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Abstract

Consider the problem of periodic task scheduling, in which we seek to minimize the
total number of processors required to execute a set of tasks such that task deadlines
are guaranteed by the Rate-Monotonic (or RM) algorithm on each processor. This
problem was first investigated by Dhall and Liu, and the previous lowest bound for
the problem was 2.0. In this paper, an improved solution is given by designing a new
algorithm for it. The algorithm, called RM-First-Fit-Decreasing- Utilization (or RM-
FFDU), is shown to have a worst-case tight bound of 5/3 = 1.66. .., the lowest upper
bound ever derived for the scheduling problem. Simulation studies show that on the

average, the new algorithm performs consistently better than those in the literature.



1 Introduction

In this paper, we study the the problem of scheduling a set of periodic tasks on a
multiprocessor system such that task deadlines are guaranteed on individual processors
by the rate-monotonic scheduling algorithm. The problem is stated as follows: Given
a set of n periodic tasks ¥ = {r, = (C;,T})|i = 1,2,...,n}, where each task ; is
characterized by its computation time C; and ils period T;, what is the minimum number
of processors required to execute the tasks such that their deadlines are met by the rate-
monotonic algorithm?

The scheduling problem, referred to as the Rate-Monotonic Multiprocessor Schedul-
ing (or RMMS), is a natural generalization of the uniprocessor periodic task scheduling
problem studied in [18]. Since this problem has been proven to NP-complete [16], we
shall focus on fast heuristic algorithms for solving it, seeking to prove close bounds on
the extent to which they can deviate from optimality. Due to the complexity involved,
the analysis of simple approximation methods for the problem represents a constant
challenge.

It is a common practice to analyze the performance ratio of the algorithm under
study when working with approximation algorithms for combinatorial optimization
problems [10]. Let A(/) denote the performance of a given algorithm for an instance /
of a particular combinatorial optimization problem and let O PT'(I) denote the perfor-
mance of an optimal algorithm for the same instance. The ratio of A(I) to OPT(I),
considered over all instances I, provides us with an indicator of the quality of the
given algorithm. To be specific for the scheduling heuristics for RMMS, let N4(X)
(or N4) and Ng(X) (or Ng) denote the number of processors required by the heuristic
A and the optimal number of processors required to schedule a given set % of tasks,
respectively. An optimal algorithm for the scheduling problem is the one that uses the
minimum number of processors to schedule any task set. Then, the worst-case bound
for heuristic A is determined by

R4 = inf{r > 1: Mf%g < r for all lists L},

It is apparent that 4 always assumes a value no less than one, and the smaller the



R 4’s value is, the better the heuristic algorithm A performs in terms of the worst-case
scenario. In other words, the smaller the ®4’s value is, the closer the heuristic solution
is to the optimal one. Hence, we seek to minimize R4 as much as possible in designing
a heuristic algorithm.

Despite the fact that the rate-monotonic algorithm has become very populous
among practitioners in solving many practical problems, and among researchers in
generalizing the original results (see, e.g., [21]), previous results on the RMMS prob-
lem have been limited and the lack of progress in the area has been notable. The best
bound was 2.00, which was derived about a decade ago, when the use of multiproces-
sor was not very common. Now the employment of multiprocessors for many real-time
applications is a necessity.

These factors have led some researchers to believe that using RM scheduling algo-
rithm in a multiprocessor environment is not very efficient.

In this paper, we address the problem by designing a new heuristic called RM-First-
Fit-Decreasing- Utilization (or RM-FFDU) for it. While the design of such heuristic
algorithms can be straightforward, the analysis of their performance presents a major
intellectual challenge. By employing such techniques as weighting functions, we prove
that RM-FFDU has a worst-case tight bound of 5/3. This bound reflects a significant
improvement over the previous ones, and it shows that, contrary to the pessimistic
belief held by some researchers about the efficiency of heuristics for the RMMS problem,
it is possible to develop very provably good heuristics for it.

The superiority of the new algorithm can been readily seen by comparison with the
existing heuristic algorithms from the literature in Table 1. The measure O(nlogn)
denotes the computation time complexity for scheduling a set of n tasks. Dhall and
Liu proposed two heuristic algorithms for the scheduling problem: Rate-Monotonic-
Nezt-Fit (or RMNF) and Rate-Monotonic-First-Fit (or RMFF') [8]. It was shown that
2.4 < Rpyunr < 2.67,and 2 < Rpyrr < 4><21/3/(1—|—21/3) ~ 2.23. Unfortunately, the
upper bound derived for RMFF was incorrect due to some errors in their proof [19].

Davari and Dhall later considered two other algorithms called First-Fil-Decreasing-

Utilization-Factor (or FFDUF) and NEXT-FIT-M (or NF-M) [5, 6]. Their worst-



Existing Algorithm New Algorithm

Scheme A | RMNF RMFF NF-M | FFDUF RM-FFDU

Ra 2.67 2.237 2.28 2.0 1.66...
Complexity | O(n) | O(nlogn) | O(n) | O(nlogn) O(nlogn)

Table 1: Comparison of Heuristic Scheduling Algorithms

case performance bounds are Rpppyr < 2 and Ryp_y < Sy, respectively, where
Sy = 234 for M = 4, and Sy — 2.2837 for M — oo. Most recently, Burchard,
Liebeherr, Oh, and Son proposed an algorithm called RMGT, that has a worst-case
bound of 1.75 [3].

Our approach to tackling the problem is to use a recently derived schedulability
condition that exhibits good performance while remaining simple enough so that the
worst-case performance analysis is still possible. We apply the familiar bin-packing
heuristic — First-Fit-Decreasing [11] to allocate tasks to processors. In the analysis
of the worst-case performance, we not only obtain the upper bound of the algorithm,
but also provide examples that show that the bound is tight. In the light of providing
the worst-case performance, our analysis is intricate, because our algorithms are more
complicated than their bin-packing counterparts, in the sense that the size of a bin is
unitary, while the “size” or utilization of a processor is a variable. The value of the
variable is determined by a function that is called the schedulability condition.

The solution to such a scheduling problem has practical implications. On the one
hand, the real-time application domain is becoming increasingly large. As requirements
of real-time support for industrial applications become more sophisticated, the employ-
ment of multiprocessors to meet computational power requirement seems inevitable.
On the other hand, the state-of-the-art of hardware technology makes multiprocessor
support a reality. The scheduling of periodic tasks on a multiprocessor thus becomes
an urgent problem that needs to be solved. Multiprocessor heuristic algorithms based
on RM scheduling have many advantages that are inherent in RM scheduling. For

example, RM scheduling ensures that as long as the CPU utilization of all tasks lies



below a certain bound, all tasks will meet their deadlines without the programmer
knowing exactly when any given instance of a task is running. Even if a transient
overload occurs, a fixed subset of critical tasks will still meet their deadlines as long
as their total CPU utilization lies within certain bound. The rate-monotonic schedul-
ing discipline has been widely used in a number of applications. For example, it has
been specified for use with Space Station on-board software as the means for schedul-
ing multiple independent task execution; it will be built into the on-board operating
system [9]. Many Ada compilers also support this scheduling discipline [21]. More
recently, this scheduling discipline is used to schedule video, audio, and data streams
in a multimedia system.

The rest of the paper is organized as follows: In Section 2, we present the task
model upon which the scheduling problem is defined. In Section 3, the new heuristic
algorithm RM-FFDU is designed. The major portion of this paper is the proof of the
worst-case performance bound of RM-FFDU, which appears in Section 4. In Section
5, we present our simulation methodology and the results of the experiments. We

conclude in Section 6 with a look at future research directions.

2 A Task Model for Real-Time Systems

We assume that processors are homogeneous or identical, in the sense that the run-time
of a task remains the same across all processors. For a set of n tasks, we assume:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before
the next request of the same task occurs.

(3) The tasks are independent in the sense that the requests of a task do not depend
on the initiation or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is
known for the task. Run-time here refers to the time a processor takes to execute the
request without interruption.

For a task 7 with a period of T', the request of task 7 comprises the readiness of



task 7 for execution and its CPU request. If the initial release time of task 7 is R,
then the task will arrive in the system at time R + k7T and we say that there is a
request from task 7 every 7’ time units for execution, where k¥ € Z% and Z1 is the
set of natural numbers. According to assumption (2), a request from task 7 at time
instance (R + kT') must be completed before the next request of the same task arrives,
i.e., before time instance [R + (k + 1)7'], where k € Zt. A task meets its deadline if
all its requests meet their deadlines.

We say that a set of tasks is feasible if it can be scheduled by some algorithms such
that all task deadlines are met. If a set of periodic tasks can be feasibly scheduled
on a single processor using fixed-priority scheduling, then the Rate-Monotonic [18]
or Intelligent Fized Priority algorithm [20] is optimal, in the sense that if a set of
periodic tasks is feasible with a fixed-priority algorithm, then it is feasible with the
rate-monotonic algorithm. In fixed-priority scheduling, the priority of a task remains
fixed once it is assigned. It was also shown that for the fixed-priority scheduling, the
task release times do not affect the schedulability of the tasks and hence a task is
completely defined by two numbers: its computation time and its request period. The
rate-monotonic algorithm assigns priorities to tasks according to their periods, where
the priority of a task is in inverse relationship to its period. In other words, a task
with a shorter period is assigned a higher priority. The execution of a low-priority
task will be preempted if a high-priority task arrives. Since each task has a potentially
infinite number of requests, it would be rather time-consuming to manually check that
each request finishes before its corresponding deadline. Fortunately, Liu, Layland, and
others have provided us with simple schedulability conditions that can be used for that
purpose [18, 20, 7, 19]. Because the rate-monotonic algorithm is the best fixed-priority
algorithm in the same sense as its optimality, and its ease of implementation due to the
fixed-priority manner, we will use it in guaranteeing task deadlines on each processor.

Although the task model for the rate-monotonic scheduling discipline is only a sim-
plified one with regard to most practical real-time applications, researchers through
the years have successfully developed a host of scheduling techniques out of this dis-

cipline to solve many practical real-time problems, such as task synchronization, bus



scheduling, joint scheduling of periodic and aperiodic tasks, transient overload, and
parallel processing (see, e.g., [22, 21]). The scheduling discipline has proved to be far
more powerful than it was expected.

While rate-monotonic scheduling is optimal for a uniprocessor system, it is, un-
fortunately, not so for a multiprocessor system. In fact, the problem of optimally
scheduling a set of periodic tasks on a multiprocessor system using either fixed-priority
or dynamic priority assignment is known to be NP-complete [16]. Hence, any practical
solution to the RMMS problem presents a trade-off between computational complexity
and performance. It has been shown that heuristic algorithms can deliver near-optimal
solutions to NP-complete problems with limited computational overhead [10]. There-
fore, we seek practical, eflicient approximation algorithms for the RMMS problem in
hopes of guaranteeing near-optimal results.

For the convenience of presentation, we adopt the following notations: processors
are numbered in the order consistent with that of allocating them. We shall denote a
task 7; by the ordered pair (C;,T;), where C; and T} are the computation time and the
period of the requests, respectively. The ratio C;/T;, which is denoted as u;, is called
the utilization (or load) of the task 7;. 7,; denotes the [th task that is assigned on the
xth processor; u, ; denotes the utilization of task 7, ;. ; is used to denote the ¢th task
where there is no confusion. wu; denotes the utilization of the ¢th task on a processor
or in a task set. U; denotes the total CPU utilization (or load) of the jth processor.
7 = (z,y) characterizes a task 7, where & and y are the computation time and the

period of task 7, respectively.

3 The Design of RM-FFDU

The general solution to such a problem as RMMS involves two algorithms: one to
assign tasks to individual processors, and the other to schedule tasks assigned on each
individual processor. Two major schemes exist for assigning tasks to processors: par-
titioning and non-partitioning schemes. In a non-partitioning scheme, each occurrence

of a task may be executed on a different processor, while a partitioning scheme requires



that all occurrences of a task are executed on the same processor. The partitioning
scheme is often preferred, because relatively low overhead is involved in the scheduling
process. A scheduling algorithm can also be classified as a dynamic (on-line) or static
(off-line) algorithm according to whether the algorithm requires a priori knowledge
about the whole task set or not. If an algorithm requires that the entire task set be
known, then the algorithm is referred to as being static, otherwise, it is said to be
dynamic.

To solve the RMMS problem, we need to address these two issues: the scheduling on
each processor and the assignment of tasks to processors. In general, the performance
of a heuristic algorithm to solve such problem depends on the strategies taken to solve
each of the two issues. One simple solution to the problem will be to use one processor
for the execution of one task. Although this solution guarantees that each request of a
task meets its deadline, it is very ineflicient in processor usage. Our goal is to use as
few processors as possible to accommodate a given set of tasks, as stated in the RMMS
problem. In the following, we will first present the schedulability condition that will
be used in RM-FFDU and then the strategy to assign tasks to processors.

For a set of n tasks ¥ = {r, = (C;,T;)|t = 1,2,...,n} to be scheduled on a
single processor, Liu and Layland provides us with a schedulability condition that if
ST, Ci/T; < n(21/" —1), then all the n tasks can be scheduled to meet their deadlines
by the rate-monotonic algorithm. We would like to use this condition in determining
the feasibility of a set of tasks, but the performance of the heuristics using this condition
in solving the RMMS problem is not as good, as shown by the previous work [8, 5, 6].
This is because the condition is a worst-case one; there are some task sets that are
feasible with the rate-monotonic algorithm, but cannot be determined to be feasible
by the condition.

A mnecessary and sufficient condition has been found for the rate-monotonic algo-
rithm [13, 15]. It is clear that the upper bound of the performance of a heuristic
algorithm using the necessary and sufficient condition is no higher than that of the
algorithm using any suflicient condition. However, the time complexity in using the

necessary and sufficient condition for the rate-monotonic algorithm is data-dependent.



In the worst case, it may require more than exponential time complexity with respect
to the number of tasks. Due to the stringent requirements of hard real-time systems,
it is not practical to employ the necessary and sufficient condition in general for these
systems. Hence, heuristic algorithms using simple sufficient conditions are often sought
in the solution of RMMS.

In the following, we will be using a new sufficient schedulability condition for the

scheduling of tasks, which is given in Theorem 1.

Theorem 1 Let ¥ = {r; = (C;,1})|i = 1,2,...,n — 1} be a set of (n — 1) tasks with
their utilizations being {uy, ug, ..., u,—1}, and it can be feasibly scheduled by the rate-
monotonic algorithm. A new task 1, = (C,,,T,) can be feasibly scheduled together with
the (n — 1) tasks on a single processor by the rate-monotonic algorithm, if

n—1

Cr/Tn < Q[H(l + ui)]_l -1 (1)

=1

Note that this condition subsumes the Liu and Layland’s condition, and the time
complexity to determine the feasibility of a set of n tasks is clearly O(n). This condition
is superior to Liu and Layland’s condition in performance, since it always yields a
processor utilization no lower than that by the Liu and Layland’s condition [18]. It
is also superior to the necessary and sufficient condition in time complexity, since the
former runs only in time linear to the number of tasks, while the time complexity of
the latter is data-dependent and is at least linear to the number of tasks. The higher
processor utilization is achieved by this new condition, since it uses more information
from the task set. The new condition, which is referred to as the Utilization-Oriented
(or UO) condition, takes into account the relative values of task utilizations u;, while
Liu and Layland’s condition does not consider this information. Under the worst-case
situation of task utilizations u;, the new condition degrades to the worst-case condition,
ie., S, Ci/T; < n(2'/" — 1) . The proof of the theorem can be found in [19)].

To assign tasks to processors, variants of well-known bin-packing heuristics can be

applied, where processors and tasks are regarded as bins and items, respectively. The



bin-packing problem is concerned with packing variable-sized items into fixed-sized bins
using the least number of bins (see, e.g., [4]). Among the different strategies, the First-
Fit strategy has been frequently adapted to solve the various bin-packing problems and
is one of the best studied ones. The First-Fit strategy is a simple, on-line one, and
yet it can deliver near-optimal performance. For the classical bin-packing problem, the
First-Fit heuristic has a tight bound of 1.7 [12], while no on-line algorithm can have
a worst-case bound less than 1.53 [2, 17]. By ordering the items according to their
decreasing sizes and applying the First-Fit strategy to pack the new list of items, we
have the famous First-Fit-Decreasing (or FFD) heuristic, which is clearly off-line and
has a tight bound of 11/9 [11]. (Note that there are algorithms guaranteed to produce
results as close to the optimal result as desired [23, 14], but these algorithms are not
practical because the time required to ensure results at most (14 €) times the optimal
result grows extremely fast as € approaches zero.) It has been known that if the input
data are preprocessed and the same heuristic strategy is employed, the performance
can be improved. Davari and Dhall’s FEFDUF is yet an example of applying the First-
Fit heuristic on a set of tasks sorted in the decreasing order of their utilizations. For
these reasons, we will be using the First-Fit strategy to assign tasks to processors in
the order of decreasing task utilizations. We describe the new algorithm using pseudo
code as follows:

RM-FFDU (Input: task set ¥; Output: m)

(1) Sort the task set in the order of non-increasing utilization.

(2)i:=1; m:=1;

(3) j :== 1; While (u; > 2/ Hl L(uji+ 1) Do ji=4+1;

(4) kj:==k; +1; U; :=U; + 1; // Assign task 7; to P;

(5) If (j > m) Then m :=j ;

(6)i:=1t4+1;
(7) If (¢ > n) Then Exit Else Goto 3;

Note that the difference between RM-FFDU and the bin-packing heuristic FFD is
the usage of a different condition on a processor (or bin), the same is true between

RM-FFDU and FFDUF. When the algorithm returns, the value of m is the number of
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processors required by RM-FFDU to schedule the task set . k; is the number of tasks
assigned on processor P;. Clearly, RM-FFDU runs at a time complexity of O(nlogn).
While the RM-FFDU algorithm resembles the FFD bin-packing heuristic in assignment
strategy, none of the performance results for FFD can be directly applied here, since
the the utilization of a processor is constrained to be a variable in RM-FFDU, while

the size of a bin remains fixed or unitary.

4 The Analysis of RM-FFDU

Although it is not difficult to design scheduling algorithms for RMMS by adopting
existing bin-packing heuristics, it is rather difficult to analyze their worst-case perfor-
mance; to obtain the tight bounds for these heuristics is even more so. Because of
the importance of the final result, we have taken the necessary efforts to prove such
result, and clarity and rigor are of our prime concern, though the number of steps
involved may seem daunting. Worst-case analysis is especially essential for real-time
algorithms, since missing a deadline in a hard real-time system can result in catas-
trophic consequences. Once its performance is known, the algorithm can be used by
practitioners in applications that demand guaranteed performance, without worrying
about its worst-case behavior.

We state the upper bound for RM-FFDU in the following theorem.
Theorem 2 Rpy—rrpu < 5/3

Our proof proceeds in the following fashions: Lemma 1 states a unique property
possessed by the RM-FFDU schedules. Lemma 2 puts a rough upper bound on the
performance of RM-FFDU. Though Lemma 2 is not essential in proving the final result,
it is illustrative of the nature of the RM-FFDU schedules. The following six lemmas
show that Theorem 2 holds for six different types of RM-FFDU schedules, thus leading
to the final proof of the theorem after the lemmas. The examples that show the bound
is tight appear at the end of this section.

In the RM-FFDU schedule, let N; be the number of processors to each of which

¢ tasks are assigned. Then, the total number of processors in the final RM-FFDU

11



schedule is given by N = ¥ | N;, where s is the maximum number of tasks assigned
to a processor, and the total number of tasks in the task set is given by n = X% ,iNV,.
In the optimal schedule, let M; be the number of processors to each of which ¢ tasks are
assigned. Then, the minimum number of processors required is given by Ng = X% | M;,
and similarly n = ¥/ ,iM;. We are trying to find the maximum of ®4 = max(N/Ny)
for any value of z. Let us define y; to be the utilization of the first task assigned to the
tth processor P;. Then it follows from the way RM-FFDU assigns tasks to processors
that y; > y; if # > j. Where there is no confusion, we will simply use y to denote the
utilization of the first task assigned to a processor.

Let @ be the first item (or its utilization) assigned to the last processor in the final
RM-FFDU schedule. If z < In2-3/5, then for every busy processor except possibly the
last processor, it is allocated a utilization at a level that is at least In 2 —a > 3/5. This
is because f(n) = n(2'/" —1) = In2 for n — oo, and if 3.7, C;/T; < In2, then the n
tasks are always feasible with the rate-monotonic algorithm. Then Rpay—rrpu < 5/3.
If z > 1/2, then N = Ny, where Ny is the minimum number of processors required to
run a task set X and N is the number of processors required by RM-FFDU to run the

same task set Y. For convenience, we use 4 to denote Rry/_ prpy whenever possible.

Lemma 1 If2/(t)_1 < y < 2Y/°_1 for ¢ > 1 in the completed RM-FFDU schedule,
then among all processors on each of which at least ¢ tasks are assigned, there are at
most one processor to which not all the first ¢ tasks are assigned tasks each with a

utilization greater than 21/(<t1) _ 1.

Proof. This lemma is proven by contradiction.

Suppose that there are two such processors P; and P; with ¢ < j such that each of
them is assigned at least ¢ tasks. Furthermore, let ; ;, and u; j be the task assigned to
processor P; and its utilization. Then for processor F;, there exists at least one task
7im With m < ¢ having a utilization u;,, < 21/(e+1) _ 1

For processor P;, since 21/(t1) — 1 <« y <2/ _1for ¢ > 1 (y = ui by definition),
all the tasks yet to be assigned after task 7;; have utilizations less than or equal to

u;1. Furthermore, at least ¢ tasks can be assigned on processor P;. This is because

12



cl| z< R4 c z < R4

2104142 | 24 5 | 0.1487 | 1.68

3102599 192 6 | 0.1245 | 1.63

4101892 | 1.76 || oo | — 0 |1/In2

Table 2: Performance of RM-FFDU for some values of z

the first ¢ tasks are feasible with the rate-monotonic algorithm, since u;; < 21/ _ 1,
and the total utilization of the first ¢ tasks is less than or equal to ¢(2'/¢ — 1) (recall
the Liu and Layand’s condition, Y7, u; < n(2Y/" — 1), for a feasible task set).

For processor P; with 7 < j, 7 5, with m < ¢ must be assigned to processor P; after
the task 7;; is assigned to processor P;. This could only happen when the first task
assigned to processor P; cannot be assigned to processor P;, since u; 1 > 21/c_q > Ui -

Since U; +ujq > ¢X (21/C —1), where U; is the total utilization assigned to processor
P; when processor P; was first assigned the task 7;;, then processor P; must have
been assigned ¢ or more tasks each with a utilization equal to or greater than u;; >
21/(e+1) _ 1 This is a contradiction to the assumption that there exists at least one
task 7;,, having a utilization u; ,, < 21/(c+1) _ 1 with m < ¢ on processor F;.

Therefore, the lemma must be true. a

Before we move on, let us obtain the upper bound (not tight) for some of the values
of . Recall that z is the first item (or its utilization) assigned to the last processor
in the final RM-FFDU schedule. We will be paying close attention to all the busy
processors except the last one in the final RM-FFDU schedule for their utilizations
and the tasks assigned to them.

Since z is the utilization of the first task on the last processor, we can assume,
without loss of generality, that the first task on the last processor is the last task in the
task set after sorting. Note that the tasks following the first task on the last processor
do not affect the number of processors used by RM-FFDU if they are included in
the task set. Therefore, we can always assume for the RM-FFDU schedules that the

utilization of any other task in the task set is equal to or larger than z. We will use
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this assumption throughout the rest of the proof.
Lemma 2 For some values of x, R4 is given as in Table 2.

Proof.

Since R4 = 1 for z > 1/2 from above, we will consider 0 < z < (21/2 — 1) for the
moment. We will divide the region (0,2'/? — 1) into an infinite number of sub-regions
according to (21/(+1) — 1) < & < (21/¢ = 1) and derive R4 in term of z. For any value
of z such that (2V/(c+1) — 1) < & < (2/¢ = 1) for ¢ = 2,3,..., we need to find the
minimum processor utilization among the busy processors. Let us suppose that n; > 1
tasks are assigned to the ith processor P; with a total utilization of U;,

Case 1: If n; > ¢, i.e., each of the n; tasks assigned on the ith processor has a
utilization no less than x, then U; > n;z > 6(21/(c+1) -1).

Case 2: If n; < ¢, then ¢ > 2 and = > ni(21/”i -1H)-U;> 6(21/C — 1) — U;. Since
(21/¢ = 1) > z, we have U; > (c — 1)(2'/¢ - 1).

For both cases, every busy processor except the last one has a utilization no smaller
than (¢ — 1)(2'/¢ = 1) for ¢ > 2. Suppose that N processors are used in the final RM-
FFDU schedule, then the total utilization of the N processors is at least N (c—1)(21/¢—
1). Since the utilization of a processor cannot exceed one in the optimal schedule, the
optimal number Ny of processors required for the same task set must be at least
N(c—1)(2/¢=1),i.e, Ng > N(c—1)(21/¢=1). Hence N/Ng < [(e—1) x (2/" —1)]7,
e, R4 <[(c—1)x (27 = 1)]7! for ¢ > 2. The values of R4 are given in Table 2 for
some values of c. a

For those processors to each of which n tasks are assigned, their minimum utilization
can be determined by the following method: let wy,ug, ..., u, be the utilizations of the
n tasks. Since z > 2/T];(1 + w;) — 1 according to the UO condition, the minimum
of U = X% u; is achieved at U = n x {[2/(14 2)]'/* = 1} when uy = uy = ... = u, =
[2/(1+ o)/ — 1.

In the subsequent lemmas, we will prove that R4 < 5/3 with regard to z. We
divide the range of values & can assume into several intervals and prove that ®4 < 5/3

for each interval:
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v €(1/3,1/2),z € (1/4,1/3), = € (1/5,1/4], z € (2"/* = 1,1/5], 2 € (1/6,2'/* — 1],
z € (5215 = 1) = 3/5,1/6], and = € (6(2"/¢ — 1) — 3/5,5(2'/5 — 1) — 3/5].

The final proof of Theorem 2 appears after the lemmas. Recall the meanings of N;
and M; and that x is the maximum number of tasks assigned to a processor among all

processors in the RM-FFDU schedule.
Lemma 3 Ifz € (1/3,1/2], then 4 < 3/2.

Proof. Since z > 1/3, a processor cannot be assigned more than 2 tasks, i.e., Kk < 2.
Each processor is assigned one or two tasks in either the RM-FFDU schedule or the
optimal schedule.

Let n be the total number of tasks in a task set. The optimal number of processors
required is given by Ng = X2, M;, and the number of tasks is determined by n =
Y2_,iM;. In the RM-FFDU schedule, N = X% N; and n = X2 |iN,.

Then the ratio N/Ng is maximized when M; = 0 and My = n/2. Hence, the

maximum value R4 is achieved at 3/2,i.e., ®4 = 3/2. O
Lemma 4 Ifz € (1/4,1/3], then R4 < 3/2.

Proof. Since > 1/4, a processor can be assigned no more than 3 tasks, i.e., k < 3.
In the RM-FFDU schedule, let us consider all the processors to each of which one
task is assigned. We want to find out the minimum utilization of such task. Let
u be the utilization of such task. Since z < 1/3, according to the UO condition,
w>(1-1/3)/(141/3) = 1/2. In other words, among all the processors to each of
which one task is assigned, the utilization of each of these tasks must be greater than
1/2. Therefore, if there are Ny such processors in the RM-FFDU schedule, then at
least Ny processors are needed in the optimal schedule, because any of the two tasks
cannot be assigned to a processor.

Recall that ¥ = Ny + Ny + N3 and Ng = Ny + Ny + Ns.

Case 1: N; = 0. Since each processor in the RM-FFDU schedule is assigned at
least two tasks and each processor in the optimal schedule cannot be assigned more
than four tasks (since uw; > 1/4), then R4 is maximized when N3 = 0 and M; = 0.

Thus, £4 < 3/2.
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Case 2: Ny = 0. This implies that each processor in the RM-FFDU schedule is
assigned either one or three tasks. The utilization of each of the Ny tasks, each of
which is assigned to one of the Ny processors, is greater than 1/2 as mentioned above.
For these N tasks, any pair of them cannot be assigned to a processor in the optimal
schedule. Furthermore, for those N processors in the optimal schedule, each can be
assigned at most two tasks. This is because each task has a utilization greater than
1/4 and one task has a utilization greater than 1/2. Therefore the maximum of 4 is
achieved when Ny = 3Nj3 such that 4 < 4/3.

Case 3: N3 = 0. For similar reasons, we can prove that 4 < 3/2.

Case 4: N; # 0 for ¢ = 1,2,3. We claim that R4 < 3/2. Since there are N,
tasks, each with a utilization greater than 1/2, these tasks must use Ny processors in
the optimal schedule. Suppose that each of these Ny processor is assigned two tasks.
Then the minimum number of processors required in the optimal schedule is at least
N1+(2N3+3N5— Ny1)/3. Therefore, R4 < (N1+Nz+N3)/[N1+(2N24+3N5—N1)/3] <
3/2. O

Lemma 5 I[fz € (1/5,1/4], then 4 < 3/2.

Proof. Since z > 1/5, a processor is assigned at most four tasks, i.e., Kk < 4.

For similar reasons used in the proof of Lemma 4, we need to find out the minimum
utilization of a task assigned to a particular processor and the minimum utilization of
the processor. We divide the N processors in the RM-FFDU schedule into s groups,
each of which has N; processors, where 1 <1 < k.

For those processors to each of which one task is assigned, the utilization of the
task is greater than (1 —1/4)/(1+ 1/4) = 3/5. Then for any of the Ny processor, its
minimum utilization U is given by U > 3/5.

For those processors to each of which two tasks (with utilizations u; and uy) are
assigned, the minimum of (u; + uy) is achieved at 2[\/2/(1+ ) — 1] when u; = uy =
V2/(1+ z)—1. Then, for z = 1/4, u; = uy = /8/5—1 = 0.2649, and U = 0.529. Note
that for z > 1/5, U > 0.529. Two more tasks could be assigned on these processors in

the optimal schedule, since 2z + U < 1 for some z > 1/5.
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W(u) = u €

0 (0,1/5]

1/3 (1/5,/8/5 — 1]
1/2 (v/8/5 — 1,v/2 — 1]
2/3 (V2 -1,3/5]

1 (3/5,1]

Table 3: Weighting Function for x € (1/5,1/4]

For those processors to each of which three or four tasks are assigned, their minimum
total utilization is determined by U > 3z > 0.6, when u; > 1/5.

In the following, we define a function that maps the utilization of a task to a value
that is in the range of 0 and 1, as given in Table 3. We call that value the weight of the
task, and the sum of the weights of the tasks assigned to a processor the weight of the
processor. The weighting function is designed in such a way that for every processor in
the RM-FFDU schedule, its weight is equal to or greater than one. At the meantime,
the weight of a processor in the optimal schedule is no greater than 5/3. We first claim
that for any processor P in the completed RM-FFDU schedule, the total weight of
processor P is equal to or greater than one, i.e., W(P) = X%, > 1, where k is the
number of tasks assigned to processor P.

Recall that in the completed RM-FFDU schedule, any task utilization y must be
equal to or greater than . i.e., y > x. Let us consider a processor to which a task with
a utilization of y is first assigned.

Case 1: 1/5 < y < \/8/5 — 1. Then the processor must be assigned at least three
tasks each with a utilization greater than 1/5. Therefore, W(P) >3 x 1/3 = 1.

Case 2: \/8/5 -1 < y <+/2— 1. Then the processor must be assigned at least two
tasks. Furthermore, except for possibly one processor by Lemma 1, each of the first
two tasks must have a utilization greater thany/8/5 — 1. Therefore, W(P) > 1.

Case 3: /2 —1 < y < 3/5. Then the processor must be assigned at least two
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tasks. Since the second task must be a task with a utilization greater than 1/5, we
have W(P) > 1.

Case 4: 3/5 <y < 1. Then W(P) > 1 by definition.

Next we prove that for any processor P in the optimal schedule, W (P) < 3/2.

Let us assume that a processor in the optimal schedule is assigned m tasks with
their utilizations as w1 > uy > ... > Uy,.

Case I: u3 < /8/5 — 1. Then at most four tasks each with a utilization greater
than 1/5 can be assigned on it. Therefore, W (P) > 4/3.

Case II: \/%— 1<u <v2-1and \/%— 1 < uy. Then at most one more task
can be assigned to the processor. If uz < \/8/5—1, then W(P) < 1/24+1/2+1/3 = 4/3.
If ug > /8/5 — 1, then W(P) < 1/2+1/2+1/2=3/2.

Case III: \/8/5 -1 < u; < v/2—1and 1/8/5 — 1 > uy. Then at most two more
tasks are assigned to the processor. Therefore, W(P) <1/24+1/3+1/3+1/3 =3/2.

Case IV:v2—-1< u; < 3/5 and ug > v/2—1. Then no more task with a utilization
greater than 1/5 can be assigned to the processor. Therefore, W(P) < 2/342/3 = 4/3.

Case V:vV2 -1 < uy < 3/5 and \/%— 1 < uz < v/2—1. Then no more
task with a utilization greater than 1/5 can be assigned to the processor. Therefore,
W(P)<2/34+1/2=17/6.

Case VI: /2 — 1 < u; < 3/5 and u; < /8/5 — 1. Then at most one more
task with a utilization greater than 1/5 can be assigned to the processor. Therefore,
W(P)<2/34+1/3+1/3=4/3.

Case VII: 3/5 < w3 < 1. Then at most one more task with a utilization greater
than 1/5 can be assigned to the same processor. Furthermore, uy < /2 — 1. Then
W(P)<1+4+1/2=3/2.

Let N and Ng be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given set 3 of n tasks, respectively. Then
the total weight of the task set is given by X, W(w;). Since, except for one processor,
W(P) > 1 for every processor in the RM-FFDU schedule, then X7, W(u;) > N — 1.
Since W(P) < 3/2 for every processor in the optimal schedule, Ny x 3/2 > X7 W (u;).
Therefore, $4 < 3/2. a
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Wiu) = u €

0 (0,274 — 1]
1/3 || (Y4 =1,/5/3 - 1]
1/2 (v/5/3 —1,v2 - 1]
2/3 (V2 —1,2/3]

1 (2/3,1]

Table 4: Weighting Function for z € (21/* —1,1/5]

Lemma 6 Ifz € (2'/4—1,1/5], then R4 < 5/3.

Proof. Since > 21/4 — 1 = 0.1892, a processor is assigned at most five tasks, i.e.,
Kk < 5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than (1 —1/5)/(1+1/5) =2/3.

For the processor to which two tasks are assigned, the minimum of uy + wuy is
achieved at U = 2 x [\/2/(1+ z) — 1] when u; = uy = \/2/(1+ ) — 1. Then, for
z=1/5,u; = uy = /5/3-1=0.29, and U = 2[\/5/3 — 1] = 0.58. Note that for
z < 1/5,U > 0.58.

For a processor to which three tasks are assigned, their minimum utilization is
achieved at U = 3 x {[2/(1 + z)]'/?> — 1} when u; = [2/(1 4 2)]'/3 — 1. We want to
fix = such that z < [2/(14 z)]'/? — 1. Solving the inequality z < [2/(1+ z)]'/3 -1
yields z < 214 — 1. In other words, for every processor to which three tasks are
assigned in the completed RM-FFDU schedule, their total utilization is greater than
3 x (24— 1) = 0.5676.

In the following, we define a function that maps the utilization of a task to a value
that is in the range of 0 and 1, as given by Table 4. The weighting function is designed
in such a way that for every processor in the RM-FFDU schedule, its weight is equal to
or greater than 1. At the meantime, the weight of a processor in the optimal schedule

is no greater than 5/3.

19



We first prove that for every processor P in the completed RM-FFDU schedule,
W(P) > 1.

Recall that in the completed RM-FFDU schedule, any task utilization y must be
equal to or greater than . i.e., y > x. Let us consider a processor to which a task with
a utilization of y is first assigned.

Case 1: 214 —1 < y < \/5/3 — 1. Then the processor must be assigned at least
three tasks. Therefore, W(P)>1/3+1/3+1/3=1.

Case 2: \/5/3 —1 < y <+/2— 1. Then the processor must be assigned at least two
tasks. Furthermore, except for one processor by Lemma 1, each of the first two tasks
must have a utilization greater than \/5/3 — 1. Therefore, W(P) > 1/2+ 1/2 = 1.

Case 3: v/2—1 < y < 2/3. Then the processor must be assigned at least two tasks.
Since the second task must be a task with a utilization greater than /2 — 1, we have
W(P)>2/34+1/3=1.

Case 4: 2/3 <y <1, W(P) > 1 by definition.

We then prove that for any processor in the optimal schedule, W(P) < 5/3.

Let us assume that a processor in the optimal schedule is assigned m tasks with
their utilizations as uy > uy > ... > Uyy,.

Case I: u; < \/5/3— 1. Then at most five tasks each with a utilization greater than
(21/% — 1) can be assigned on a processor. Therefore, W(P) < 5/3.

Case II: \/%— 1<u <+v2-1and \/%— 1 < uy. Then at most two more tasks
can be assigned to the processor. If ug < \/5/3—1, then W(P) < 1/24+1/24+1/34+1/3 =
5/3. If uz > +/5/3 — 1, then W(P) < 1/24+1/2+1/2 = 3/2.

Case III: \/% —1l<u <v2-1and \/W— 1 > uy. Then at most two more
tasks each with a utilization less than (1/5/3 — 1) can be assigned to the processor.
Therefore, W(P) < 1/2+1/34+1/3+1/3=23/2.

CaseIV:v2—-1< uy < 2/3 and uy > v/2—1. Then no more task with a utilization
greater than 21/ — 1 can be assigned to the processor. Therefore, W (P) < 2/342/3 =
4/3.

IfvV2-1<u <2/3and \/5/3 —1 < uy < v/2 — 1, then at most one task with a

utilization greater than 21/4 —1 and less than v/2 — 1 can be assigned to the processor.
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Therefore, W(P) <2/3+1/241/2=15/3.

IfFv2-1<wuy < 2/3 and uy < \/m — 1, then at most two more task with a
utilization greater than 2'/4 — 1 can be assigned to the processor. Therefore, W (P) <
2/34+1/3+1/3+1/3=15/3.

Case V: 2/3 < uy < 1. Then at most one more task with a utilization greater than
21/4 _ 1 can be assigned to the same processor. Furthermore, us < v/2 — 1. Then
W(P)<1+4+1/2=3/2.

Let N and Ng be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given set X of n tasks, respectively. Then
the total weight of the task set is given by X7, W(w;). Since, except for one processor,
W(P) > 1 for every processor in the RM-FFDU schedule, then X7, W(u;) > N — 1.
Since W(P) < 5/3 for every processor in the optimal schedule, Ng x 5/3 > X7 W (u;).
Therefore, 4 < 5/3. a

Lemma 7 Ifz € (1/6,2"/4 — 1], then R4 < 5/3.

Proof. Since z > 1/6, a processor is assigned at most five tasks, i.e., kK < 5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than [1 — (21/4 — 1)]/(1 + 2Y/4 — 1) = 23/ — 1 = 0.68.

For the processor to which two tasks are assigned, the minimum of uy + wuy is
achieved at U = 2 x [\/2/(1 + x) — 1] when u; = uy = \/2/(1+2) — 1. Then, for
=24~ 1~ 01892, u; = uy = 2%/ — 1 ~ 0.297 and U = 2 x (2%/® — 1) = 0.594.
Note that for z < 21/4 — 1, U > 0.594.

For a processor to which three tasks are assigned, their minimum utilization is
achieved at U = 3 x {[2/(1 + z)]'/?> — 1} when u; = [2/(1 4 z)]'/3 — 1. We want to
fix z such that z < [2/(1 + z)]'/® — 1. Solving the inequality z < [2/(1+ )]'/% -1
yields z < 2/4 — 1. In other words, for every processor to which three tasks are
assigned in the completed RM-FFDU schedule, their total utilization is greater than
3x (214 - 1) = 0.5676.

For y < 21/4 — 1, each processor must be assigned at least four tasks each with a

utilization less than (21/4 — 1).
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W(u) = u €

0 (0,1/6]
1/3 (1/6,23/8 — 1]
1/2 (238 — 1,42 - 1]
2/3 (V2 -1,23/4— 1]
1 (234~ 1,1]

Table 5: Weighting Function for z € (1/6,2'/4 — 1]

In the following, we define a function that maps the utilization of a task to a value
that is in the range of 0 and 1, as given by Table 5. The weighting function is designed
in such a way that for every processor in the RM-FFDU schedule, its weight is equal
to or greater than 1, and at the meantime, the weight of a processor in the optimal
schedule is no greater than 5/3.

We first prove that for every processor P in the completed RM-FFDU schedule,
W(P) > 1.

Recall that in the completed RM-FFDU schedule, any task utilization y must be
equal to or greater than z, i.e., y > x. Let us consider a processor to which a task with
a utilization of y is first assigned.

Case 1: 1/6 < y < 21/4 _ 1. Then the processor must be assigned at least four
tasks. Therefore, W(P) >4 x 1/3 > 1.

Case 2: 21/4 —1 < y < 23/8 _1. Then the processor must be assigned at least three
tasks. Therefore, W(P)>1/3+1/3+1/3 = 1.

Case 3: 23/ — 1 < y < /2 — 1. Then the processor must be assigned at least two
tasks. Furthermore, except for one processor by Lemma 1, each of the first two tasks
must have a utilization greater than 23/® — 1. Therefore, W(P) > 1/2+1/2 = 1.

Case 4: V2 —1 < y < 23/* — 1. Then the processor must be assigned at least two
tasks. Since the second task must be a task with a utilization greater than v/2 — 1, we

have W(P)>2/34+1/3 = 1.
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Case 5: 23/ — 1 < y < 1. Then W(P) > 1 by definition.

We then prove that for any processor in the optimal schedule, W(P) < 5/3.

Let us assume that a processor in the optimal schedule is assigned m tasks with
their utilizations as w1 > uy > ... > U,y,.

Case I: 1/6 < uy; < 23/® — 1. Then at most four tasks each with a utilization
greater than 1/6 and less than 23/% _ 1 can be assigned on a processor. Therefore,
W(P)<5x1/3=5/3.

Case II: 23/8 -1 < u; < v/2—1 and 23/8 -1 < uy. Then at most two more tasks can
be assigned to the processor. If ug < 2%/ —1, then W(P) < 1/2+1/241/3+1/3=5/3.
If us > 23/% — 1, then no more task with a utilization greater than 1/6 can be assigned
to the processor, and thus W(P) < 1/2+4+1/2+4+1/2 =3/2.

Case III: 23/ — 1 < u < V2 —1and uy < 23/8 _ 1. Then at most two more tasks
each with a utilization less than 2%/ — 1 can be assigned to the processor. Therefore,
W(P)<1/241/3+1/34+1/3=3/2.

Case IV:vV2 -1 < u; < 23/4 _1and V2 -1 < ty. Then at most one task with
a utilization greater than 1/6 and less than 21/4 _ 1 can be assigned to the processor.
Therefore, W(P) <2/3+2/34+1/4<5/3.

FvV2—1<u; <234 —1and 23/8 -1 < uy <2 — 1, then at most one task with
a utilization greater than 1/6 and less than 23/4 _ 1 can be assigned to the processor.
Therefore, W(P) <2/3+1/2+41/3 =3/2.

IFvV2—1<u <2~ 1 and uy < 23/8 — 1, then at most two more task with a
utilization greater than 21/ — 1 can be assigned to the processor. Therefore, W(P) <
2/3+1/3+1/3+1/3=5/3.

Case V: 23/ — 1 < u; < 1. Then at most one more task with a utilization greater
than 1/6 and less than 2%/® — 1 can be assigned to the same processor. Then W (P) <
1+1/3=4/3.

Let N and Ng be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given set Y of n tasks, respectively. Then
the total weight of the task set is given by X7, W (u;). Since, possibly except for one
processor, W(P) > 1 for every processor in the RM-FFDU schedule, then X7, W (u;) >
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N — 1. Since W(P) < 5/3 for every processor in the optimal schedule, Ny x 5/3 >
Y% Wi(u;). Therefore, ®4 < 5/3. ]

Lemma 8 Ifz € (5(21/5 —1)—3/5,1/6], then Rpp—rrpu < 5/3.

Proof. Since 5(2'/° — 1) — 3/5 ~ 0.14349 > 1/7, a processor can be assigned at most
six tasks, i.e., kK < 6. For convenience, let us denote § = 5(21/5 -1)-3/5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than (1 —1/6)/(1+1/6) =5/7~ 0.71.

For the processor to which two tasks are assigned, the minimum of uy + wuy is
achieved at U = 2 x [\/2/(1 + x) — 1] when u; = uy = \/2/(1+2) — 1. Then, for
z=1/6,u; = uy = /12/7 -1~ 0.31 and U = 2[\/12/7 — 1] = 0.62. Note that for
z<1/6,U > 0.62.

For a processor to which three tasks are assigned, their minimum utilization is
achieved at U = 3 x {[2/(1 + z)]'/3 — 1} when u; = [2/(1 + 2)]'/? — 1. Then, for
e =1/6,u; = uy = uz = (12/7)"/3 =1~ 0.197 and U = 3[(12/7)"/% — 1] = 0.59. Note
that for z < 1/6, U > 0.59.

For a processor to which four tasks are assigned, their minimum utilization is
achieved at U = 4 x {[2/(1 + 2)]"/* — 1} when u; = [2/(1 + z)]'/* — 1. We want
to fix z such that < [2/(14 2)]'/* — 1. Solving the inequality = < [2/(1+ z)]*/4 -1
yields z < 21/5 — 1. In other words, for every processor to which four tasks are as-
signed in the completed RM-FFDU schedule, their total utilization is greater than
4 x (21/° = 1) = 0.595.

As having done so above, we define a function that maps the utilization of a task
to a value that is in the range of 0 and 1, as given by Table 6.

We first prove that for every processor P in the completed RM-FFDU schedule,
W(P) > 1.

Recall that in the completed RM-FFDU schedule, any task utilization y must be
equal to or greater than . i.e., y > x. Let us consider a processor to which a task with
a utilization of y is first assigned.

Case 1: y < (12/7)'/2 — 1. Except for the last processor, the processor must be
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W(u) = u €

0 (0, 6]
1/4 (6,(12/7)1/° — 1]
1/3 (1272 — 1,213 - 1]
3/8 (2173 - 1,\/12]7 - 1]
1/2 (V12]7 - 1,8/2 — 1]
2/3 (V2 —1,(12/7)2/% — 1]
3/4 ((12/7)*° = 1,5/7]

1 (5/7,1]

Table 6: Weighting Function for @ € (6, 1/6]

1/3 _ 1 but greater

assigned at least four tasks each with a utilization less than (12/7)
than 6. Therefore, W(P) >4 x 1/4 = 1.

Case 2: (12/7)1/3 — 1< y<2Y3_1. Except for one processor by Lemma 1, the
processor must be assigned at least three tasks each with a utilization w such that
(12/7)Y% =1 < u < 2'/3 — 1. Therefore, W(P) >3 x 1/3 =1,

Case 3: 213 -1 < y < V/12/7 — 1. Except for one processor by Lemma 1, the
processor must be assigned at least three tasks. Furthermore, each of the first two tasks
must have a utilization greater than 2'/3 — 1. Therefore, W(P) > 3/843/8+1/4 = 1.

Case 4: \/12/7 -1 < y < /2 — 1. Except for one processor by Lemma 1, the
processor must be assigned at least two tasks, each of which must have a utilization
greater than \/12/7 — 1. Therefore we have W(P) > 1/2+1/2 = 1.

Case 5: V2 —1 <y < (12/7)%/3 =1 ~ 0.432. Since z € (,1/6], the processor must
be assigned at least two tasks each with a utilization § < u < (12/7)%/2 — 1. If the
utilization of the second task is greater than (12/7)Y/3—1, then W(P) > 2/34+1/3 = 1.
If the utilization wuy of the second task is equal to or less than (12/7)'/% — 1, then one

more task with a utilization us € (4,1/6] must be assigned on the processor. This is

because

25



2/({1+ [(12/T)Y3 = 1)1+ [(12/TP — 1) = 1 = 7/6 = 1 = 1/6 > us.

Then W(P)>2/3+1/44+1/4> 1.

Case 6: (12/7)2/3 —1 < y < 5/7. Except for one processor by Lemma 1, the
processor must be assigned at least two tasks. The second task must have a utilization
greater than 6. Therefore we have W(P) > 3/4+1/4=1.

Case 7: 5/7T <y < 1. W(P) > 1 by definition.

We then prove that for any processor in the optimal schedule, W(P) < 5/3.

Let us assume that a processor P in the optimal schedule is assigned m tasks with
their utilizations as w1 > ug > ... > u,, > .

Case I: 6§ < uy < (12/7)'/3—1. Then at most six tasks each with a utilization greater
than 6 (and < wuq) can be assigned on a processor. Therefore, W(P) < 6/4 < 5/3.

Case II: (12/7)/3 = 1 < uy < 2Y/% — 1. There are three sub-cases to consider. If
ug < (12/7)Y2 — 1, then at most four more tasks each with a utilization greater than
0 can be assigned to the processor, i.e., m < 6. Then W(P) <1/3+5x 1/4 <5/3.

If ug > (12/7)/3 = 1 and uz < (12/7)'/3 = 1, then at most three more tasks each
with a utilization greater than é can be assigned to the processor, i.e., m < 6. Then
W(P)<1/34+1/3+4x1/4=5/3.

If uz > (12/7)"/2 — 1 and uyq < (12/7)"/3 — 1, then at most one more task with a
utilization greater than § can be assigned to the processor, i.e., m < 5. This is because
3x[(12/T)/3 = 1]+ 3 x § > 1. Then W(P) <3 x 1/3+2x 1/4< 5/3.

If ug > (12/7)/ = 1 and us < (12/7)Y/2 — 1, then no more task with a utilization
greater than 6 can be assigned to the processor, i.e., m < 5. Then W(P) <4 x 1/3 +
1/4 < 5/3. I us > (12/7)1/2 — 1, then W(P) <5 x 1/3 = 5/3.

Case IILI: 21/3 — 1 < w4y < 12/7 — 1. There are several sub-cases to consider. If
ug < (12/7)Y/2 — 1, then at most four more tasks each with a utilization greater than
¢ (and less than (12/7)'/% — 1) can be assigned to the processor, i.e., m < 6. Then
W(P)<3/8+5x1/4<5/3.

If (12/7)/3 =1 < upy < 23— 1 and us < (12/7)1/3—1, then at most two more tasks
each with a utilization greater than é can be assigned to the processor, i.e., m < 5.

Then W(P)<3/8+1/3+3 x 1/4 < 5/3.
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If ug < 21/3 -1, (12/7)1/3 = 1 < uz < 213 — 1, and uy < (12/7)'/2 — 1, then at
most one more task with a utilization greater than § can be assigned to the processor,
ie., m <5, Then W(P)<3/8+2x1/3+2x1/4<5/3.

If ug < 21/3 -1, (12/7)1/3— 1< ug <2Y/3-1 and us < (12/7)1/3— 1, then no more
task with a utilization greater than é can be assigned to the processor, i.e., m < 5.
Then W(P) <3/8+3x1/3+1/4<5/3.

If 21/3 — 1 < uy and (12/7)1/3— 1 < uz < 21/3— 1, then at most one more task with
a utilization greater than ¢ can be assigned to the processor, i.e., m < 4. Therefore
W(P)<2x3/84+1/3+1/4< 5/3. If 21/3 — 1 < ug, then at most more task with a
utilization greater than é and less than 21/3 _ 1 can be assigned to the processor, i.e.,
m < 4. Therefore W(P) <3 x3/8+41/3 <5/3.

Case IV: \/12/7 — 1 < u; < v/2 — 1. There are several sub-cases to consider. If
ug < (12/7)13 — 1, then at most three more tasks each with a utilization greater than
¢ (and less than (12/7)1/3 — 1) can be assigned to the processor, i.e., m < 5, since
V12/T—1+4+5x8>1. Then W(P)<1/2+4x1/4<5/3.

If (12/7)/3 =1 < uy < 23 —1 and uz < (12/7)/3—1, then at most two more tasks
each with a utilization greater than é can be assigned to the processor, i.e., m < 5,
since /12/7 — 14 (12/7)"/> =144 x 6 > 1. Then W(P) < 1/241/3+3x1/4 < 5/3.

If ug < 2/3 — 1 and (12/7)1/3 —1 < ug < 2131, then at most two more tasks

each with a utilization greater than § and less than (12/7)/3

— 1 can be assigned to
the processor, i.e., m < 5. Then W(P)<1/2+2x1/3+2x1/4=5/3.

If ug < 23 — 1 and (12/7)1/3 —1 < ug < 23— 1, then no more task with
a utilization greater than 6 can be assigned to the processor, i.e., m < 4. Then
W(P)<1/24+3x1/3<5/3.

23 -1 <uy < 12/7—1 and uz < (12/7)1/3 — 1, then at most two more tasks
each with a utilization greater than é can be assigned to the processor, i.e., m < 5.
Therefore W(P) < 1/243/8+3 x 1/4 < 5/3. T 21/3 — 1 < uy < \/12/7 — 1 and
(12/7)Y2 =1 < ug < 21/3—1, then at most one more task with a utilization greater than

6 and less than (12/7)1/3 — 1 can be assigned to the processor, i.e., m < 4. Therefore
W(P)<1/24+3/8+1/34+1/4 < 5/3. I 2/3 -1 < uy < \/12/7—1and (12/7)1/3 -1 <

27



g < uz < 21/3 - 1, then no more task with a utilization greater than é can be assigned
to the processor, i.e., m < 4. Therefore W(P) < 1/2+3/84+1/3 +1/3 < 5/3. If
uy < /12/7—1 and 213 _ 1 < us < 12/7 — 1, then at most one more task with a
utilization greater than § and less than(12/7)'/% — 1 can be assigned to the processor,
i.e., m < 4. Therefore W(P)<1/24+2x3/8+41/4<5/3.

If 12/7T =1 < uy < /2 -1 and uz < (12/7)1/3 — 1, then at most one more
task with a utilization greater than é can be assigned to the processor, i.e., m < 4.
Therefore W(P) < 2x 1/2+2x 1/4 < 5/3. If J12/T -1 < uy < v/2 -1 and
(12/7)Y% =1 < uz < 2'/% — 1, then at most one more task with a utilization greater
than 6 but less than (12/7)1/3 — 1 can be assigned to the processor, i.e., m < 4, since
2% (V12/7=1)+2x[(12/7)1/>~1] > 1. Therefore W(P) < 2x1/2+1/3+1/4< 5/3.
If \/m— 1 <u <vV2-1and 21/3 _ 1 < uz < /12/7 — 1, then no more task
with a utilization greater than 6 can be assigned to the processor, i.e., m < 3, since
2x (V12/T = 1)+ 23 — 146§ > 1. Therefore W(P) < 2x 1/2 4 3/8 < 5/3. If
\/m —l<us <upy <V2-— 1, then no more task with a utilization greater than &
can be assigned to the processor, i.e., m < 3, since 3 x (1/12/7 — 1)+ 6 > 1. Therefore
W(P)<3x1/2<5/3.

Case V:vV2—-1<u < (12/7)2/3 — 1. There are several sub-cases to consider.

If uy < (12/7)1/% =1, then at most three more tasks each with a utilization greater
than 6 can be assigned to the processor, i.e., m < 5. Therefore W(P) < 2/3+4x1/4 =
5/3.

If (12/7)3 =1 < ug < 2Y3 — 1 and ug < (12/7)"/% = 1, then at most one more
task with a utilization greater than ¢ can be assigned to the processor, i.e., m < 4,
since v/2 — 14 (12/7)Y3 =143 x 6 > 1. Then W(P) < 2/34+1/34+2x1/4 < 5/3.
If (12/7)1/3 —1l<uz <uy < 21/3 _ 1, then at most one more task with a utilization
greater than 6 but less than (12/7)1/3 — 1 can be assigned to the processor,i.e., m < 4,
since v/2 — 14+ 3 x [(12/7)1/3 = 1] > 1. Then W(P) <2/34+2x 1/3+1/4 < 5/3.

I 213 -1 < uy < 12/7 — 1 and uz < (12/7)1/3 — 1, then at most one more
task with a utilization greater than é can be assigned to the processor, i.e., m < 4.

Therefore W(P) < 2/343/8+2x 1/4 < 5/3. T 213 — 1 < uy < \/12/7 — 1 and
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(12/7)'/3 =1 < uz < 21/3 — 1, then no more task with a utilization greater than § can
be assigned to the processor, i.e., m < 3. Therefore W(P) <2/3+4+3/8+1/3 <5/3. If
21/3_1 < uz < Uy < \/m— 1, then no more task with a utilization greater than é and
can be assigned to the processor, i.e., m < 3. Therefore W(P) < 2/3+2 x3/8 < 5/3.

If \/m— 1<uy<+v2—1and us < 21/3— 1, then no more task with a utilization
greater than § can be assigned to the processor, i.e., m < 3, since v/2 — 1 4 /12/7 —
142 x 68> 1. Therefore W(P) <2/34+1/2+1/3<5/3. If J12]T -1 < uy <2 -1
and 213 -1 < uz < \/m— 1, then no more task with a utilization greater than § can
be assigned to the processor, i.e., m < 3, since v2 — 14+ /12/7 - 1 + 23 146> 1.
Therefore W(P) <2/3+4+1/2+3/8 <5/3.

IfvV2-1<u; < (12/7)2/3 — 1, then at most one more task with a utilization
greater than 6 but less than (12/7)1/3 — 1 can be assigned to the processor,i.e., m < 3.
Therefore W(P) <2/3+4+2/3+1/4<5/3.

Case VI: (12/7)%/® =1 < wy < 5/7. There are several sub-cases to consider.

If§ < uy < (12/7)"/3=1, then at most two more tasks each with a utilization greater
than é can be assigned to the processor, i.e., m < 4, since (12/7)2/3 —14+4xé>1.
Therefore W(P) <3/44+3x1/4 < 5/3.

If (12/7)3 =1 < uy < 2Y/3 —1 and uz < (12/7)%/3 — 1, then at most one more task
with a utilization greater than é can be assigned to the processor, i.e., m < 4, since
(12/7)23 =1 4 (12/7)Y/3 =143 x 6 > 1. Then W(P) < 3/4+1/3+2 x 1/4 < 5/3.
If uy < 21/3 — 1 and (12/7)1/3 —1 < uz <213 _1, then at most one more task with a
utilization greater than § but less than (12/7)'/° — 1 can be assigned to the processor,
i.e.,m < 4,since (12/7)2/3—143x[(12/7)/*~1] > 1. Then W(P) < 3/4+2/34+1/4 =
5/3.

I 23 -1 < uy < 12/7 — 1 and uz < (12/7)1/3 — 1, then at most one more
task with a utilization greater than é can be assigned to the processor, i.e., m < 4.
Therefore W(P) < 3/443/8+2x 1/4 < 5/3. I 2'/3 — 1 < uy < \/12/7 — 1 and
(12/7)Y% =1 < uz < 2Y/% — 1, then no more task with a utilization greater than § can
be assigned to the processor, i.e., m < 3. Therefore W(P) <3/4+43/8+1/3 <5/3. If

2183 1 < ug < uy < /12/7—1, then no more task with a utilization greater than é and
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can be assigned to the processor, i.e., m < 3. Therefore W(P) < 3/4+2 x 3/8 < 5/3.

If m— 1<uy<+v2—1and us<2/3— 1, then no more task with a utilization
greater than 6 can be assigned to the processor, i.e., m < 3, since (12/7)2/3 -1+
VI2/T =142 x 6 > 1, and (12/7)/% — 1 4+ /12/7T — 1 + 21/3 — 1 > 1. Therefore
W(P) <3/4+1/2+1/3 < 5/3.

If V2 -1 < uy < (12/7)%/% — 1, then at most one more task with a utilization
greater than & but less than (12/7)'/3 — 1 can be assigned to the processor, i.e., m < 3.
Therefore W(P) <3/44+2/3+1/4 < 5/3.

If (12/7)%/® =1 < uy < 5/7, then no more task with a utilization greater than § can
be assigned to the processor, i.e., m < 2, since 2 x [(12/7)2/3 — 1] 4 6 > 1. Therefore
W(P)<3/443/4<5/3.

Case VII: 5/7 < uy < 1. Since 5/7 < uy, the total utilization of the rest of the
tasks is less than 1 —5/7 = 2/7 < /12/7 — 1. Furthermore, since 5/7 +2 x § > 1,
at most one more task with a utilization less than \/12/7 — 1 can be assigned to the
processor. Therefore W(P) <1+ 3/8 < 5/3.

Let N and Ng be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given set Y of n tasks, respectively. Then
the total weight of the task set is given by X7, W (u;). Since, except for four processors,
W(P) > 1 for every processor in the RM-FFDU schedule, then X7, W(u;) > N — 4.
Since W(P) < 5/3 for every processor in the optimal schedule, Ng x 5/3 > X7 W (u;).
Therefore, 4 < 5/3. a
Proof of Theorem 2: We first claim that Rrar—rrpr < 5/3 for z € (0,0.13477].
From Lemma 2Rpy-_rrpu < 1.63 for ¢ € (0,0.1253]. So let us consider z €
(0.1253,0.13477]. Since 0.13477 = 6(2/6 — 1) — 0.6, if a processor is assigned n < 5
tasks, then (n 4 1)(2"/("+1) — 1) — 2 > 0.6. If a processor is assigned n > 6 tasks,
then U > 6z > 0.6. In other words, each processor in the RM-FFDU schedule has
a utilization greater than 0.6. From the definition of Rras_prpy, it is clear that
Rerym-rrpu < 5/3.

For 0.13477 < z < 0.143492 = 5(21/% — 1) — 0.6, if a processor is assigned n < 4

tasks, then (n 4 1)(21/(*+1) — 1) — 2 > 0.6. If a processor is assigned n > 5 tasks, then
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U > 5z > 0.6. For similar reason, Rry—rrpu < 5/3.
What is left is to prove that Rrar—rprpy < 5/3 for z € [0.14349,1/2]. According
to Lemma 3 to Lemma 8, we have Rry_prpy < 5/3 for z € [0.14349,1/2]. Thus we

conclude that Rpar—rrpu < 5/3. a
Theorem 3 Rpy—rrpu = 5/3

Proof. In order to prove that the bound is tight. We need to show that the upper
bounded number of processors is indeed required for some large task sets if they are
scheduled by the RM-FFDU algorithm.

Let n = 15k, where k is a natural number.

Then we can construct a task set in term of task utilizations as follows:

u; = 0.2, fori=1,2,...,n.

In the completed RM-FFDU schedule, each processor is assigned three tasks since
0.2>2/ H;’:l(l +0.2) — 1. Therefore, a total of n/3 processors is used to schedule the
task set, i.e., N = n/3.

In the optimal schedule, each processor is assigned exactly five tasks since 5 x 0.2 =
1. Hence, a total of n/5 processors is used to schedule the same task set,i.e., Ng = n/5.

Since N/Ng = 5/3, together with Theorem 2, we conclude that Rra—rrpu = 5/3

5 The Empirical Studies of RM-FFDU

In this study, the performance bound of a new algorithm was derived under worst-case
assumptions. While our worst-case analysis assures that the performance bound is
satisfied for any task set, it does not provide insight into the average-case behavior
of the algorithm. To obtain the average-case performance of the new algorithm, one
can analyze it with probabilistic assumptions, or conduct simulation experiments to
empirically study the average-case performance. Since a probabilistic analysis of the
algorithm is beyond the scope of this study, we resort to simulation to gain insight into

its average-case behavior.
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The simulation is conducted by running the algorithm on a large number of com-
puter generated sample task sets and averaging the results over a number of runs. The
input data of all parameters for a task set are generated according to uniform distribu-
tion. In each experiment, we vary the value of parameter a, the maximum utilization
of any task in the set, i.e., a = max;(C;/T;). The periods of tasks are generated in
the range of 1 < T; < 500. The computation time of the tasks are taken from a range
of 1 < C; < aT;. The output parameter for the algorithm is the percentage of extra
processors used to accommodate a set of tasks, with regard to the total utilization (or
load) of the task set. The total load of a task set is given by U = "7, C;/T;, which
is a lower bound on the number of processors needed to execute the task set. In other
words, the optimal number of processors needed to execute a task set with a load of U
is at least U. Suppose that N(X) is the number of processors required by RM-FFDU
to schedule a task set X with a load of U, then the percentage of extra processors is
defined by 100 x W

We compare the new algorithm with the existing ones in the literature in term of
average-case performance. All algorithms are executed on identical task sets. The out-
come of the simulation experiments is shown in Figure 1 and Figure 2. The maximum
utilization of a task is set to be @ = 0.5 and o = 1 in both sets of experiments. The
number of runs for each data point is chosen to be 20, since for our experiments, 20
runs is large enough to counter the effect of “randomness”. Note that our algorithm
consistently outperforms those in the literature, and uses less than 30% extra proces-
sors with regard to the best solution possible. All results show that the number of
processors required for each algorithm increases proportionally to the total utilization

of the task set.

6 Concluding Remarks

The contributions of this paper are twofold: it proposes a new heuristic algorithm
to solve an old problem and most importantly, it significantly improves the solution

to the problem in term of worst-case and average-case performance. The worst-case
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performance bound of the algorithm RM-FFDU is shown by intricate analysis to be
1.66 .. ., the lowest bound ever obtained for the scheduling problem, and average-case
performance of the algorithm is shown by simulation to perform consistently better
than those in the literature, and use less than 30% extra processors.

Although we believe that the bound can be lowered if the UO condition in RM-
FFDU is replaced by the necessary and sufficient condition, the complexity in the
analysis for a lower bound can be prohibitive as we have witnessed from the above
proof. Another possibility in lowering the bound further is to modify RM-FFDU to
deal with the assignment of certain tasks more effective, as a number of variations of
the bin-packing FFD have been designed to do. Another interesting question is to
consider tasks which share resources and tasks whose deadlines do not coincide with
their periods (see, e.g., [1]). These are the issues that we are currently investigating.

The rate-monotonic scheduling was first discovered around 1972-1973, and made
known to the world in the seminal paper by Liu and Layland in 1973. It took about
15 years until about 1989 when rate-monotonic scheduling was used as a scheduling
algorithm for a real-time operating system. Now the rate-monotonic algorithm has
become widely in real-time applications. The first result on rate-monotonic scheduling
heuristic for multiprocessor was derived around 1977-1978 and was presented in Dhall
and Liu’s 1978 paper. Interests in task scheduling on multiprocessors have rapidly
increased only recently, because of the inevitable employment of multiprocessors in
many real-time systems. We believe that the results presented in this paper are timely
ones for the research community and for practitioners at large.
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Figure 1: Performance Comparison of Algorithms o = 0.5.
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