, . . . ,τn. Each task τi is character-
ized by a (release) period Ti ∈ R

+, a (best-case) computa-
tion time Ci ∈R

+, and a (relative) deadline Di ∈R
+. In this

paper, we assume that a task’s deadline does not exceed its
period, i.e. Di ≤ Ti for all i. A release of a task is also termed
a job. The release of task τi at time ϕi ∈ R with 0 ≤ ϕi < Ti

serves as a reference release. Time ϕi is also termed the
phasing of task τi, and ϕ = (ϕ1, . . . ,ϕn) is called the phas-
ing of the task set Γ. We assume that we do not have control
over the phasing ϕ, for instance since the tasks are released
by external events, so we assume that any arbitrary phas-
ing may occur. This assumption is common in real-time
scheduling literature [6, 8]. We also assume other standard
basic assumptions [8], i.e. tasks are ready to run at the start
of each period and do no suspend themselves, tasks will be
preempted instantaneously when a higher priority task be-
comes ready to run, a job of task τi does not start before
its previous job is completed, and the overhead of context



switching and task scheduling is ignored. Finally, we as-
sume that the tasks are given in order of decreasing priority,
i.e. task τ1 has highest priority and task τn has lowest prior-
ity.

2.2 Recapitulation of best-case response times

The best-case response time of a task is the length of the
shortest interval from a task’s release till its completion. To
determine best-case response times under arbitrary phasing,
it suffices to consider only so-called optimal (or favourable)
instants [9, 1]. For FPPS, an optimal instant for task τi is
given by a point in time in which the completion of τi co-
incides with the simultaneous release of all higher priority
tasks. From this notion of optimal instants, it has been de-
rived that the best-case response time BRi of a task τi is
given by the largest x ∈ R

+ that satisfies

x = Ci +∑
j<i

(⌈

x
Tj

⌉

−1
)

C j. (1)

Assuming a optimal instant at time 0, the factor
(⌈

x
Tj

⌉

−1
)

in (1) gives the best-case number of preemptions that an ex-
ecution of task τi suffers from task τ j in an interval (−x,0).
In order to calculate the best-case response times, we can
use the following iterative procedure based on recurrence
relationships. The procedure starts with an upper bound.
When the worst-case response time WRi of τi is known, we
can use it as initial value.

BR(0)
i = WRi

BR(k+1)
i = Ci + ∑

j<i

(⌈

BR(k)
i

Tj

⌉

−1
)

C j

The procedure is stopped when the same value is found for
two successive iterations of k, yielding the largest solution
of the recursive equation, i.e. the best-case response time
of τi. Termination of the procedure is ensured by the fact
that the sequence BR(k)

i is bounded (from below by Ci, and
from above by W Ri) and non-increasing, and that different
values for successive iterations differ at least min j<i C j . Ta-
ble 1 provides an example with characteristics of a task set
Γ consisting of three tasks, and the response times under
FPPS. We used the superscript P to denote FPPS in Table 1.
Similarly, we will use superscript D later to denote FPDS.

Figure 1 shows a timeline with the executions of these
three tasks and an optimal instant at time zero for task τ3.
Note that for the construction of the best-case response time
of task τ3 using a timeline:
• we first draw the releases and executions of the higher

priority tasks before their simultaneous release, and

• we subsequently draw the execution of τ3 backwards
in time.

Ti Di Ci WRP
i BRP

i W RD
i BRD

i
τ1 5 4 2 2 2 4 2
τ2 7 7 1 + 2 5 3 7 3
τ3 30 30 2 + 2 28 16 21 9

Table 1. Task characteristics and response
times under FPPS and FPDS.

2.3 Best-case occupied time

The best-case occupied time of a task is closely related
to its best-case response time. The best-case occupied time
BOi of a task τi is defined as the length of the shortest in-
terval from a release of that task during which the processor
is occupied with the execution of Ci of that job and execu-
tions of higher priority tasks till the moment that the same
job could start an additional bit of computation. Because
that additional bit of computation extends BRi backwards
in time (see Figure 1), BOi of task τi is equal to BRi ex-
tended with all aligning preceding executions of higher pri-
ority tasks.

Given this above definition, we may simply derive the
best-case occupied time BO3 for τ3 from Figure 1. BO3
extends BR3 with the aligning preceding executions of both
τ1 and τ2, i.e. BO3 = BR3 +C1 +C2 = 21.

To determine best-case occupied times under arbitrary
phasing, we can use a similar approach as for best-case re-
sponse times. However, rather than considering releases of
higher priority tasks in an interval (−x,0), we need to con-
sider releases of those tasks in an interval [−x,0), i.e. in-
cluding those at time x. This can be done by using the floor
rather than the ceiling function, and adding a term 1, i.e.
the best-case occupied time BOi of a task τi is given by the
largest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

⌊

x
Tj

⌋

C j. (2)

task τ3

time

task τ2

task τ1

release time

-10-20

BR3
BO3

0

Figure 1. Timeline under FPPS with an optimal
instant at time zero for task τ3.



Assuming a optimal instant at time 0, the factor
⌊

x
Tj

⌋

in (2)
gives the best-case number of preemptions that an execu-
tion of task τi suffers from task τ j in an interval [−x,0).
Similarly to best-case response times, we can use an iter-
ative procedure based on recurrence relationships to cal-
culate best-case occupied times. When the worst-case re-
sponse time WRi of τi is known, we can use it as initial
value.

BO(0)
i = W Ri

BO(k+1)
i = Ci + ∑

j<i

⌊

BO(k)
i

Tj

⌋

C j

The procedure is stopped when the same value is found for
two successive iterations of k, yielding the largest solution
of the recursive equation. The iterative procedure is ensured
to terminate for the same reasons as the termination of the
procedure for the best-case response time.

Unlike the best-case response time, the best-case occu-
pied time is well defined for a computation time of zero. In
this case, the best-case occupied time is equal to the best-
case start time, i.e. the length of the shortest interval from a
release of a task till the start of its execution. For our model,
the best-case start time is equal to zero for all tasks.

3 Best-case analysis for FPDS

3.1 Refined model

For FPDS, we need to refine our basic model of Section
2.1. Each job of task τi is now assumed to consist of mi

subjobs. The jth subjob of τi is characterized by a compu-
tation time Ci, j ∈ R

+, where Ci = ∑mi
j=i Ci, j . We assume that

subjobs are non-preemptable. Hence, tasks can only be pre-
empted at subjob boundaries, i.e. at so-called preemption
points. For convenience, we will use the term Fi to denote
the computation time Ci,mi of the final subjob of τi. Note
that when mi = 1 for all i, we have FPNS as special case.

To illustrate the model, consider the task characteristics
of Table 1, i.e. let m1 = 1, m2 = 2 with C2,1 = 1 and C2,2 = 2,
and m3 = 2 with C3,1 = C3,2 = 2 for FPDS. As illustrated in
[2], task set Γ is schedulable under FPDS, i.e. WRD

i ≤ Di

for all tasks τi of Γ. Figure 2 shows a timeline with the
executions of these three tasks under FPDS with a simulta-
neous release at time zero. Note that both task τ1 and task
τ2 have releases with a response time equal to their compu-
tation time in this figure, e.g. at time 0 and 7, respectively.
Hence, BRD

1 = C1 = 2 and BRD
2 = C2 = 3 for our example.

In the remainder, we will parameterize BRi and BOi of
task τi with Ci when needed.

task τ3

time

task τ2

task τ1

0 10 30

release time

20

Figure 2. Timeline under FPDS with a simul-
taneous release of all tasks at time zero.

3.2 Best-case response times

The non-preemptive nature of subjobs may cause block-
ing of a task by lower priority tasks under FPDS. Whereas
we are interested in the maximum blocking of task τi by
lower priority tasks for worst-case response times [1], we
are interested in the minimum blocking of task τi for best-
case response times. In this paper, we make the safe, i.e.
pessimistic, assumption that the minimum blocking equals
zero, which gives rise to a lower bound for the best-case
response time.

The highest priority task τ1 experiences a minimum
blocking equal to zero for a simultaneous release of all
tasks. Hence, the best-case response time of τ1 under FPDS
and arbitrary phasing is equal to its computation time, i.e.

BRD
1 = C1. (3)

To determine best-case response times under FPDS and ar-
bitrary phasing for a lower priority task τi (with 1 < i ≤ n),
we revisit optimal instants. We can determine lower bounds
for best-case response times of lower priority tasks using
the following conjecture, which we merely postulate in this
paper.

Conjecture 1 A ∆-optimal instant of a lower priority task
τi (with 1 < i ≤ n) under FPDS and arbitrary phasing oc-
curs when the final sub-job of τi starts a (sufficiently small)
finite time ∆ > 0 before the simultaneous release of all tasks
with a higher priority than τi.

Based on this conjecture, we now determine a lower bound
for the best-case reponse time of τi. Task τi can only be
preempted at subjob boundaries by higher priority tasks. As
mentioned above, we assume that the minimum blocking of
task τi is equal to zero. Hence, we may ignore tasks with a
lower priority than task τi when determining a lower bound
for the best-case response time of τi. The non-preemptive
nature of the subjobs of τi may result in deferred preemp-
tions by higher priority tasks. Although that has an in-
fluence on the order of the executions of the subjobs of
tasks, it does not influence the total amount of time spent



on those executions. The minimal amount of time spent
on executions of all but the final subjob of τi including the
(deferred) preemptions of higher priority tasks is given by
BRP

i (Ci −Fi). According to Conjecture 1, the final subjob
of τi has to start a (sufficiently small) finite ∆ > 0 before
the simultaneous release of its higher priority tasks. Hence,
the minimal amount of time spent from the release of τi on
executions of τi and its higher priority tasks till the simul-
taneous release of those higher priority tasks is given by
BRP

i (Ci −Fi +∆). This latter value is equal to BOP
i (Ci −Fi)

plus a finite time ∆ > 0. A lower bound for the best-case
response time BRD

i of τi is therefore given by

BRD
i ≥ BOP

i (Ci −Fi)+Fi. (4)

3.3 An example

To illustrate the analysis, consider the task characteristics
of Table 1. As shown in [2], task set Γ is schedulable under
FPDS, i.e. WRD

i ≤ Di for all three tasks τi of Γ. Figure 3
shows a timeline with the executions of these three tasks
and a ∆-optimal instant at time zero for task τ3.

task τ3

time

task τ2

task τ1

release time

-10
BRD

3

∆ ∆

0

Figure 3. Timeline under FPDS with a ∆-
optimal instant at time zero for task τ3.

Using (4) yields BRD
3 ≥ BOP

3(C3 −F3)+F3 = BOP
3(2)+

2 = 7 + 2 = 9. Note that this lower bound of 9 for BRD
3 of

task τ3 is larger than its computation time C3, which equals
4, and is smaller than BRP

3 , which equals 16.

4 Discussion

In this section we briefly compare the approaches for
best-case analysis and worst-case analysis for FPDS under
arbitrary phasing.

Both worst-case response times and best-case response
times under FPDS can be expressed in terms of response
times and occupied times under FPPS. Worst-case analysis
for FPDS is based on a so-called ε-critical instant [2], where
ε is an infinitesimal time larger than zero. Such an instant
is a supremum for all but the lowest priority task, i.e. that

instant can not be assumed. Conversely, best-case analy-
sis for FPDS is based on a ∆-optimal instant, where ∆ is a
(sufficiently small) finite time larger than zero. Therefore, a
∆-optimal instant can be assumed.

Acknowledgements

We thank Jan H.M. Korst and Clemens C. Wüst for their
comments on a previous version of this paper.

References

[1] R. Bril, E. Steffens, and W. Verhaegh. Best-case response
times and jitter analysis of real-time tasks. Journal of
Scheduling, 7(2):133–147, March 2004.

[2] R. Bril, W. Verhaegh, and J. Lukkien. Exact worst-case re-
sponse times of real-time tasks under fixed-priority schedul-
ing with deferred preemption. In Proc. Work-in-Progress
(WiP) session of the 16th Euromicro Conf. on Real-Time Sys-
tems (ECRTS), pages 57–60, June 2004.

[3] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pages 225–248. Prentice-Hall, 1994.

[4] A. Burns and A. Wellings. Restricted tasking models. In
Proc. 8th Int. Real-Time Ada Workshop, pages 27–32, 1997.

[5] R. Gopalakrishnan and G. Parulkar. Bringing real-time
scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sigmetrics Conf. on Measurement &
Modeling of Computer Systems, pages 1–12, May 1996.

[6] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour. A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[7] S. Lee, C.-G. Lee, M. Lee, S. Min, and C.-S. Kim. Lim-
ited preemptible scheduling to embrace cache memory in
real-time systems. In Proc. ACM Sigplan Workshop on
Languages, Compilers and Tools for Embedded Systems
(LCTES), pages 51–64, June 1998.

[8] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[9] O. Redell and M. Sanfridson. Exact best-case response time
analysis of fixed priority scheduled tasks. In Proc. 14th Eu-
romicro Conf. on Real Time Systems (ECRTS), pages 165–
172, June 2002.

[10] J. Simonson and J. Patel. Use of preferred preemption points
in cache-based real-time systems. In Proc. IEEE Interna-
tional Computer Performance and Dependability Sympo-
sium (IPDS’95), pages 316–325, April 1995.


