
Exact worst-case response times of real-time tasks
under fixed-priority scheduling with deferred preemption

Reinder J. Bril1,2, Wim F.J. Verhaegh2, and Johan J. Lukkien1

1 Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5600 AZ Eindhoven, The Netherlands
2 Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

{r.j.bril,j.j.lukkien}@tue.nl, {reinder.bril,wim.verhaegh}@philips.com

Abstract

In this paper, we present equations to determine the ex-
act worst-case response times of periodic tasks under fixed-
priority scheduling with deferred preemption (FPDS) and
arbitrary phasing. We show that the worst-case response
time analysis is not uniform for all tasks. Our exact analysis
is based on a dedicated conjecture for an ε-critical instant,
and uses the notion of worst-case occupied time.

1 Introduction

Based on the seminal paper of Liu and Layland [10],
many results have been achieved in the area of worst-case
analysis for fixed-priority preemptive scheduling (FPPS).
Arbitrary preemption of real-time tasks has a number of
drawbacks, though. In particular in systems using cache
memory, e.g. to bridge the speed gap between processors
and main memory, arbitrary preemptions induce additional
cache flushes and reloads. As a consequence, system per-
formance and predictability are degraded, complicating sys-
tem design, analysis and testing [4, 5, 8, 11]. Although
fixed-priority non-preemptive scheduling (FPNS) may re-
solve these problems, it generally leads to reduced schedu-
lability compared to FPPS. Therefore, alternative schedul-
ing schemes have been proposed between the extremes of
arbitrary preemption and no preemption. These schemes are
also known as deferred preemption or co-operative schedul-
ing [2], and are denoted by fixed-priority scheduling with
deferred preemption (FPDS) in the remainder of this paper.

Worst-case response time analysis of periodic real-time
tasks under FPDS and arbitrary phasing has been addressed
in a number of papers [2, 3, 4, 8]. Those papers present a
single equation for the worst-case response time analysis for
all tasks, i.e. their approach is uniform for all tasks. In this
paper, we will show that the exact worst-case response time
analysis is not uniform for all tasks. Our analysis is based

on a dedicated theorem for an ε-critical instant, and uses a
notion that has already been used implicitly in [12] to deter-
mine slack, and which we term worst-case occupied time.
For space considerations, we only discuss results; proofs
will appear elsewhere.

This paper is organized as follows. Section 2 describes
worst-case analysis of periodic tasks under FPPS and arbi-
trary phasing. For completeness reasons, we start with a re-
capitulation of worst-case response times . We subsequently
address worst-case occupied times. In Section 3, we present
our results for FPDS and arbitrary phasing. In Section 4,
we briefly compare our results with those presented in the
literature, and show that the application of existing results
yields values that are either too optimistic or too pessimistic
in specific situations.

2 Worst-case analysis for FPPS

2.1 Basic model

We assume a single processor and a set Γ of n periodic,
independent tasks τ1,τ2, . . . ,τn. Each task τi is character-
ized by a (release) period Ti ∈ R

+, a (worst-case) compu-
tation time Ci ∈ R

+, and a (relative) deadline Di ∈ R
+. In

this paper, we assume that a task’s deadline does not ex-
ceed its period, i.e. Di ≤ Ti for each i. A release of a task
is also termed a job. The release of task τ i at time ϕi ∈ R

with 0 ≤ ϕi < Ti serves as a reference release. Time ϕ i is
also termed the phasing of task τ i, and ϕ = (ϕ1, . . . ,ϕn) is
called the phasing of the task set Γ. We assume that we
do not have control over the phasing ϕ, for instance since
the tasks are released by external events, so we assume that
any arbitrary phasing may occur. This assumption is com-
mon in real-time scheduling literature [6, 7, 10]. We also
assume other standard basic assumptions [10], i.e. tasks are
ready to run at the start of each period and do no suspend
themselves, tasks will be preempted instantaneously when
a higher priority task becomes ready to run, a job of task

τi does not start before its previous job is completed, and
the overhead of context switching and task scheduling is ig-
nored. Finally, we assume that the tasks are given in order
of decreasing priority, i.e. task τ1 has highest priority and
task τn has lowest priority.

2.2 Recapitulation of worst-case response times

The worst-case response time of a task is the length of
the longest interval from a task’s release till its comple-
tion. To determine worst-case response times under arbi-
trary phasing, it suffices to consider only so-called critical
instants [10]. For FPPS, critical instants are given by time
points at which all tasks have a simultaneous release. From
this notion of critical instants, Joseph and Pandya [6] have
derived that the worst-case response time Ri of a task τi is
given by the smallest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

⌈
x
Tj

⌉
Cj. (1)

Assuming a critical instant at time zero, the factor
⌈

x
Tj

⌉
in

(1) gives the worst-case number of preemptions that an exe-
cution of task τ i suffers from task τ j in an interval [0,x). To
calculate worst-case response times, we can use an iterative
procedure based on recurrence relationships [1].

Table 1 provides an example with characteristics of a
task set Γ consisting of three tasks, and the worst-case re-
sponse times under FPPS. We used the superscript P to de-
note FPPS in Table 1. Similarly, we will use superscripts D
and N later to denote FPDS and FPNS, respectively.

Figure 1 shows a timeline with the executions of these
three tasks and a critical instant at time zero.

2.3 Worst-case occupied time

The worst-case occupied time of a task is closely related
to its worst-case response time. The worst-case occupied
time Oi of a task τi is defined as the length of the longest
possible interval from a release of that task during which
the processor is occupied with the execution of Ci of that
job and executions of higher priority tasks till the moment in
time that the same job could start an additional bit of com-
putation. Hence, Oi includes preemptions and aligning suc-
cessive executions of higher priority tasks. For Di ≤ Ti, the

Ti Di Ci RP
i RD

i RN
i

τ1 5 4 2 2 4 6
τ2 7 7 1 + 2 5 7 13
τ3 30 30 2 + 2 28 21 16

Table 1. Task characteristics and worst-case
response times under FPPS, FPDS, and
FPNS.

worst-case occupied time of τ i is the worst-case response
time of that task extended with all aligning successive exe-
cutions of higher priority tasks. Note that we only consider
a single job of τ i for the worst-case occupied time, making
our notion different from the notion of busy period [9].

Given this above definition, we may simply derive the
worst-case occupied times for Γ from Figure 1. For the
highest priority task τ1, O1 equals R1, i.e. O1 = 2. For task
τ2, O2 extends R2 with the aligning execution of task τ 1,
i.e. O2 = R2 +C1 = 7. Note that the aligning job of task τ 2

itself at time seven is not included. Finally, O3 of task τ3

extends R3 with the aligning executions of both τ 1 and τ2,
i.e. O3 = R3 +C1 +C2 = 33. Note that O3 of task τ3 is larger
than its deadline D3 and its period T3.

To determine worst-case occupied times under arbitrary
phasing, we can use a similar approach as for worst-case
response times. However, rather than considering releases
of higher priority tasks in an interval [0,x), we need to con-
sider releases of those tasks in an interval [0,x], i.e. includ-
ing those at time x. As already explained in [12], this can
be done by using the floor rather than the ceiling function,
and adding a term 1, i.e. the worst-case occupied time O i of
a task τi is given by the smallest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

(
⌊

x
Tj

⌋
+ 1)Cj. (2)

Similarly to worst-case response times, we can use an iter-
ative procedure based on recurrence relationships to calcu-
late worst-case occupied times.

Unlike the worst-case response time, the worst-case re-
sponse time is well defined for a computation time of zero.
In this case, the worst-case occupied time is equal to the
worst-case start time, i.e. the length of the longest interval
from a release of a task till the start of its execution. For
our leading example, the worst-case start time SP

1 of task τ1

equals 0, SP
2 = 2, and SP

3 = 12; cf. Figure 1.

2.4 Concluding remarks

In the remainder, we will parameterize Ri and Oi of task
τi with Ci when needed. As illustrated in [7], blocking can

task τ3

time

task τ2

task τ1

0 10 30

release time

20

Figure 1. Timeline under FPPS with a critical
instant at time zero.

be taken into account when calculating Ri of task τi by in-
corporating a worst-case blocking term Bi in Ci.

3 Worst-case analysis for FPDS

3.1 Refined model

For FPDS, we need to refine our basic model of Section
2.1. Each job of task τ i is now assumed to consist of m(i)
subjobs. The jth subjob of τ i is characterized by a computa-

tion time Ci, j ∈ R
+, where Ci = ∑m(i)

j=i Ci, j. We assume that
subjobs are non-preemptable. Hence, tasks can only be pre-
empted at subjob boundaries, i.e. at so-called preemption
points. For convenience, we will use the term Fi to denote
the computation time Ci,m(i) of the final subjob of τ i. Note
that when m(i) = 1 for all i, we have FPNS as special case.

3.2 Worst-case response times

The non-preemptive nature of subjobs may cause block-
ing of a task by at most one lower priority task under FPDS.
The maximum blocking of task τ i by a lower priority task
is equal to the longest computation time of any subjob of a
task with a priority lower than task τ i, which is given by

Bi = max
j>i

max
1≤k≤m(j)

Cj,k. (3)

To determine worst-case response times under FPDS and
arbitrary phasing, we have to revisit critical instants. In this
paper, we merely postulate the following conjecture.

Conjecture 1 An ε-critical instant of a task τ i under FPDS
and arbitrary phasing occurs when that task is released si-
multaneously with all tasks with a higher priority than τ i,
and the subjob with the longest computation time of all
lower priority tasks starts an infinitesimal time ε > 0 before
that simultaneous release.

From this conjecture we conclude that a critical instant for
FPDS is a supremum for all but the lowest priority task, i.e.
that instant cannot be assumed.

For the analysis, we consider three cases: the highest
priority task τ1, the lowest priority task τn, and a medium
priority task τ i (with 1 < i < n).

Task τ1 may be blocked, but is never preempted. The
worst-case response time RD

1 of task τ1 therefore includes a
term B1, i.e.

RD
1 = B1 +C1. (4)

Note that B1 +C1 is a supremum, i.e. that value cannot be
assumed, but it can be approximated arbitrarily closely. Fur-
ther note that this latter equation may also be written as

RD
1 = RP

1(B1 +C1), or RD
1 = RP

1(B1 +C1 − F1) + F1. Be-
cause RP

1 = OP
1, the equation may even be written as RD

1 =
OP

1(B1 +C1), or RD
1 = OP

1(B1 +C1 −F1)+ F1.
Task τn may be preempted (at subjob boundaries), but is

never blocked. The worst-case response time RD
n of task τn

can hence be found by calculating the worst-case start time
of the final subjob, and adding its computation time Fn. The
non-preemptive nature of the other subjobs of τ n may result
in deferred preemptions by higher priority tasks. Although
that has an influence on the order of the executions of the
subjobs of tasks, it does not influence the total amount of
time spent on those executions. The amount of time spent
on executions of all but the final subjob of τ n including the
(deferred) preemptions of higher priority tasks is given by
RP

n(Cn −Fn). The final subjob of τn may subsequently start
after the aligning successive executions of higher priority
tasks have completed. Hence, the worst-case start time of
the final subjob of task τn is given by OP

n(Cn −Fn), and we
arrive at the following equation for RD

n .

RD
n = OP

n(Cn −Fn)+ Fn (5)

Note that OP
n(Cn − Fn) + Fn is a maximum, i.e. that value

can be assumed. Further note that for m(n) = 1, we get
OP

n(Cn −Fn) = OP
n(0), which is equal to the worst-case start

time SP
n of task τn.

Task τi with 1 < i < n, may be both preempted at subjob
boundaries by higher priority tasks and blocked by a lower
priority task. Similarly to task τn, the worst-case response
time RD

i of τi can be found by calculating the worst-case
start time of the final subjob, and by subsequently adding
its computation time Fi. Similarly to τn, the non-preemptive
nature of the other subjobs of τ i has no influence on the
worst-case start time of the final subjob. At first hand, it
therefore looks as if the same reasoning applies as for τ n,
and that we can calculate the worst-case start time by means
of OP

i (Bi +Ci −Fi). However, the blocking subjob of the
lower priority tasks has to start an infinitesimal time ε > 0
before the simultaneous release of τ i and its higher prior-
ity tasks. Hence, the amount of time spent from the release
of τi on executions of the blocking subjob and all but the
final subjob of τ i including the (deferred) preemptions of
higher priority tasks is given by OP

i (Bi − ε+Ci −Fi). This
latter value is equal to RP

i (Bi +Ci −Fi) minus an infinites-
imal time ε > 0. It is exactly this infinitesimal difference,
which approaches zero, that allows the final subjob of τ i to
start executing, and that defers potential additional preemp-
tions from higher priority tasks at time RP

i (Bi +Ci−Fi). The
worst-case response time RD

i of τi is therefore given by

RD
i = RP

i (Bi +Ci −Fi)+ Fi. (6)

Note that RP
i (Bi +Ci −Fi)+ Fi is also a supremum.

As mentioned above, we may rewrite (4) to RD
1 =

OP
1(B1 +C1 − F1) + F1 as well as to RD

1 = RP
1(B1 + C1 −

F1)+ F1. Hence, (4) is similar to both (5) and (6).

3.3 An example

To illustrate the equations, consider the task character-
istics of Table 1. For FPNS, the set is not schedulable be-
cause the worst-case response time RN

1 of task τ1 is equal to
B1 +C1 = 4+ 2 = 6, which exceeds D1.

For FPDS, let m(1) = 1, m(2) = 2 with C2,1 = 1 and
C2,2 = 2, and m(3) = 2 with C3,1 = C3,2 = 2; see Table 1.
Using the equations above yields RD

1 = B1 +C1 = 2 + 2 =
4, RD

2 = RP
2(B2 +C2 − F2) + F2 = RP

2(2 + 3− 2) + 2 = 7,
and RD

3 = OP
3(C3 −F3)+ F3 = OP

3(2)+ 2 = 21. Hence, by
splitting both task τ2 and task τ3 into two non-preemptive
subjobs, the task set becomes schedulable under FPDS.

4 Related Work

We briefly compare our results with those presented in
the literature. The schedulability test in [5] is based on uti-
lization bounds, and is therefore typically pessimistic. The
worst-case response time analysis presented in [8] is based
on a single equation, i.e. it is uniform for all tasks. The
blocking effect of (partially) non-preemptive lower priority
tasks has been covered in that analysis, but the effect of the
non-preemptive nature of the final subjob is not taken into
account. The analysis is therefore pessimistic.

The results presented in [2, 3, 4] are very similar to ours.
Unlike our approach, their approach is uniform for all tasks.
Using our notation, the worst-case response time R̃D

i under
FPDS and arbitrary phasing presented in [2, 4] is given by

R̃D
i = RP

i (Bi +Ci − (Fi−∆))+ (Fi−∆). (7)

According to [4], ∆ is an arbitrary small positive value
needed to ensure that the final subjob has actually started.
Hence, when task τ i has consumed Ci − (Fi −∆), the final
subjob has (just) started. When ∆ approaches to zero, we
may rewrite (7) to

R̃D
i = OP

i (Bi +Ci −Fi)+ Fi.

This result is identical to ours for the highest and lowest
priority tasks, but differs from ours for intermediate tasks.
For the example presented above, our analysis yields R D

2 =
7, whereas the analysis presented in [4] yields R̃D

2 = 9. In
the example, this latter result is too pessimistic; because R̃D

2
exceeds D2, the task set would incorrectly be considered
non-schedulable. This difference between RD

2 and R̃D
2 can

be traced back to Conjecture 1. The analysis in [4] does not
take into account that τ i can only be blocked by a subjob
of a lower priority task if that subjob also starts an amount
of time ∆ before the simultaneous release of τ i and all tasks

with a higher priority than τ i. When this aspect is be taken
into account in the analysis of [4], e.g. when Bi is replaced
by Bi −∆ in (7), their result becomes identical to ours.

In the scheduling analysis review presented in [3], the
worst-case response time R̃D

i ignores the term ∆, i.e.

R̃D
i = RP

i (Bi +Ci −Fi)+ Fi.

This result is identical to ours, except for the lowest priority
task. For the example presented above, this results in R̃D

3 =
RP

3(C3 −F3)+ F3 = 16, which is too optimistic.

References

[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
Hard real-time scheduling: The deadline monotonic ap-
proach. In Proc. 8th IEEE Workshop on Real-Time Oper-
ating Systems and Software, pages 133–137, May 1991.

[2] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pages 225–248. Prentice-Hall, 1994.

[3] A. Burns. Defining new non-preemptive dispatching and
locking policies for Ada. In Proc. 6th Ada-Europe Inter-
national Conference, pages 328–336, May 2001.

[4] A. Burns and A. Wellings. Restricted tasking models. In
Proc. 8th Int. Real-Time Ada Workshop, pages 27–32, 1997.

[5] R. Gopalakrishnan and G. Parulkar. Bringing real-time
scheduling theory and practice closer for multimedia com-
puting. In Proc. ACM Sigmetrics Conf. on Measurement &
modeling of computer systems, pages 1–12, May 1996.

[6] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, 1986.

[7] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour. A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[8] S. Lee, C.-G. Lee, M. Lee, S. Min, , and C.-S. Kim. Lim-
ited preemptible scheduling to embrace cache memory in
real-time systems. In Proc. ACM Sigplan Workshop on
Languages, Compilers and Tools for Embedded Systems
(LCTES), pages 51–64, June 1998.

[9] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In Proc. IEEE Real-Time Systems
Symposium (RTSS), pages 201–209, December 1990.

[10] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[11] J. Simonson and J. Patel. Use of preferred preemption points
in cache-based real-time systems. In Proc. IEEE Interna-
tional Computer Performance and Dependability Sympo-
sium (IPDS’95), pages 316–325, April 1995.

[12] S. Thuel and J. Lehoczky. Algorithms for scheduling hard
aperiodic tasks in fixed-priority systems using slack stealing.
In Proc. 15th IEEE Real-Time Systems Symposium (RTSS),
pages 22–33, April 1994.

