
Limited Preemptible Scheduling to Embrace

Cache Memory in Real-Time Systems

Sheayun Lee1, Chang-Gun Lee1, Minsuk Lee2,
Sang Lyul Min1, and Chong Sang Kim1

1 Dept. of Computer Engineering,

Seoul National University, Seoul 151-742, Korea

fsylee,cglee,symin,cskimg@archi.snu.ac.kr
2 Dept. of Computer Engineering,

Hansung University, Seoul 136-792, Korea

mslee@ice.hansung.ac.kr

Abstract. In multi-tasking real-time systems, inter-task cache interfer-

ence due to preemptions degrades system performance and predictabil-

ity, complicating system design and analysis. To address this problem,

we propose a novel scheduling scheme, called LPS (Limited Preemptible

Scheduling), that limits preemptions to predetermined points with small

cache-related preemption costs. We also give an accompanying analy-

sis method that determines the schedulability of a given task set under

LPS. By limiting preemption points, the proposed LPS scheme reduces

preemption costs and thus increases the system throughput. Experimen-

tal results show that LPS can increase schedulable utilization by more

than 10 % and save processor time by up to 44 % as compared with a

traditional fully preemptible scheduling scheme.

1 Introduction

Cache memory is used in almost all computer systems today to bridge the ever
increasing speed gap between the processor and main memory. However, if cache
memory is to be used in real-time systems, special attention must be paid since
cache memory introduces unpredictability to the system. For example, in a multi-
tasking real-time system, when a task is preempted by a higher priority task, the
preempted task's memory blocks in the cache are replaced by the preempting
higher priority task's memory blocks. Later, when the preempted task resumes
its execution, a considerable amount of delay occurs to reload the previously
replaced memory blocks into the cache. When preemptions are frequent, the sum
of such cache reloading delays takes a signi�cant portion of task execution time.
Moreover, the portion gets even larger as the speed gap between the processor
and main memory increases.

The cache reloading costs due to preemptions have largely been ignored in
real-time scheduling. Without a suitable analysis method, we have to conserva-
tively assume that each preemption causes one cache miss for each cache block



52

used by the preempted task. This will result in a severe overestimation of the
cache reloading time.

In this paper, we propose a novel scheduling scheme, called LPS (Limited
Preemptible Scheduling), that allows preemptions only at predetermined execu-
tion points with small cache reloading costs. The selection of preemptible points
is based on the number of useful cache blocks [6]. A useful cache block at an
execution point contains a memory block that may be re-referenced before be-
ing replaced by another memory block of the same task. The number of useful
cache blocks at a given execution point in a task can be calculated by using a
data-
ow analysis technique explained in [6] and it gives an upper bound on the
number of cache blocks that need to be reloaded when preemption occurs at that
execution point. By limiting preemptible points to those with a small number
of useful cache blocks, the cache-related preemption delay can be signi�cantly
reduced.

Although limiting preemptible points can signi�cantly reduce the cache-
related preemption delay, it increases the blocking time su�ered by higher pri-
ority tasks. For example, if the processor is executing a nonpreemptible code
section of a lower priority task when a higher priority task arrives, the higher
priority task cannot begin its execution until the lower priority task exits the
nonpreemptible code section. This blocks the execution of the higher priority
task and can potentially make it miss its deadline. Fortunately, such blocking
delay is bounded and we give a method for analyzing the worst case blocking de-
lay based on the extended timing schema approach [8]. The method determines
the worst case blocking time of a lower priority task by estimating the WCET
(worst case execution time) of the longest nonpreemptible code section.

For the proposed LPS scheduling scheme, we give an analysis method that
can determine whether a given task set is schedulable. The schedulability analysis
compares each task's deadline with its WCRT (worst case response time) that is
computed by augmenting the response time equation explained in [4, 10] to take
into account both the cache-related preemption delay and the blocking delay.

The reduction of the cache-related preemption delay by LPS reduces the
WCRTs of lower priority tasks. However, the accompanying increase of the block-
ing delay increases the WCRTs of higher priority tasks. Thus, LPS can improve
or degrade the schedulability of a task set depending on the characteristics of
the task set. However, since lower priority tasks constrain the schedulability of
the task set in many cases, the improvement of lower priority tasks' WCRT by
LPS usually enhances the schedulability. Furthermore, assuming that a given
task set is schedulable, LPS signi�cantly reduces the cache reloading time and
the resulting savings in processor time can be used to perform other useful jobs.

We performed a set of experiments to assess the impact of LPS on schedu-
lability and system utilization. The results show that the LPS can improve a
task set's schedulability when lower priority tasks constrain the schedulability of
the whole task set. The results also show that the LPS can save processor time
by up to 44 % when compared with a traditional fully preemptible scheduling
scheme.



53

The rest of this paper is organized as follows: In Section 2, we survey the
related work. Section 3 details the proposed LPS scheme and the accompanying
schedulability analysis method. Section 4 gives the results from our experiments.
We conclude this paper in Section 5.

2 Related Work

Although caches are used in almost all computer systems today, they have not
been widely used in real-time systems due to their unpredictable worst case
performance. The unpredictable performance results from two sources: intra-
task interference and inter-task interference. Intra-task interference, which oc-
curs when more than one memory block of the same task are mapped to the
same cache block, has been extensively studied in [1{3, 7, 8]. In this paper, we
focus on inter-task interference of caches caused by task preemptions.

There have been two approaches to address the unpredictability resulting
from the inter-task cache interference. The �rst is to eliminate the inter-task
cache interference by using a cache partitioning technique where cache memory is
divided into mutually disjoint partitions and one or more partitions are dedicated
to each task [5, 11]. Although cache partitioning eliminates cache interferences
due to preemptions, it has a number of drawbacks. One drawback is that the
size of the cache seen by each task is signi�cantly reduced, since a task can
access only its own partitions. Another drawback is that the technique requires
modi�cation of existing hardware and/or software.

The second approach to address the unpredictability resulting from inter-
task cache interference is to take into account the e�ect of cache interference in
schedulability analysis. In [6], Lee et al. propose such an analysis technique based
on the worst case response time equation [4, 10]. In this technique, the original
response time equation is augmented to include the cache-related preemption
delay as follows (assuming that task �i has a higher priority than task �j if
i < j):

Ri = Ci +

i�1X

j=1

d
Ri

Tj
eCj + PCi(Ri) ; (1)

where Ri, Ci, and Ti denote the response time, the WCET, and the period
of task �i, respectively. The cache-related preemption delay is included in the
equation in the additional term PCi(Ri). The term PCi(Ri) is computed by an
integer linear programming technique that takes as its input the worst case cache
reloading cost of each task. The calculation of the worst case cache reloading cost
considers only the useful cache blocks, which signi�cantly improves the accuracy
of the WCRT prediction [6].

The cache-related preemption delay takes a signi�cant portion of a task's
response time. Its impact becomes more signi�cant as the cache re�ll time in-
creases. Simonson shows in his PhD thesis [9] that cache misses caused by pre-
emptions can be signi�cantly reduced by limiting preemptions to predetermined



54

points called preferred preemption points. The preferred preemption points are
determined by analyzing a given task's execution trace and selecting points that
incur small preemption costs. One limitation of this approach is that the pre-
ferred preemption points cannot be determined from the program code since the
approach is based on trace driven analysis. Thus, the approach cannot be ap-
plied during the design phase of a real-time system. Furthermore, the approach
does not o�er any schedulability analysis technique.

In this paper, we propose a technique that can determine preemption points
with small cache reloading costs from the program code. We also give a schedu-
lability analysis technique that considers not only the cache-related preemption
delay but also the blocking delay resulting from limiting preemptible points.

3 Limited Preemptible Scheduling

In this section, we �rst explain how to determine preemptible points with small
cache reloading costs. Then, we explain the technique to calculate the blocking
time caused by limiting preemptible points. Finally, we explain the schedulability
analysis that takes into account the cache-related preemption delay and the
blocking delay.

3.1 Determining Preemptible Points

Since the number of useful cache blocks at an execution point gives an upper
bound on the cache reloading cost at that point, a preemption at an execution
point with a small number of useful cache blocks incurs a low preemption cost.

We divide the set of execution points of a given task into preemptible execution

points and nonpreemptible execution points depending on the number of useful
cache blocks. Speci�cally, if an execution point has more than M useful cache
blocks, it is a nonpreemptible execution point; otherwise, it is a preemptible
execution point. Here, M is a threshold value that controls the upper bound on
the cache reloading cost.

When a task is executing within a nonpreemptible code section, preemption
is not allowed even when there is a pending higher priority task. One possible
way to implement the preemption control is to insert extra instructions to the
execution points that correspond to entry points or exit points of nonpreemptible
code sections. The inserted instructions modify a boolean variable that indicates
whether the execution of the program is within a nonpreemptible code section
or not. When the scheduler is invoked by an arrival of a task (in event-driven
scheduling) or by a clock tick (in tick scheduling), the boolean variable is checked
by the scheduler to determine whether it should perform a context switch.

3.2 Bounding Blocking Time

As we mentioned earlier, limiting preemptible code sections causes blocking of
high priority tasks that arrive while a lower priority task is executing within a



55

nonpreemptible code section. We call the amount of time that a lower priority
task blocks a higher priority task's execution the blocking time of the lower
priority task. To guarantee the worst case performance of the system, we need
to bound the blocking time in the worst case, which we call the WCBT (worst
case blocking time).

The tighter the WCBT bounds of tasks, the more accurate the prediction
of the worst case performance of the system. In the following, we explain a
technique that computes a tight bound of the WCBT based on the extended

timing schema [8], which was originally proposed to compute the WCET of a
program.

In the extended timing schema, the syntax tree of the given program is hierar-
chically analyzed, recursively applying a set of timing formulas to each program
construct. The timing formulas are de�ned with two types of basic operations
on the timing abstraction called PA (path abstraction); the concatenation (�)
operation models the sequential execution of two execution paths, and the set
union ([) operation re
ects the possibility of more than one execution path in
a program construct.

To calculate the WCBT of a given task from its program code, we associate
a data structure called WCBTA (worst case blocking time abstraction) with
each program construct. The WCBTA maintains timing information of blocking
paths that might have the largest execution time in the corresponding program
construct. A blocking path is a partial execution path that consists only of
nonpreemptible code sections, and thus preemption is not allowed when the
execution of the program is on such a path. Since it is not possible to determine
which blocking path in a program construct will give the largest execution time
until the preceding/succeeding program constructs are analyzed, the WCBTA
needs to maintain timing information for more than one blocking path. Thus,
the WCBTA of a program construct has a set of abstractions, called BPAs
(blocking path abstractions), for the blocking paths in the program construct.
In addition to the timing information maintained in a PA of the extended timing
schema, each BPA maintains information about whether the entry point and/or
exit point of the corresponding path is preemptible or not. This information is
needed when the concatenation operation is performed between two BPAs to
determine whether the two paths lead to a longer blocking path.

When the hierarchical analysis reaches the top level, the WCETs of all the
blocking paths in the program are calculated, among which the maximum value
is chosen as the program's WCBT.

3.3 Schedulability Analysis

The schedulability analysis for the LPS scheme is based on the response time
equation [4, 10]. To take into account the cache-related preemption delay and
the blocking delay, the response time equation is augmented as follows:

Ri = Ci +
i�1X

j=1

d
Ri

Tj
eCj + PCi(Ri) +Bi ; (2)



56

where Ri, Ci, and Ti denote the response time, the WCET, and the period of
�i, respectively. The augmented response time equation includes both the cache-
related preemption delay PCi(Ri) and the blocking delay Bi. The cache-related
preemption delay is estimated using Lee et al.'s linear programming method.
Since smaller preemption costs are used in LPS, the cache-related preemption
delay is smaller than in a fully preemptible scheduling scheme.

The blocking delay Bi is the amount of time that task �i is blocked by a lower
priority task in the worst case. The worst case is when task �i arrives immediately
after the lower priority task with the largest WCBT begins executing its longest
blocking path. Therefore, the worst case blocking delay Bi is equal to the WCBT
of the task with the largest WCBT among the lower priority tasks. This is given
by

Bi = max
j>i

(Zj) ; (3)

where Zj is the WCBT of task �j .
In estimating the WCRTs of the lower priority tasks, the cache-related pre-

emption delay is signi�cantly reduced since it includes the delay caused by pre-
emptions of not only the task itself but also all the higher priority tasks. There-
fore, in general, when the lower priority tasks in a given task set have relatively
tight deadlines, LPS enhances the schedulability of the task set. On the other
hand, LPS increases the blocking time of the higher priority tasks. In the case
where the higher priority tasks have tight deadlines, the increased blocking delay
may degrade the schedulability of the system. In other words, whether LPS leads
to better schedulability depends on the characteristics of the task set. However,
once LPS guarantees the schedulability of a given task set, a signi�cant amount
of processor time is saved due to reduced cache reloading costs. This saved pro-
cessor time can be used for other useful jobs in the system, achieving a higher
system throughput.

4 Experimental Results

To assess the e�ectiveness of the proposed LPS scheme, we performed three kinds
of experiments. First, the WCBTs of several benchmark programs are analyzed,
and the results are presented in Section 4.1. Second, experimental results showing
the impact of the LPS scheme on schedulability are given in Sections 4.2 and
4.3. Finally, we present in Section 4.4 results that show how much processor time
can be saved by LPS.

4.1 Per-Task Analysis for WCBTs

Our WCBT analysis assumes the MIPS R3000 RISC processor as the target
machine. The processor has a direct mapped cache of 16 KB with a block size
of 4 bytes. The cache re�ll time is assumed to be 16 machine cycles.



57

We set theM value (the maximum allowable number of useful cache blocks at
preemptible execution points) of all the tasks to zero. In other words, preemption
is allowed only at execution points with zero cache reloading costs.

Five simple benchmark programs were chosen: matmul, jfdctint, �t, ludcmp,
and �r. The matmul benchmark performs multiplication on two 5� 5 
oating-
point matrices. The jfdctint benchmark implements an integer discrete cosine
transformation for the JPEG algorithm. The �t benchmark performs the FFT
and inverse FFT operations on an array of 10 
oating-point numbers, and lud-

cmp solves 10 simultaneous linear equations by the LU decomposition method.
Finally, �r implements the FIR (Finite Impulse Response) �lter.

Table 1. WCBTs of �ve benchmarks

Name WCET WCBT WCBT
WCET

matmul 10795 10044 93.0 %

jfdctint 11932 3964 33.2 %

�t 24698 22647 91.7 %

ludcmp 37009 27133 73.3 %

�r 71298 71201 99.9 %

(unit: cycles)

The WCBTs and WCETs of the �ve benchmarks are shown in Table 1. The
ratio WCBT/WCET varies depending on the characteristics of the benchmark
program. It is a�ected mainly by the structure of loop statements in the pro-
gram. Speci�cally, the �r benchmark consists of several nested loops and the
outermost loop occupies most of the program code. In such a case, all the execu-
tion points inside the outermost loop have the same maximum number of useful
cache blocks, and the whole loop becomes a single nonpreemptible code section.
The �r program spends most of its execution time in this loop and, thus, its
WCBT is very close to the WCET of the benchmark. On the other hand, in
the jfdctint benchmark, there are three outermost loops that have nearly equal
execution times. Thus, the WCBT is about 1=3 of the WCET.

4.2 Schedulability: A Good Case

We predicted the WCRTs of the tasks in a sample task set to see how LPS a�ects
the schedulability of the task set as a whole. For this experiment, we used the
task set given in Table 2. In the table, the frequency of a task is the number of
invocations of the task within the system period (hyperperiod) of the task set.

The workload factor W of the task set is calculated by

W =

P
Fi � Ci

system period
; (4)



58

Table 2. Task Set 1

Task Name Frequency

�1 matmul 32

�2 jfdctint 24

�3 �t 18

�4 ludcmp 12

�5 �r 9

where Fi denotes the number of invocations of �i in the system period and Ci the
WCET of �i. The workload factor gives the system's pure workload that excludes
the time for cache reloading due to preemptions. We performed schedulability
analysis as we increased the workload factor by gradually decreasing the system
period. The deadline of each task, which is assumed to be equal to the period of
the task, was adjusted accordingly as we decreased the system period.

P

U

QP

QU

RP

RU

SP

SU

TP

TU

UP

UU

VP

VU

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@H
�
�
�
��
�
@�
@Q
P
P
P
P
I

���

������

���

��������

������

(a) FPS

P

U

QP

QU

RP

RU

SP

SU

TP

TU

UP

UU

VP

VU

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@H
�
�
�
��
�
@�
@Q
P
P
P
P
I

���

������

���

��������

������

(b) LPS

Fig. 1. WCRT predictions for Task Set 1

Figure 1 depicts the WCRT predictions for both the traditional fully pre-
emptible scheduling (denoted by FPS) and LPS. The x-axis of the graphs is
the system's workload factor W whereas the y-axis is the WCRTs of tasks (in
machine cycles).



59

Figure 1(a) shows the results when FPS is used. In FPS, the WCRT of
the highest priority task �1 (matmul) is equal to its WCET since it begins its
execution immediately after release and is never preempted. The WCRTs of the
intermediate priority tasks (i.e., �2, �3, and �4) do not increase much even when
the workload factor is as high as 85 %. However, the WCRT of the lowest priority
task �5 (�r) increases rapidly as the workload factor increases. This results from
a rapid increase of the cache-related preemption delay that includes the cache
reloading costs of not only itself but also all the higher priority tasks.

Figure 1(b) shows the results when LPS is used. As compared with FPS, the
WCRTs of �1; � � � ; �4 become slightly larger because the WCRTs now include the
blocking delay, which is equal to the WCBT of �5 (�r). However, the WCRT
of the lowest priority task �r becomes much smaller than in the FPS case and
does not increase as rapidly. This results from the fact that the cache-related
preemption delay is zero in the LPS case since preemptions can occur only at
execution points with no useful cache blocks.

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@O
@�
�
�
�
��
�
�
@H
E
I

���

������

���

��������

������

(a) FPS

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@O
@�
�
�
�
��
�
�
@H
E
I

���

������

���

��������

������

(b) LPS

Fig. 2. WCRT/deadline for Task Set 1

Figure 2 depicts the ratio of the WCRT to the deadline assuming that each
task's deadline is equal to its period. The results show that in the FPS case the
lowest priority task �r is the one that limits the schedulability of the whole task
set. Thus, the reduction of the WCRT of �r in the LPS case by reducing the
cache-related preemption delay proves to be helpful in improving the schedula-
bility of the given task set as we can see in Figure 2(b). The graphs show that



60

the breakdown utilization of the task set is about 81 % for LPS, which is more
than 10 % higher than the FPS's 68 %.

4.3 Schedulability: A Bad Case

We performed another experiment that was intended to show potential problems
of LPS. Table 3 gives the sample task set used for this purpose. The task set
consists of four tasks: matmul, jfdctint, �t, and ludcmp. For this task set, the
ratio of the frequency of the highest priority task matmul to those of the other
tasks is much higher than in the previous task set. This gives a much tighter
deadline to the highest priority task as compared with the deadlines of the other
tasks.

Table 3. Task Set 2

Task Name Frequency

�1 matmul 20

�2 jfdctint 5

�3 �t 4

�4 ludcmp 2

P

U

QP

QU

RP

RU

SP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@H
�
�
�
��
�
@�
@Q
P
P
P
P
I

������

���

��������

������

(a) FPS

P

U

QP

QU

RP

RU

SP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@H
�
�
�
��
�
@�
@Q
P
P
P
P
I

������

���

��������

������

(b) LPS

Fig. 3. WCRT predictions for Task Set 2



61

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@O
@�
�
�
�
��
�
�
@H
E
I

������

���

��������

������

(a) FPS

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

UP UU VP VU WP WU XP XU

����@��������@������@HEI
w
c
r
t
@O
@�
�
�
�
��
�
�
@H
E
I

������

���

��������

������

(b) LPS

Fig. 4. WCRT/deadline for Task Set 2

Figures 3 and 4 show the WCRT and the ratio of the WCRT to the deadline,
respectively, for the new task set. LPS now fails to schedule the task set when
the workload factor is about 59 % whereas FPS can still schedule the task set
even when the workload factor is over 85 %. This results from the fact that the
highest priority task has a much tighter deadline than the other tasks and, thus,
even a small amount of blocking delay can make it miss the deadline.

The blocking delay can be reduced by transforming the source code of tasks.
For example, a task's WCBT can be reduced by unrolling loops in the program
of the task. In this case, a single loop is transformed into a number of equivalent
loops. This helps reduce the WCBT of the task since most of the useful cache
blocks are due to loop statements. This transformation places preemptible exe-
cution points between the resulting unrolled loops, thus reducing the WCBT. If
a loop is transformed into n loops, the WCBT due to the loop becomes approx-
imately 1=n of the WCBT of the loop before the loop unrolling.

However, the loop unrolling decreases temporal locality of instruction refer-
ences and increases the code size. Thus, this technique trades increased WCET
(due to increased cache misses) and code size for reduction in the WCBT.

Loop unrolling was applied to the tasks �t and ludcmp. After the loop un-
rolling, the ratios of the WCBT to the WCET of the two tasks are reduced from
91.7 % to 19.1 % and from 73.3 % to 6.3 %, respectively. Figures 5(a) and (b)
give the WCRT and the ratio of the WCRT to the deadline of each task, re-
spectively, for the LPS case after the loop unrolling is applied. As expected, the
WCRT of higher priority tasks (most notably the highest priority task matmul)



62

P

U

QP

QU

RP

RU

SP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@H
�
�
�
��
�
@�
@Q
P
P
P
P
I

������

���

��������

������

(a)

P

RP

TP

VP

XP

QPP

QRP

QTP

QVP

UP UU VP VU WP WU XP XU

����@��������@������@HEI

w
c
r
t
@O
@�
�
�
�
��
�
�
@H
E
I

������

���

��������

������

(b)

Fig. 5. Results of source code transformation

is reduced signi�cantly due to the reduction of the WCBTs of the �t and ludcmp

tasks. This improves the schedulability of the whole task set.

4.4 System Utilization

Figure 6 gives the processor time gain obtained by using LPS for the two previous
task sets. The x-axis is the cache re�ll time, and the y-axis is the percentage
of processor time saved by LPS. The results were obtained by averaging the
processor time over 100 di�erent simulation runs with random phasing between
tasks. The results show that as the cache re�ll time increases, the percentage
of the saved processor time increases too (up to 44 %). The percentage gain is
greater for Task Set 1 than for Task Set 2 since the number of preemptions in
Task Set 1 is larger than that in Task Set 2 and so are the savings.

5 Conclusion

We have proposed a novel scheduling scheme called LPS (Limited Preemptible
Scheduling) that allows preemptions only at execution points with small cache
reloading costs. We have also given a schedulability analysis technique that con-
siders not only the reduction of the cache-related preemption delay by LPS but
also the increase in the blocking delay resulting from nonpreemptible code sec-
tions. The worst case blocking delay resulting from nonpreemptible code sections



63

P

QP

RP

SP

TP

UP

P X QV RT SR TP TX UV VT

�����@������@����@H������I

�
��
�
�
�
�
�
�@
��
�
�
@�
�
��
@H
E
I

t���@���@Q

t���@���@R

Fig. 6. Processor time gain

of a lower priority task was estimated by augmenting a method for estimating
the worst case execution time explained in [8].

We assessed the impact of the LPS scheme on schedulability and system uti-
lization through a set of experiments. The results showed that LPS can enhance
the schedulability of a task set when the task set su�ers from tight deadlines for
lower priority tasks. The results also show that LPS saves a signi�cant amount
of processor time (by up to 44 %) and that the percentage of saved processor
time increases as the cache re�ll time increases.

We are currently working on an optimization technique that assignsM values
to tasks in such a way that maximizes the schedulability of the given task set.
This technique uses information about how the WCBT of a task changes as
the M value increases, which is obtained by a per-task analysis. The technique
identi�es the task that limits the schedulability of the task set and changes the
M values of tasks accordingly.

References

1. R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding worst-case in-

struction cache performance. In Proceedings of the 15th Real-Time Systems Sym-

posium, pages 172{181, Dec. 1994.

2. C. A. Healy, D. B. Whalley, and M. Harmon. Integrating the timing analysis of

pipelining and instruction caching. In Proceedings of the 16th Real-Time Systems

Symposium, pages 288{297, Dec. 1994.



64

3. Y. Hur, Y. H. Bae, S.-S. Lim, S.-K. Kim, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,

and C. S. Kim. Worst case timing analysis of RISC processors: R3000/R3010 case

study. In Proceedings of the 16th Real-Time Systems Symposium, pages 308{321,

Dec. 1995.

4. M. Joseph and P. Pandya. Finding response times in a real-time system. The BCS

Computer Journal, 29(5):390{395, Oct. 1986.

5. D. B. Kirk. SMART (strategic memory allocation for real-time) cache design. In

Proceedings of the 10th Real-Time Systems Symposium, pages 229{237, Dec. 1989.

6. C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and

C. S. Kim. Analysis of cache-related preemption delay in �xed-priority preemp-

tive scheduling. In Proceedings of the Seventeenth Real-Time Systems Symposium,

pages 264{274, Dec. 1996.

7. Y. T. S. Li, S. Malik, and A. Wolfe. E�cient microarchitecture modeling and

path analysis for real-time software. In Proceedings of the 16th Real-Time Systems

Symposium, pages 298{307, Dec. 1995.

8. S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,

K. Park, S.-M. Moon, and C. S. Kim. An accurate worst case timing analysis for

RISC processors. IEEE Transactions on Software Engineering, 21(7):593{604, Jul.

1995.

9. J. Simonson. Cache Memory Management in Real-Time Systems. PhD thesis,

University of Illinois at Urbana-Champaign, Sep. 1996.

10. K. Tindell, A. Burns, and A. Wellings. An extendible approach for analyzing �xed

priority hard real-time tasks. The Journal of Real-Time Systems, 6(2):133{151,

Mar. 1994.

11. A. Wolfe. Software-based cache partitioning for real-time applications. In Proceed-

ings of the 3rd International Workshop on Responsive Computer Systems, Sep.

1993.


