
In: Proceedings of the 14th IEEE Real-Time Systems Symposium, Raleigh-Durham, NC, December 1993, pp. 212-221.

Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems

Kevin Jeffay* Donald L. Stone†

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC 27599-3175
{jeffay,stone}@cs.unc.edu

Abstract: In order to apply the results of formal studies
of real-time task models, a practitioner must account for
the effects of phenomena present in the implementation
but not present in the formal model. We study the
feasibility and schedulability problems for periodic tasks
that must compete for the processor with interrupt
handlers –– tasks that are assumed to always have priority
over application tasks. The emphasis in the analysis is on
deadline driven scheduling methods. We develop conditions
that solve the feasibility and schedulability problems and
demonstrate that our solutions are computationally
feasible. Lastly, we compare our analysis with others
developed for static priority task systems.

1 . Introduction
The problem of scheduling regularly occurring tasks to
meet deadlines is central to the design and analysis of real-
time systems. The scheduling analysis of real-time sys-
tems concerns two fundamental problems: feasibility and
schedulability. For a given set of task execution require-
ments, the feasibility problem is that of determining rela-
tions on model parameters that are necessary and sufficient
for ensuring there exists a schedule in which no task ever
misses a deadline. An example execution requirement is
that an invocation of a task occur no sooner than the dead-
line of the previous invocation. For a given set of schedul-
ing constraints, the schedulability problem is that of
determining if there exists a scheduling algorithm that is
capable of scheduling any feasible task set such that no
task indeed ever misses a deadline. An example scheduling
constraint is that a scheduler never idle the processor when
there exist uncompleted task invocations.

Research on the feasibility problem has given relatively
little attention to the representation of system implemen-
tation overhead in workload models. In trying to apply ex-
isting feasibility analyses to actual task systems, the ef-
fects of such phenomena as context switching costs, inter-

* Supported by a grant from the National Science Foundation (number
CCR-9110938).
† Supported by a graduate fellowship from the IBM Corporation.

rupt handling, DMA, etc., must be taken into considera-
tion. For example, the effect on CPU scheduling of mem-
ory bus cycle stealing due to DMA has been reported in
[9]. The effect of operating system overhead and non-pre-
emptable operations is considered in [6].

Research on the schedulability problem has focused on
two scheduling paradigms: scheduling based on a static as-
signment of priorities to tasks, of which the ra te
monotonic priority assignment is the dominant approach,
and scheduling based on a dynamically changing assign-
ment of priority to tasks, of which the deadline driven pri-
ority assignment dominates. Under a rate monotonic prior-
ity assignment, tasks that are requested frequently have
higher priority than tasks requested less frequently. Under a
deadline driven priority assignment, tasks with nearer dead-
lines have priority over tasks with later deadlines. For
particular task models, the rate monotonic priority
assignment is known to be an optimal static priority
assignment and the deadline driven priority assignment is
known to be an optimal dynamic priority assignment [8].

In this paper we consider the problem of accounting for
the effects of interrupt handling. We present an analysis of
the feasibility and schedulability problem for a real-time
workload that explicitly includes interrupt handlers. The
emphasis is primarily on scheduling algorithms that dy-
namically vary the priority of tasks. Our interest in dy-
namic priority scheduling arises from the fact that dynamic
priority algorithms are capable of guaranteeing a correct
execution to any task set that is schedulable using a static
priority assignment, while the reverse is not true.
Moreover, as we discuss in Section 4, it is possible to
model the effects of interrupt handlers in static priority
systems using results from the literature (as well as those
presented below). Lastly, in related work, we are applying
results for dynamic priority scheduling to the design and
implementation of a real-time multimedia system [4].

Throughout, we assume a task model in which interrupt
handlers always have a higher priority than real-time ap-
plication tasks. Our model is based on the hybrid

2

static/dynamic priority scheduling model presented in [8].
We develop quantitative conditions that solve the feasibil-
ity and schedulability problems and demonstrate that our
solutions are computationally feasible. Our results will aid
practitioners who wish to employ deadline driven
scheduling techniques either by using our model directly or
by using our framework to analyze similar models.

The following section describes our system model. We
begin with task systems consisting of periodic application
tasks and periodic interrupt handlers. Section 3 solves the
feasibility problem for this model by deriving a recurrence
relation that quantifies the amount of processor time lost
to interrupt handlers in an arbitrary interval and solves the
schedulability problem by showing that a scheduling
algorithm that uses the deadline driven priority assignment
is optimal. Section 3 also discusses extensions of our
analyses to other dynamic priority task systems. Section 4
compares our schedulability analysis to that for static
priority systems. We conclude with an outline of future
extensions and applications of this work.

2 . System Model
We consider a real-time system to comprise two distinct
classes of tasks: application tasks and interrupt handlers.
Tasks of either type are sequential programs that are re-
peatedly invoked by occurrences of events. Typically, in-
terrupt handlers execute in response to externally generated
events (e.g., device interrupts). Application tasks execute
in response to internally generated events (e.g., the arrival
of a message). Events are periodic. A periodic event occurs
every p time units for some constant p.

Formally, an application task T is a pair (c, p) where c is
the maximum amount of processor time required to
execute (the sequential program of) task T to completion
on a dedicated uniprocessor, and p is the interval between
occurrences of the event v that leads to invocations of T.
Event v (and thus invocations of T) occurs at time kp, for
all k ≥ 0. The ith execution of task T terminates no later
than the deadline of (i+1)p. This will require that c units
of processor time be allocated to the execution of T in the
(closed) interval [ip, (i+1)p]. If this does not occur then
task T is said to have missed a deadline at time (i+1)p.

An interrupt handler I is a pair (e, a) where e is the
maximum amount of processor time required to execute
interrupt handler I to completion on a dedicated
uniprocessor, and a is the interval between occurrences of
the event v′ that leads to invocations of I. Event v′ (and
thus invocations of I) occurs at time ka, for all k ≥ 0.

We assume time is discrete and clock ticks are indexed by
the natural numbers. Interrupts and task invocations occur

at clock ticks; parameters c, p, a, and e are expressed as
integer multiples of the interval between successive clock
ticks. We further assume application tasks and interrupt
handlers are independent in the sense that the time at
which an interrupt handler or application task is invoked is
unrelated to any invocation of any other task or handler
other than previous invocation of the same program.

Our execution model is priority-driven, preemptive execu-
tion. The execution rules for interrupt handlers and appli-
cation tasks are as follows. Interrupt handlers execute with
priority strictly greater than application tasks. Thus, if at
any time t, t ≥ 0, there exists an invocation of an interrupt
handler that has not completed execution, then in the in-
terval [t, t+1], an interrupt handler must execute. Interrupt
handlers therefore may preempt application tasks at
arbitrary points.

We define a task system τ as a set of m interrupt handlers
(e1, a1) … (em, am), and n application tasks, (c1, p1) …
(cn, pn). A task system is feasible if it is possible to
schedule the application tasks such that each invocation of
each application task completes execution at or before its
deadline. We posit no correctness conditions for the
interrupt handlers (e.g., response time properties). Our
emphasis is on understanding the impact of interrupt
handlers on application tasks. Because interrupt handlers
execute with priority strictly higher than that of all
application tasks, they are unaffected by application tasks
and can thus be analyzed in isolation using methods
previously reported in the literature (e.g., [2]).

3 . Feasibility and Schedulability of
Dynamic Priority Task Systems

The analysis of sets of tasks scheduled by dynamic priority
algorithms has recently been analyzed within the context
of processor demand [3, 5]. For a set of periodic tasks τ,
and an interval of length l, l ≥ 0, the processor demand is
defined as the least upper bound on the amount of process-
ing time required by τ in the interval [t, t+l] to complete
execution of all possible invocations of tasks with dead-
lines in the interval [t, t+l]. If τ is schedulable then for all
non-negative t and l, the processor demand in [t, t+l],
must be less than or equal to l when τ is scheduled using
an optimal algorithm. In general, the processor demand in
the interval [t, t+l] will be a function of the processor
time required to complete execution of the most recent
invocation (i.e., before time t) of each task, the costs and
periods of the tasks, and the length of the interval.

Preemptive Task Systems

Here we analyze the feasibility and schedulability prob-
lems when application tasks are allowed to preempt one
another at arbitrary points.

3

Our analysis is an alternative to Liu and Layland’s original
analysis of preemptive periodic tasks [8]. They have
shown that if tasks are allowed to preempt one another at
arbitrary points, then a task system consisting of just a set
of n application tasks will be feasible if and only if

ci

pii=1

n

∑ ≤ 1 (1)

If a periodic task Ti has a cost ci and period pi, then ci/pi is
the fraction of processor time consumed by Ti over the
lifetime of the system, i.e., the utilization of the processor
by Ti. This result expresses feasibility as a function of the
cumulative processor utilization. The necessity of (1)
follows from the fact that for a set of tasks to be feasible
on a single processor system, the tasks cannot overload
the processor. The sufficiency of (1) is demonstrated by
showing that if (1) holds then the deadline driven schedul-
ing algorithm, an algorithm that assigns higher priority to
task invocations with nearer deadlines, will schedule the
tasks without any task ever missing a deadline.

To illustrate the use of processor demand, the following
theorem gives an equivalent feasibility condition.

Theorem 3.1: A set of periodic tasks will be feasible if
and only if for all L, L ≥ 0,

L ≥ L

pi











i=1

n

∑ ci . (2)

Proof: It is straightforward to demonstrate that (1) ⇔ (2)
(see Appendix).

The right-hand side of inequality (2) is the processor de-
mand in the interval [0, L] when all tasks are invoked at
time t = 0. In the interval [0, L] there are exactly L pi 
invocations of task Ti that must complete execution at or
before time L. As each invocation requires ci units of pro-
cessor time, the processor demand due to task Ti in [0, L]

is thus L pi ci . Theorem 3.1 requires that for all L, the

cumulative processor demand in every interval [0, L] be
less than the amount of processor time available for exe-
cuting tasks in the interval. Since we assume a single pro-
cessor system, the amount of available processor time is
simply L, the length of the interval.

Theorem 3.1 can be extended to include the effects of inter-
rupt handlers on application tasks. Since interrupt handlers
execute with priorities strictly greater than those of appli-
cation tasks, their effect is to reduce the amount of time
available for processing application tasks. To quantify the
time spent executing interrupt handlers, consider a set of
m interrupt handlers (e1, a1) … (em, am). Let ƒ(l) be a func-
tion from the non-negative integers to the non-negative
integers defined by the following recurrence relation:

f (0) = 0,

∀l > 0, f l() =
f (l − 1) if f (l − 1) = l

ai









ei

i=1

m

∑

f (l − 1) + 1 if f (l − 1) < l

ai









ei

i=1

m

∑











Note that for all l, l ≥ 0, ƒ(l) ≤ MIN(l, l ai i=1
m∑ ei).

We show ƒ(l) is the least upper bound on the amount of
time spent executing interrupt handlers in any interval of
length l. First, we show that for all l, there exist intervals
in which the amount of processor time consumed by
interrupt handlers is exactly ƒ(l). This shows that the least
upper bound on the time spent executing interrupt handlers
in an interval of length l must be at least ƒ(l).

Lemma 3.2: Let τ be a task system with m interrupt
handlers (e1, a1) … (em, am). For all l, l ≥ 0, ƒ(l) is the
amount of processor time consumed by interrupt handlers
in the interval [0, l].

Proof: By induction on l.

Basis: l = 0. Since time is assumed to be discrete, no exe-
cution occurs in an interval of length 0 and hence ƒ(0) = 0.

Induction Step: Assume ƒ(k–1) is the processor time
consumed by interrupt handlers in the interval [0, k–1] for
some k, k ≥ 1. We show the theorem must hold for l = k.

For all a ≥ 0, b ≥ 0, let g(a,b) be the amount of processor
time consumed by interrupt handlers in the interval [a, b].
In the interval [0, k], the only interrupt handlers that exe-
cute are those invoked in the (closed) interval [0, k–1].
There are at most k ai i=1

m∑ such invocations and hence

g(0,k) ≤ k ai i=1
m∑ ei . If ƒ(k–1) < k ai i=1

m∑ ei then there

necessarily exists an invocation of an interrupt handler that
has not completed execution at time k–1 and hence one
will execute in the interval [k–1, k]. In this case g(0,k) =
ƒ(k–1) + 1. If ƒ(k–1) = k ai i=1

m∑ ei then all interrupt han-

dlers invoked in the (closed) interval [0, k–1] have com-
pleted execution at or prior to time k–1. Moreover, no in-
terrupt occurred at time k–1. In this case g(0,k) = ƒ(k–1).
In either case g(0,k) = ƒ(k). This proves the lemma.

The following lemma shows that ƒ(l) is an upper bound
on the time spent executing interrupt handlers in an
interval of length l.

Lemma 3.3: Let τ be a task system with m interrupt
handlers (e1, a1) … (em, am). For all t and l, t ≥ 0, l ≥ 0,
ƒ(l) is an upper bound on the amount of processor time
spent executing interrupt handlers in the interval [t, t+l].

4

Proof: By contradiction.

Let g(a,b) be defined as in the proof of Lemma 3.2.
Suppose ƒ(l) is not an upper bound on g(t, t+l) for all t ≥
0 and l ≥ 0. Then there exists some x and k such that

ƒ(k) < g(x, x+k). (3)

Choose the smallest x for which (3) holds, and for that x,
choose the smallest k. For this choice of x and k

g(x–1, x+k–1) ≤ ƒ(k) < g(x, x+k) (4)

Since the two intervals [x–1, x+k–1] and [x, x+k] overlap
except at the endpoints, (4) holds only if the processor is
executing interrupt handlers in the unit interval [x+k–1,
x+k] and not in the unit interval [x–1, x]. Hence

 g(x, x+k) = g(x, x+k–1) + 1

It also follows from the choice of x and k that

g(x, x+k–1) ≤ ƒ(k–1)

Hence
g(x, x+k) ≤ ƒ(k–1) + 1

ƒ(k) < ƒ(k–1) + 1

Since for all l, ƒ(l–1) ≤ ƒ(l), it follows that ƒ(k) = ƒ(k–1)
and thus by the definition of ƒ(l), ƒ(k) = k ai i=1

m∑ ei .

Since interrupt handlers do not execute in the interval [x–
1, x], the only interrupt handlers that execute in the
interval [x, x+k] are those actually invoked in the interval
[x, x+k–1]. Therefore, the maximum amount of processor
time that can be spent executing these interrupt handlers is

k ai i=1
m∑ ei , and thus

g(x, x + k) ≤ k

ai











i=1

m

∑ ei = f (k) .

However this contradicts inequality (3). Therefore, there
cannot exist an interval of length k in which the amount
of processor time spent executing interrupt handlers is
greater than ƒ(k).

Theorem 3.4: Let τ be a task system with m interrupt
handlers (e1, a1) … (em, am). For all t and l, t > 0, l ≥ 0,
ƒ(l) is a least upper bound on the amount of processor
time spent executing interrupt handlers in the interval [t,
t+l].

Proof: Lemma 3.3 has demonstrated that ƒ(l) is an upper
bound on the amount of processor time spent executing
interrupt handlers in the interval [t, t+l]. Lemma 3.2 has
demonstrated that the amount of processor time spent
executing interrupt handlers in the interval [0, l] is ƒ(l).
Therefore no upper bound can be smaller than ƒ(l). It
follows that ƒ(l) is a least upper bound.

Note that results of the previous theorem and lemma are
independent of how the processor is allocated amongst the
interrupt handlers.

The following theorem gives necessary and sufficient
conditions for the feasibility of a set of application tasks
in the presence of interrupt handlers.

Theorem 3.5: Let τ be a task system with n application
tasks (c1, p1) … (cn, pn) and m interrupt handlers (e1, a1)
… (em, am). τ will be feasible if and only if for all L ≥ 0,

L − f (L) ≥ L

pi









ci

i=1

n

∑ . (5)

Proof: (⇒) For all t, t > 0, in the interval [0, t], there
are t time units available in which work can be done. By
Lemma 3.2, ƒ(t) of these time units are spent processing
interrupts leaving t – ƒ(t) time units for processing appli-
cation tasks. Each application task will require t pi ci

units of processor time in the interval [0, t] to ensure the
task does not miss a deadline in the interval [0, t] .
Therefore τ can be scheduled only if

t − f (t) ≥ t

pi











i=1

n

∑ ci .

(⇐) To show the sufficiency of (5) we show that a if task
system τ satisfies (5) for all L, L > 0, then a deadline
driven scheduler will succeed in scheduling τ. This is
shown by contradiction.

Assume for all L, L > 0, τ satisfies (5) but yet an applica-
tion task in τ misses a deadline when scheduled according
to a deadline driven algorithm. Let td be the earliest time
at which a deadline is missed and let t be the later of:

• the end of the last interval prior to td in which the
processor has been idle (or 0 if the processor has
never been idle), or,

• the latest time prior to td at which an invocation of
an application task with deadline after time td

executes (or time 0 if such an invocation does not
execute prior to td).

By choice of t, no invocation of an application task with
deadline after td executes in the interval [t, td]. If schedul-
ing is deadline driven then the processor demand in the in-
terval [t, td], is at most (td − t) pi cii=1

n∑ . Moreover, at

most ƒ(td – t) time units are spent executing interrupt
handlers in the interval [t, td] and hence at least (td – t) –
ƒ(td – t) time units are available for executing application
tasks. Since a deadline is missed at time td it follows that

td − t

pi









ci

i=1

n

∑ > (td − t) − f (td − t).

However this contradicts our assumption that τ satisfies
(5) for all L. Hence if τ satisfies (5) then a deadline driven
scheduler will succeed in scheduling τ. It follows that

5

satisfying (5) for all L, L > 0, is a sufficient condition for
feasibility.

The proof of Theorem 3.5 also establishes the optimality
of the deadline driven scheduling algorithm for scheduling
application task sets in the presence of interrupt handlers,
as the condition that is necessary for feasibility guarantees
the correctness of the algorithm. Moreover, note that
Theorem 3.1 is a corollary of Theorem 3.5. The task
system in Theorem 3.1 is the special case of that
considered in Theorem 3.5 obtained when there are no
interrupt handlers (i.e., m = 0).

While Theorem 3.5 gives necessary and sufficient condi-
tions for feasibility, that condition (5) be evaluated for all
L ≥ 0 implies that Theorem 3.5 cannot be used directly as
a basis of test for feasibility. Unfortunately, there is no
equivalent formulation of (5) (that we know of) in terms
of a more easily computed function such as processor
utilization (see Section 5). However, by restricting the set
of task systems, the feasibility condition of Theorem 3.5
can be reduced to one that can be efficiently evaluated.

Define the achievable processor utilization as:

U = ci

pii=1

n

∑ + ei

aii=1

m

∑ .

In the remainder of this section we restrict ourselves to
task systems that do not fully utilize the processor (i.e.,
ones for which U < 1).

Theorem 3.6: Let τ be a task system as in Theorem 3.5
with U < 1. Let

B =
eii=1

m∑
1 − U

and let P = {kpi | kpi < B ∧ k ≥ 0 ∧ 1 ≤ i ≤ n} be the set
of non-negative multiples, less than B, of the periods of
the application tasks. τ will be feasible if and only if for
all L, L ∈ P:

L − f (L) ≥ L

pi









ci

i=1

n

∑ (6)

Proof: The necessity of (6) for all L, L ∈ P, is a direct
consequence of Theorem 3.5. We demonstrate the
sufficiency of (6) in two parts. First, we show that (6)
need only hold at multiples of the periods of the
application tasks in order for the tasks to be feasible.
Next, we show that it suffices to consider only values of L
less than B. Our proof of the former fact is taken from the
proof of Theorem 9 in [8].

Let Q = {kpi | k ≥ 0 ∧ 1 ≤ i≤ n}. Choose t, t′ ∈ Q, t < t′,
such that there does not exist an r ∈ Q, t < r < t′. Let ε be
an integer such that 0 ≤ ε < t′ – t. It follows that for all i,

1 ≤ i ≤ n , t pi  = (t + ε) pi  . Moreover, since at most ε

time units can be spent executing interrupt handlers in the
interval [t, t+ε], ƒ(t+ε) ≤ ƒ(t)+ε. If (6) is satisfied at t then

t − f (t) ≥ t

pi









ci

i=1

n

∑

t − f (t) ≥ t + ε
pi









ci

i=1

n

∑

t + ε − f (t) + ε() ≥ t + ε
pi









ci

i=1

n

∑

t + ε − f (t + ε) ≥ t + ε
pi









ci

i=1

n

∑

Therefore, if (6) holds at multiples of the periods of ap-
plication tasks (and 0), it also holds at all values in be-
tween. It thus suffices to only consider positive multiples
of the pi. We next show that it further suffices to consider
only points less than B. Consider the function

g(L) = L

pi









ci + f (L)

i=1

n

∑ − L .

By Theorem 3.5, τ will be feasible if and only if g(L) ≤ 0
for all L ≥ 0. g(L) is bounded from above by the function
h(L) = L(U–1) + ejj=1

m∑ since

g(L) ≤ L

pi









ci + L

aj











j =1

m

∑
i=1

n

∑ ej − L

≤ L

pi

ci + L

aj

+ 1










j =1

m

∑
i=1

n

∑ ej − L

= L
ci

pi

+ L
ej

ajj =1

m

∑
i=1

n

∑ + ej
j =1

m

∑ − L

= L(U − 1) + ej
j =1

m

∑ .

h(L) is a linear function in L with slope U – 1 and an L-

intercept at the point L = B =
ejj=1

m∑
1− U . Since U < 1, h(L)

has negative slope and thus for all L ≥ B, g(L) ≤ h(L) ≤ 0.
Hence τ will be feasible if and only if g(L) ≤ 0 for all L ∈
P. This proves the theorem.

Complexity of Deciding Feasibility

In this section we show that if the utilization of a task
system is bounded above by a constant u < 1, then feasi-
bility can be decided in time O(n2 + m + pmin) and space
O(pmin) where pmin is the smallest period in the system.

First note that if a task system is feasible then

ej
j =1

m

∑ + cmin ≤ pmin . (7)

6

If this is not the case then an invocation of the application
task (cmin, pmin) will miss a deadline if it occurs simulta-
neously with invocations of all interrupt handlers.

We begin each feasibility test with a simple O(m) test for
(7) (given that pmin is known). If (7) does not hold then
the task system is infeasible. For the remainder of this
section we assume (7) holds.

The values of ƒ(L) for 0 < L < B, can be computed in
time O(B + B aj j=1

m∑) and space O(B). The time com-

plexity bound can be simplified to

B + B

aj











j =1

m

∑ ≤ B + B

ajj =1

m

∑ ≤ B 1 + 1
ajj =1

m

∑








 ≤ 2B

since 1 ajj=1
m∑ < 1 if U < 1. Therefore, computing ƒ(L) for

0 < L < B requires time O(B). This is O(pmin) since from
the definitions of B and u, B ≤ pmin/(1–u).

By Theorem 3.6, to decide feasibility one must evaluate
(6) at most B pi i=1

n∑ times. Since

B

pi











i=1

n

∑ ≤ B

pii=1

n

∑ ≤ B
1
pii=1

n

∑ ≤ B
1

pmini=1

n

∑ ≤

B
n

pmin

≤ pmin

(1 − u)
n

pmin

≤ n

1 − u
,

(6) must be evaluated O(n) times. An evaluation of (6)
requires time O(n) (if ƒ(L) is pre-computed) hence the
complexity of deciding the feasibility of a task system is
O(n2 + pmin + m).

Some notes are in order. First, the pmin term in the com-
plexity bound is not a function of the length of the input
and hence the complexity of deciding feasibility is pseudo-
polynomial time (i.e., polynomial in both the length and
magnitude of the inputs [1]). Second, note that B is not an
input and must be computed. B can, however, be com-
puted in time O(n + m) and hence does not effect the over-
all complexity of deciding feasibility. The same is true of
the complexity of finding pmin. Finally, in practice, since
systems with thousands of tasks are not typically encoun-
tered but systems with high utilization are arguably more
common, the actual time and space requirements for decid-
ing feasibility are likely to be dominated by the constant
factor 1

1−u .

Other Dynamic Priority Task Systems

The proof of Theorem 3.5 is structured similar to the
original Liu and Layland proof of the optimality of the
preemptive deadline driven scheduling discipline. The basic
arguments in the Liu and Layland proof are unaffected by
the presence of interrupt handlers. In fact this observation
holds for proofs of other results concerning deadline driven

scheduling. That is, one can easily adapt the results for
other dynamic priority schedulability problems to include
the effects of interrupt handlers.

Two other schedulability problems that we have considered
are: scheduling periodic tasks non-preemptively [3] and
scheduling periodic tasks that share a set of serially
reusable, non-preemptible resources [5].1 The schedulabil-
ity analysis reported for each problem can be extended to
include interrupt handlers in exactly the same manner as
Theorem 3.5 extends Theorem 3.1. For example, in [3] it
was shown that if tasks are not allowed to preempt one
another then a task system consisting of a set of n applica-
tion tasks (with no interrupt handlers) can be scheduled by
a non-preemptive, deadline driven scheduling algorithm if:

1.
ci

pi

≤ 1
i=1

n

∑

2. ∀i, 1 < i ≤ n, ∀L, p1 < L < pi , L ≥ ci + L − 1
pj












cj

j =1

i

∑ ,

(assuming that the tasks are sorted in non-decreasing order
by period). The first condition requires that the processor
not be overloaded. The second condition requires that for a
specific set of interval lengths, the processor demand in
intervals of those lengths cannot exceed the available
processor time.

The following theorem shows how this result can be ex-
tended to include the effects of interrupt handlers. Appli-
cation tasks are now not allowed to preempt one another
but may be preempted at any time by interrupt handlers
(i.e., there are no new restrictions on the behavior of
interrupt handlers).

Theorem 3.7: Let τ be a task system with n application
tasks (c1, p1) … (cn, pn), sorted in non-decreasing order by
period, and m interrupt handlers (e1, a1) … (em, am). If
application tasks are not allowed to preempt one another
then τ will be feasible if

1. ∀L, L ≥ 0, L − f (L) ≥ L

pi









ci

i=1

n

∑

2.∀i, L,1 < i ≤ n, p1 < L < pi , L − f (L) ≥ ci + L − 1
pj












cj

j =1

i

∑
Proof: The proof is a straightforward extension of the
original. (See Appendix.)

The results reported in [5] for the problem of scheduling
periodic tasks that share a set of serially reusable, non-
preemptible resources can be similarly extended.

1 The focus in [5] was on sporadic tasks: repetitive tasks where p is
only a lower bound on the time between successive invocations.
However, as noted in [5], all schedulability conditions presented for
sporadic tasks are also schedulability conditions for periodic tasks.

7

4 . Feasibility Analysis of Static Priority
Task Systems

To illustrate the generality of our analysis techniques, in
this section we give feasibility conditions for task systems
in which application tasks have fixed priority. These con-
ditions are developed in much the same way as those in
Section 3. They can also be derived from results previ-
ously reported in the literature.

The feasibility of sets of tasks with constant execution
priority has been analyzed within the context of a critical
instant. For a task Ti, a critical instant is a point in time
at which if task Ti is invoked it will have its longest
response time. For preemptible, periodic tasks, Liu and
Layland have shown that a critical instant occurs whenever
a task is invoked simultaneously with all tasks of higher
priority [8].

Lehoczky et al. [7] give exact feasibility conditions for
sets of periodic tasks in which task priorities are assigned
in rate-monotonic order (i.e., if pi < pj, then task Ti has
higher execution priority than Tj). Consider a set of n
periodic application tasks (c1, p1), ..., (cn, pn) sorted in
non-decreasing order by period (i.e., for any pair of tasks
Ti and Tj, if i < j, then pi ≤ pj). The function W i(t) =

t pj cjj=1
i∑ gives the amount of processor time requested

by tasks Τ1, ..., Τi, in the interval [0, t–1] when all tasks

are initially invoked at time 0. A set of n periodic tasks
will be feasible under a rate monotonic priority assign-
ment if and only if for all i, 1 ≤ i ≤ n, there exists a value
L, 0 < L ≤ pi, such that L ≥ Wi(L). If such an L exists for
task Ti, then the initial invocation of Ti will complete ex-
ecution at the first such time L. If such an L does not
exist then the initial invocation of Ti will miss its dead-
line. As a result of the critical instant theorem, the set of
tasks will be feasible if and only if the initial invocation
of every task can be shown to meet its deadline.

To extend this result to a model including interrupt han-
dlers, we model interrupt handlers as tasks with constant
(highest) priority. The proof of Lehoczky et al. can then
be applied directly to account for the time spent executing
interrupt handlers. Note that by Lemma 3.2, f(l) exactly
characterizes the time spent executing interrupt handlers in
the interval [0, l]. We can show that a task system will be
feasible if and only if for all i, 1 ≤ i ≤ n, there exists a
time L in the interval [0, pi] such that

L ≥ Wi (L) + f (L) (8)

Alternative feasibility conditions can be derived using the
analysis developed by Harbour et al. [2]. In [2], the
authors develop necessary and sufficient feasibility
conditions for a model where each task consists of phases

with an arbitrary priority. A set τ of interrupt handlers and
static priority application tasks with a rate-monotonic
priority assignment is a special case of this model, in
which each task and interrupt handler has a single phase,
the interrupt handlers are given the highest priority, and
the application tasks are assigned rate-monotonic
priorities. We can use the general method in the Harbour
paper to derive a feasibility condition for this special case.
Let F(t) be the amount of work requested by interrupt
handlers in the interval [0, t–1]:

F(t) = t

ai









ei

i=1

m

∑

If there is some time L in the interval [0, pi] such that

L ≥ Wi (L) + F(L) , (9)

then task Τι will complete at the first such L. τ will be
feasible if and only if (9) holds for every task.

5 . Discussion
As the basis for a feasibility test, condition (9) is more
appealing than (8), since (8) requires that we evaluate a
recurrence relation and (9) is a closed form. This leads us
to question whether or not there exists a closed form result
for the problems considered in Section 3. While a desirable
closed form would express feasibility in terms of processor
utilization, note that feasibility is not a function of
processor utilization. It is possible to construct feasible
task systems with utilization equal to 1 (e.g., I = (.5p, p),
T = (.5p, p)), and because application tasks may not
preempt interrupt handlers, it is also possible to construct
infeasible task systems with arbitrarily small processor
utilization (e.g., I = (p, ∞), T = (ε, p)).

Another approach to consider is the replacement of ƒ(L) by
F(L) in (6). Indeed, by the definition of ƒ(L), for all L, L
≥ 0, ƒ(L) ≤ F(L) and hence (6) with ƒ(L) replaced by F(L)
will be a sufficient condition for schedulability. It is not,
however, a necessary condition. Consider a task system
with one interrupt handler I = (2, 3) and one application
task T = (1, 4). This task system satisfies the conditions
in Theorem 3.6, and hence is feasible, but does not satisfy
(6) with ƒ(L) replaced by F(L) (e.g., for L = 4, F(L) =

L a e = 4 3  × 2 = 4, L – F (L) = 0, and L p c =

4 4  ×1 = 1. Hence L – F(L) < L p c .)

The reason one can use F(L) in place of ƒ(L) in (8) but not
in (6) lies in a fundamental difference in the feasibility
tests for static and dynamic priority systems. Both tests
evaluate a similar condition at the endpoints of a well-de-
fined set of intervals, all starting at time 0. Each condition
has the form L ≥ W(L) + i(L), where L is a point in time,
i(L) is the time spent executing interrupt handlers in the
interval [0, L], and W(L) is the demand due to application

8

tasks with invocations that must complete in the interval
[0, L]. To analyze a static priority system, it suffices to
demonstrate that there exists one L for which the condition
is true. If such an L exists, the system is feasible. To ana-
lyze a dynamic priority system, it suffices to demonstrate
that there does not exist an L for which the condition fails.
If no such L exists, the system is feasible. In either case,
for each value of L considered, i(L) must be the exact
amount of time spent executing interrupt handlers.

For static priority task systems, it is the case that the only
values of L for which the condition can hold are values of
L for which ƒ(L) = F(L). Therefore, it suffices to use F(L)
to represent the amount of time spent executing interrupt
handlers in the interval [0, L]. Intuitively, this is because
the condition can hold only at times when all interrupt
handlers have completed execution.

6 . Summary and Conclusions
Formal models of real-time systems frequently consist of
sets of tasks that are invoked at regular intervals and which
must complete execution before well-defined deadlines. In
order to apply the results of analyses of these models, a
practitioner must account for the effects of phenomena
present in the implementation but not present in the for-
mal model. One important factor is the cost of interrupt
handling. We have studied, and solved, the feasibility and
schedulability problems for periodic application tasks that
must compete for the processor with interrupt handlers.
Interrupt handlers are modeled as periodic tasks that always
have priority over application tasks. For the feasibility
problem, the emphasis has been on application tasks that
may be preempted at arbitrary points, although other
paradigms of non-preemptive execution have been
considered. For the schedulability problem, the emphasis
has been on deadline driven methods.

The approach has been to quantify the processor time
spent executing interrupt handlers in an arbitrary interval.
We derived a recurrence relation that bounds this time and
showed that by expressing feasibility and schedulability in
terms of a processor demand function, we can use the re-
currence to extend several existing schedulability results
concerning deadline driven scheduling to include the effects
of interrupt handlers. For preemptible, periodic tasks, fea-
sibility in the presence of interrupt handlers can be decided
in time O(n2 + pmin + m) where n is the number of appli-
cation tasks, pmin is the smallest application task period,
and m is the number of interrupt handlers. Lastly, we
compared the analysis of the static priority schedulability
problem to the dynamic priority schedulability problem.

In the future we will consider several refinements to the
model presented in Section 2. First, the present work as-

sumed that interrupt handlers are strictly periodic. In prac-
tice this is rarely the case. We will next consider models
of interrupt handlers that are invoked sporadically. For
purely preemptive systems, this generalization will likely
have little effect, however, for non-preemptive systems
(where fundamental differences between periodic and
sporadic tasks have already been demonstrated) this will be
more challenging. Second, here we assumed that interrupt
handlers and application tasks are independent in the sense
that their invocations are not related. In most systems
application tasks are invoked in response to interrupt
handlers. When application tasks are sporadic, a coupling
of interrupt handlers and application tasks complicates the
schedulability analysis. Lastly, in practice it is not always
the case that interrupt handlers execute with priority
strictly higher that those of application tasks. For
example, application tasks may disable interrupts (e.g., as
a side effect of a system call) and thus execute when an in-
terrupt handler would otherwise have done so. An implica-
tion of this is that interrupt handlers can no longer be
analyzed separately from application tasks. Moreover, dis-
abling interrupts affects correctness conditions for interrupt
handlers (an issue we have not addressed in this work).

7 . References
1. Garey, M.R., Johnson, D.S., Computing and In-

tractability, A Guide to the Theory of NP-Com-
pleteness, W.H. Freeman & Co., New York, 1979.

2. Harbour, M.G., Klein, M.H., Lehoczky, J., Fixed
Priority Scheduling of Periodic Tasks with Varying
Execution Priority, Proc. 12th IEEE Real-Time
Systems Symp., San Antonio, TX, December 1991,
pp. 116-128.

3. Jeffay, K., Stanat, D.F., Martel, C.U., On Non-
Preemptive Scheduling of Periodic and Sporadic Tasks,
Proc. 12th IEEE Real-Time Systems Symp., San
Antonio, TX, December 1991, pp. 129-139.

4. Jeffay, K., Stone, D.L., Poirier, D., YARTOS: Kernel
support for efficient, predictable real-time systems, in
“Real-Time Programming,” W. Halang and K.
Ramamritham, eds., Pergamon Press, Oxford, UK,
1992, pp. 7-12.

5. Jeffay, K., Scheduling Sporadic Tasks with Shared
Resources in Hard-Real-Time Systems, Proc. 13th

IEEE Real-Time Systems Symp., Phoenix, AZ,
December 1992, pp. 89-99.

6. Katcher, D.I., Arakawa, H., Strosnider, J.K.,
Engineering and Analysis of Fixed Priority Schedulers,
IEEE Trans. on Software Eng., 1993 (to appear).

7. Lehoczky, J., Sha, L., Ding, Y., The Rate Monotonic
Scheduling Algorithm: Exact Characterization and

9

Average Case Behavior, Proc. of the 10th IEEE Real-
Time Systems Symp., Santa Monica, CA, December
1989, pp. 166-171.

8. Liu, C.L., Layland, J.W., Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,
Journal of the ACM, Vol. 20, No. 1, (January 1973),
pp. 46-61.

9. Rajkumar, R., Sha, L, Lehoczky, J.P., On Countering
the Effects of Cycle-Stealing in a Hard Real-Time
Environment, Proc. 8th IEEE Real-Time Systems
Symp., December 1987, San Jose, CA, pp. 2-11.

Appendix
The following are the proofs of Theorems stated but not
proved in the text.

Theorem 3.1: A set of periodic tasks will be feasible if
and only if for all L > 0,

L ≥ L

pi











i=1

n

∑ ci
(10)

Proof: We demonstrate that (1) ⇔ (10).

If ci pii =1
n∑ ≤ 1, then for all L, L > 0,

Lci

pii=1

n

∑ ≤ L

L

pi









ci

i=1

n

∑ ≤ L

and hence (1) ⇒ (10). We show (1) ⇐ (10) by establish-
ing the contrapositive (i.e., ¬(1) ⇒ ¬(10)). To show
¬(10), it suffices to demonstrate the existence of an L > 0
for which (10) does not hold. If ci pii =1

n∑ > 1, then for L
= LCM(p1, p2, ..., pn),

L < Lci

pii=1

n

∑ = L

pi









ci

i=1

n

∑

and hence (1) ⇐ (10).

Theorem 3.7: Let τ be a task system with n application
tasks (c1, p1) … (cn, pn), sorted in non-decreasing order by
period, and m interrupt handlers (e1, a1) … (em, am). If
application tasks are not allowed to preempt one another
then τ will be feasible if

1. ∀L, L ≥ 0, L − f (L) ≥ L

pi









ci

i=1

n

∑
2. ∀i,1 < i ≤ n, ∀L, p1 < L < pi ,

L − f (L) ≥ ci + L − 1
pj












cj

j =1

i

∑

Proof: We show that a non-preemptive deadline driven
scheduling algorithm can schedule a task system if it satis-
fies conditions 1 and 2. This is shown by contradiction.

Assume that τ satisfies conditions 1 and 2 and yet an
application task in τ misses a deadline at some point in
time when τ is scheduled by the deadline driven algorithm.
The proof proceeds by deriving upper bounds on the
processor demand for an interval ending at the time at
which a task misses a deadline.

Let td be the earliest point in time at which a deadline is
missed. τ can be partitioned into two disjoint subsets:

S1 = the set of application tasks that have an invoca-
tion with a deadline at time td.

S2 = the set of application tasks that have an invoca-
tion occurring prior to time td with deadline after
td.

Let b1, b2, ..., bk be the invocation times immediately
prior to td of the tasks in S2. There are two cases to
consider.

Case 1: None of the invocations of tasks in S2 occurring
at times b1, b2, ..., bk are scheduled prior to td.

Let da,b be the processor demand of the application tasks
in the interval [a, b]. Let t0 be the end of the last period
prior to td in which the processor was idle. If the processor
has never been idle let t0 = 0. In the interval [t0, td], the
processor demand is the total processing requirement of the
tasks that are invoked at or after time t0, with deadlines at
or before time td. This gives

dt0 ,td
≤ td − t0

pi









ci

i=1

n

∑ .

(Equality holds if all tasks are invoked at time t0.) Since
there is no idle period in the interval [t0, td] and since a
task misses a deadline at td, it follows that dt0,td

 > (td–t0) –
ƒ(td–t0). Therefore

(td − t0) − f (td − t0) < td − t0

pi









ci

i=1

n

∑ ≤ td − t0

pi

ci
i=1

n

∑ .

However, this contradicts condition 1 and thus establishes
the theorem for Case 1.

Case 2: Some of the invocations of tasks in S2 occurring
at times b1, b2, ..., bk are scheduled prior to td.

Let Ti be the last application task in S2 scheduled prior to
time td. Let ti < td be the point in time at which the
invocation of Ti occurring immediately prior to td

commences execution. Note that if the processor is ever
idle in the interval [ti, td], then the analysis of Case 1 can
be applied directly to the interval [t0, td], where ti < t0 < td

10

is the end of the last idle period prior to time td, to reach a
contradiction of condition 1. Therefore, assume the
processor is fully utilized during the interval [ti, td].

Let Tk be an application task that misses a deadline at time
td. Because of our choice of task Ti and our use of deadline
driven scheduling, it follows that ti < td – pk. That is, the
invocation of the task Tk that does not complete execution
by time td occurs within the interval [ti, td]. We now
show that if the invocation in question of task Ti is
scheduled prior to time td, then there must have existed
enough processor time in [t i, td] to schedule all
invocations of tasks occurring after time ti with deadlines
at or before time td. To begin, we derive an upper bound
on dti,td, the processor demand for the interval [ti, td].

The following facts hold for Case 2:

i) Other than Ti, no application task Tj, with period
pj, such that pj ≥ td – ti, executes in the interval [ti,
td].

Since the invocation of task Ti scheduled at time ti has a
deadline after time td and is the last such invocation
scheduled prior to td, every other application task executed
in [ti, td] must have a deadline at or before td because of
the deadline driven discipline.

ii) Other than Ti, no application task that is scheduled
in [ti, td] could have been invoked at time ti.

Again, as a consequence of the definition of task Ti, other
than Ti, every application task scheduled in [ti, td] has a
deadline at or before td. Therefore, if a task Ti', that is
scheduled in [ti, td] had been invoked at ti, the deadline
driven algorithm would have scheduled task Ti' instead of
task Ti at time ti.

Since pi > td – ti, fact (i) above indicates that only tasks
T1 ... Ti need be considered in computing dti,td

. Since the
invocation of task Ti that is scheduled at time ti has a dead

line after time td, all task invocations occurring prior to
time ti with deadlines at or before td must have been satis-
fied by ti and hence do not contribute to dti,td

. Similarly,
since Ti has the last invocation with deadline after td that
executes prior to td, all invocations of tasks T1 - Ti–1

occurring prior to time td with deadlines after td, need not
be considered. Lastly, since none of the invocations of
tasks T1 - Ti–1 that are scheduled in the interval [ti, td]
occurred at time ti, the demand due to tasks T1 - Ti–1 in the
interval [ti, td] is the same as in the interval [ti + 1, td].
These observations, plus the fact the invocation of task Ti

scheduled at time ti must be completed before time td,
indicate that the processor demand in [ti, td] is bounded by

dti ,td
≤ ci + td − (ti − 1)

pj












cj

j =1

i−1

∑ (11)

Let L = td – ti. Substituting L into the (11) yields

dti ,td
≤ ci + L − 1

pj












cj

j =1

i−1

∑ (12)

Since there is no idle time in [ti, td], and since a task
missed a deadline at td, it follows that dti,td

 > (td – ti) –
ƒ(td – ti) or simply dti,td

 > L – ƒ(L). Combining this with

(12) yields

L − f (L) < dti ,td
≤ ci + L − 1

pj












cj

j =1

i−1

∑ (13)

Since pi > td – ti, we have pi > L. Since ti < td – pk (recall
that k is the index of a task that missed a deadline at time
td) we have td – ti > pk ≥ p1, and hence L > p1. Therefore
(13) contradicts condition 2 and establishes the theorem for
Case 2.

We have shown that in either case, if an application task
misses a deadline when scheduled by the non-preemptive
deadline driven algorithm, then either condition 1 or
condition 2 must have been violated. This proves the
theorem.

