
*
Integrating the Timing Analysis of Pipelining and Instruction Caching

Christopher A. Healy, David B. Whalley
Computer Science Dept., Florida State Univ.

Tallahassee, FL 32306-4019
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506

Abstract
Recently designed machines contain pipelines and caches.
While both features provide signifrcant performance
advantages, they also pose problems for predicting execu-
tion time of code segments in real-time systems. Pipeline
hazards may result in multicycle delays. Instruction or
data memory references may nor be found in cache and
these misses typically require several cycles to resolve.
Whether an instruction will stall due to a pipeline hazard
or a cache miss depends on the dynamic sequence of pre-
vious instructions executed and memory references per-
formed. Furthermore, these penalties are nor independent
since delays due to pipeline stalls and cache miss penal-
ties may overlap. This paper describes an approach for
bounding the worst-case performance of large code seg-
ments on machines that exploit both pipelining and
instruction caching. First, a method is used to analyze a
program's controljow to statically categorize the caching
behavior of each instruction. Next, these categorizations
are used in the pipeline analysis of sequences of instruc-
tions representing paths within the program. A timing
analyzer uses the pipeline path analysis to estimate the
worst-case execution performance of each loop and func-
tion in the program. Finally, a graphical user interface is
invoked that allows a user to request timing predictions
on portions of the program.

1. Introduction

Many architectural features, such as pipelines and
caches, in recent processors present a dilemma for archi-
tects of real-time systems. Use of these architectural fea-
tures can result in significant performance improvements.
In order to exploit these performance improvements in a
real-time system, the WCET (Worst Case Execution
Time) must be determined statically. Yet these same fea-
tures introduce a potentially high level of unpredictability.
Dependencies between instructions can cause pipeline
hazards that may delay the completion of instructions.
Instruction or data cache misses can also require several

*This work was supported in part by the Office of Naval Research
under contract number "14-94-1-0006.

Marion G. Harmon
Comp. & Info. Sys. Dept., Florida A&M Univ.

e-mail: harmon@cis.famu.edu, phone: (904) 599-3042
Tallahassee, FL 32307-3101

cycles to resolve. Predicting the caching behavior of an
instruction is even more difficult since it may be affected
by memory references that occurred long before the
instruction was executed.

Unfortunately, the timing analysis of these features is
exacerbated since pipelining and caching behavior are not
independent. For instance, consider the code segment and
pipeline dia am in Figure 1 consisting of three SPARC
instructions. Each number within the pipeline diagram
represents that the specified instruction is currently in the
pipeline stage shown to the left and is in that stage during
the cycle indicated above. The first instruction performs a
floating-point addition and requires a total of 20 cycles.
Fetching the second instruction results in a cache miss,
which is assumed to have a miss penalty of nine addi-
tional cycles. The third instruction has a data dependency
with the first instruction and the execution of its MEM
stage is delayed until the floating-point addition is
calculated.2 The miss penalty associated with the access
to main memory to fetch the second instruction is com-
pletely overlapped with the execution of the floating-point
addition in the first instruction. If the pipeline analysis
and cache miss penalty were treated independently, then
the number of estimated cycles associated with these

F

SPARC Instructions
inst 1: faddd %f2,%fO,%f2
inst 2: sub %04,%gl,%i2
inst 3: std %f2,[%00+8]

Pipeline Diagram

Figure 1. Overlapping pipeline stages with a cache miss.

' The pipeline cycles and stages represent the execution of these
instructions on a MicroSPARC I processor [l].

A std instruction has no write back stage since a store instruc-
tion only updates memory and not a register. The s t d instruction also
requires three cycles to complete the MEM stage on the MicroSPARC I.

288
1052-8725/95 $04.00 0 1995 IEEE

mailto:whalley@cs.fsu.edu
mailto:harmon@cis.famu.edu

instructions would be increased from 22 to 31 (i.e. by the
cache miss]penalty).

This palper describes an approach for integrating the
timing analysis of pipelining and insbruction caching
behavior. Let a task be the portion of code executed
between hvo scheduling points (context switches) in a
system with a non-preemptive scheduling paradigm.
When a task starts execution, the cache memory is
assumed to be invalidated. During task execution,
instructions are brought into cache and often result in
many hits and misses that can be predicted statically.
These predictions can be integrated with pipeline analysis
to estimate tight WCET bounds.

Figure 2 depicts an overview of the approach
described in this paper for bounding the worst-case per-
formance of large code segments on machines with
pipelines and instruction caches. Control-flow informa-
tion, which could have been obtained by analyzing assem-
bly or object files, is stored as the side effect of the compi-
lation. The control-flow information is passed to a static
cache simulator. It constructs the contrcd-flow graph of
the program that consists of the call graph and the control
flow of each function. The program control-flow graph is
then analyzled for a given cache configuration and a cate-
gorization ad each instruction’s potential caching behavior
is produced. The timing analyzer uses these categoriza-
tions to detmnine whether an instruction fetch should be
treated as a hit or a miss during the pipeline analysis. It
produces a ?worst-case estimate for each bop and function
within the program. Finally, user interface windows are
displayed allowing one to request the timing bounds for
portions of the program.

2. Instruction caching categorization

The method of static cache simulation is used to stati-
cally categorize the caching behavior of each instruction

3 using a specific cache configuration in a given program.
The static simulation consists of three phases. First, a
program control-flow graph of the enlire program is

constructed. This includes the control flow within each
function and a function instance graph. A function
instance graph is simply a call graph where each function
is uniquely identified by the sequence of call sites
required for its invocation. Thus, a directed acyclic call
graph (without recursion) is transformed into a tree of
function instances.

Next, this program control-flow graph is analyzed to
determine the possible program lines that can be in cache
at the entry and exit of each basic block within the pro-
gram. The iterative algorithm in Figure 3 is used to calcu-
late an input and output cache state for each basic block in
the function instance graph. A cache state is simply the
subset of all program lines that can potentially be cached
at that point in the control flow.

input-state(top) L all invalid lines
WILE any change DO
FOR each basic block instance B DO

input-state(B) = NULL
FOR each immed pred P of B DO

input-state(B) += output-state(P)
output-atate(B) =

(input-state(B) + prog-linea(B)) - conf-linea(B)
Figure 3. Algorithm to calculate cache states.

Finally, the input state for each basic block is used to
categorize the caching behavior of each instruction within
the block. An instruction’s caching behavior is assigned
to one of four categories for each loop level in which an
instruction is contained. Note that each function is treated
as a loop that executes for a single iteration. The four cat-
egories of caching behavior are:

Always Miss. The instruction is not guaranteed to be in cache
when it is referenced.
Always Hit. The instruction is guaranteed to always be in cache
when it is referenced.
First Miss. The instruction is not guaranteed to be in cache on
its first reference each time the loop is entered, but is guaranteed

Static cache simulation i s only briefly introduced in this section.
It is described in more detail elsewhere [2], [3],[4], [5].

Control
Timing

- Predictions Files Information

Cache Caching
Configuration

Categorizations

Figure 2. Overview of bounding pipeline and cache performance.

289

to be in cache on subsequent references.
First Wit. The instruction is guaranteed to be in cache on its
first reference each time the loop is executed, but is not guaran-
teed to be in cache on subsequent references.

Beg Inst

CyclsfromEnd

CyclesfromBeg
End Inst

3. Pipeline path analysis
This section describes how the analysis of the pipeline

performance of a sequence of instructions is accom-
plished. First, information about each type of instruction
is read from a machine-dependent data file. This pipeline
information for each type of instruction includes the
worst-case number of cycles required by each stage of the
pipeline for its execution! The analyzer also stores the
latest stage each source operand of the instruction can
receive its value via forwarding without delay and the ear-
liest stage in which the result of the instruction type can
be forwarded. Finally, information about the specific
instructions in the sequence is obtained. This information
includes the actual registers associated with the source
and destination operands, which is obtained from the con-
trol-flow information generated by the compiler, and the
instruction caching categorization of each instruction,
which is produced by the static cache simulator.

During the analysis of a path, the analyzer keeps track
of the total number of cycles required by the path and a
set of pipeline information. This information includes
when each pipeline stage was first and last used within the
path for avoiding structural hazard^.^ It is represented as
the number of cycles from the beginning and end of the
path for each pipeline stage. In addition, information
indicating when each register was first and last used in the
path is also maintained to avoid data hazards.6 Again, this
information is represented as the number of cycles from
the beginning and end of the path for each register. The
set of pipeline information for avoiding hazards after the
three instructions in Figure 1 have been analyzed is shown
in Tables 1 and 2. Table 1 represents the information for
avoiding structural hazards. Only the numbers shown in
bold are required to be stored. These values represent
when each stage was first used from the beginning of the
path and last used from the end. The values in the table
correspond to the information associated with the instruc-
tion numbers that are represented in bold in Figure 1.

1 1 2 1 2 2 1
0 1 U 2 13 14 19

3 2 1 3 3 3 1
10 9 3 3 0 7 2

The number of cycles required for sane floating-point instruc-
tions on processors can vary depending upon the values of its operands.

A structural hazard indicates that a stage of an instruction can-
not be executed earlier due to the pipeline stage already being used.

A data hazard indicates that a particular stage of an instruction
cannot be executed earlier due to the pipeline stage using a source regis-
ter that matches the destination register not yet updated by a pipeline
stage of another instruction.

Register
firstneeded
lastproduced

Table 2 represents the information for avoiding data haz-
ards. Only the information for the registers referenced in
the instructions in Figure 1 are shown.

%gl %oO %o4 %i2 %R) %f2
12 13 U NIA 2 2
NIA NIA N/A 9 NIA 3

Table 2. Data hazard information
for the instructions in Figure 1.

This set of pipeline information is created by process-
ing one instruction at a time from the sequence of instruc-
tions that comprise a path. Each instruction can be repre-
sented by the same form of pipeline information that is
shown in Tables 1 and 2 for a path. This information is
modified if it is found that the instruction’s caching cate-
gorization indicates that the instruction fetch was a miss.
The miss penalty is used to increment the total number of
cycles and the cycles from the beginning (structural haz-
ard information) for all other stages besides the IF stage
and the lirst needed registers (data hazard information) for
that instruction. The addition of an instruction to the
pipeline information for a path will not only update the
total number of cycles and the information associated
with the end of the pipeline, but also the beginning of the
pipeline if a referenced stage or register in the instruction
had not been previously used.

Retaining this set of pipeline information allows addi-
tions to the beginning or end of a path. Since both the
pipeline requirements for a path and a single instruction
can be represented with this set of pipeline information,
concatenating two paths together can be accomplished in
the same manner as concatenating an instruction onto the
end of a path. The concatenation is accomplished one
stage at a time. A stage from the second set of pipeline
information is moved to the earliest cycle that does not
violate any of the following conditions.

(1) There is no structural hazard with another instruction. For
instance, the beginning of the IF stage of instruction 2 in
Figure 1 could not be placed in cycle 1 since that stage was
already occupied.

(2) There is no data hazard due to a previous instruction pro-
ducing a result that is needed by a source operand of the
current instruction in that stage. For example, the

290

(3)

beginning of the MEM stage for instruction 3 in Figure 1
could not be moved past the FEX stage (of instruction 1 at
cycle 1!2 due to the data hazard between the faddd and
s t d instructions.
The placement of the instruction does nlot violate its own
pipeline requirements. For instance, the ID stage of
instruction 2 has to occur at least 10 cyclles after the begin-
ning of its IF stage in Figure 1.

Other information associated with the pipeline analy-
sis of a path need not be stored. For instance, it does not
matter when instruction 2 entered the ID stage after the
pipeline information has been calculated for all three
instructions in Figure 1. No instruction being added to
either the beginning or end of the pipeline could possibly
have a structural hazard with the ID stage of instruction 2
since it would first have a structural hazard with the ID
stage of instruction 1 or instruction 3, reslpectively. Thus,
the amount of pipeline information associated with a path
is dramatictally reduced as opposed to storing how each
stage is used during every cycle. Furthermore, no limit
need be imposed on the amount of potential overlap when
concatenatiing the analysis of two paths.

4. Loop analysis

In order to predict the worst-case execution time of a
loop, the timing analyzer has to predict the execution time
of each possible path within the loop. The timing ana-
lyzer will rwerve either one cycle or the n,umber of cycles
associated with a cache miss for the IF (instruction fetch)
stage for each instruction categorized as ,an always hit or
always miss, respectively. If an instruction is categorized
as a first miss, then the timing analyzer will treat the
instruction fetch as a miss if the program line has not yet
been encouintered as a first miss in the timing of the loop.
If the program line has been encountered, then the instruc-
tion fetch will be treated as a hit instead. Likewise, if an
instruction is categorized as a first hit, then the timing
analyzer will treat the instruction fetch as a cache hit on
the first reference and a cache miss thereafter.

With pipelining it is possible that the combination of a
set of paths may produce a longer execution time than just
selecting the longest path. For instance, consider a loop
with two paths that take about the same number of cycles
to execute. One path has a floating-point addition near the
beginning of the path and the other path has a floating-
point addition near the end. Altemating between the
paths will produce the worst case execution time since
there will be a structural hazard between the two floating-
point additi ons .

To avoid the problem of calculating all combinations
of paths, which would be the only method for obtaining
perfectly accurate estimations, it was decided to union the

pipeline effects of the paths for an iteration of a loop
together. This unioning of pipeline information simplified
the algorithm and also did not cause a noticeable overesti-
mation. All paths through a loop start with the same loop
header block. Thus, the beginning pipeline information
(stages and registers) is rarely affected. Paths through a
loop often end with the same block of instructions. In
addition, one path may be longer than the others, so the
ending pipeline information is often not affected.

Figure 4 shows a to function and its corresponding
SPARC assembly code? There are two possible paths
through an iteration of the loop in the program,
<7,8,12,13,14,15,16> and <7,8,9,10,11,13,14,15,16>.
Figure 5 shows the instructions and corresponding
pipeline diagrams for the two paths within the loop.* To
simplify the example, it is assumed that the loop has
already been executed and all of the instructions and data
are in cache (i.e. there are no instruction fetch or data
memory misses). Table 3 shows the structural hazard
information for the two paths in Figure 5 and how the
information in path 1 has to be adjusted before it would
be uniioned. The union of the number of cycles from the
beginning and end of the paths for a given stage will sim-
ply be the minimum number encountered. The structural
hazard information indicating the number of cycles from
the end of path 1 has to be adjusted since its total number
of cycles is 13 less than the cycles required by path 2.
The resulting union of the structural hazard information of
the two paths would be identical to the structural hazard
information for path 2. Note that the data hazard informa-
tion would change slightly since instruction 12 references
register to0 as a source operand and to1 as both a
source and destination. Yet, representing access to these
registers would not likely have an effect when the timing
analysis is performed between this path and its predeces-
sor and successor paths since the EX stage is used before
and after cycle 6, which is when instruction 12 enters the
EX stage.

’ Note that the generated assembly code has been optimized by
the compiler. The local variables i, count, and dcount have been al-
located to registers %02, %ol, and % f 2 , respectively. The instruction
following each transfer of control takes effect before the transfer of con-
trol is taken since the SPARC has delayed branches. The cmp compari-
son preceding the bge branch (instmction 7) has been moved to both
immediately precede the loop and in the delay slot (instruction 16) of the
bl branch (instruction 15). Branches with a “, a” represent that the re-
sult of Ithe instruction within the delay slot will be annulled if the branch
is not taken.

‘I Note instructions 7, 10, and 15 are transfers of control. The ac-
tual transfer of control (i.e. updating the program counter) occurs in the
ID stage. Thus, there are no additional pipeline stages associated with
these instructions. Also note the one cycle stall between instructions 8
and 12 in the EX stage of path 1 due to a load hazard. Finally, the ldd
load (instruction 9) requires two cycles to complete the MEM stage [I].

29 1

C Source Code
--------_----------I---

main0
{

int i, cnt = 0;
double dcnt = 0.0;
extern int incr;
extern double dincr;

for (i=O; i < 10;
i++)

if (i < 5)
dcnt += dincr;

else
cnt += incr;

1

Inat Assembly Code ----
0 m v %gO,&Ol
1 sethi %hi(L01),%00
2 ldd [%oO+%lo(LOl) I ,%fa
3 mov %g0,%02
4 sethi %hi(-dincr) ,%03
5 sethi %hi (-incr) ,%04
6 cmp %o2,5
7 L0a bge,a L9
0 Id [%04+%1o(-incr) I ,%oO
9 ldd [%03+%lo(-dincr) I ,%fO
10 ba L6
11 faddd %f2,%fO,%f2
12 L9r add %ol,%00,%01
13 L6r add %02,1,%02
14 cmp %02,10
15 bl,a L0
16 cmp k2.5
17 ret1
18 llOp

Figure 4. Example C source code and
corresponding SPARC instructions.

PathZInfa

CyclesfromBeg
CyclesfromEnd

Let n be the maximum number of iterations associated
with a loop. The algorithm for estimating the worst-case
time for a loop is shown in Figure 5. The WHILE loop in
the algorithm terminates when the number of calculated
iterations reaches n - 1 or no more first misses (first hits)
are encountered as misses (hits). Thus, the WHILE loop
will either iterate (n - 1) or (m + l), where m is the num-
ber of paths in the loop since a k s t miss (first hit) can
miss (hit) at most once during the loop execution.

The algorithm selects the longest path on each itera-
tion of the loop. In order to demonstrate the correctness
of the algorithm, one must show that no other path for a
given iteration of the loop will produce a longer worst-
case time than that calculated by the algorithm. Since the
pipeline effects of each of the paths within the loop are
unioned, it only remains to be shown that the caching
effects are treated properly. The instruction fetch time
used for each instruction depends on whether it is
assumed to be a hit or miss, which depends OR its catego-
rization. The cache hit time is one cycle on most

IF ID EX E X MEM WB FWB
0 1 3 7 4 5 7

15 14 13 1 12 11 0

Path 1 Instructions
inst 7 : bge,a L19
inst 8: Id [%o4+%lo(~incr)j,%oO
inst 12: add %ol,%oO,%ol
inst 13: add %02,1,%02
inst 14: cmp $02.10
inst 15: b1.a L18
inst 16: cmp %02,5

Path 1 Pipeline Diagram
I cvcle

-
mgc

Path 2 Instructions
inst 7: bge,a L19
inst 8: Id [%o4+%lo~~incr)l,%oO
inst 9: ldd [%03+%1oi_dincr)j,%fO
inst 1 0 : ba L16
inst 11: faddd %f2,%fO,%f2
inst 13: add %02,1,%02
inst 14: cmp 'So3,lO
inst 15: bl,a L18
inst 16: cmp 802,s

Path 2 Pipeline Diagram

F W B I I I I I I 1 \ 9 1 I I I I I 1 1 I 11

Figure 5. Pipeline diagrams for the two paths
through the loop in Figure 4.

PathlInfa I IF I ID I EX I FEX I MEM I WB I FWB
CyclesfmmBep. I 0 I 1 1 3 I N/A I 4 I 5 I N/A

Table 3. Structural hazard information
for the paths in Figure 5.

machines. The cache miss time is the cache hit time plus
the miss penalty, which is the time required to access
main memory. All categorizations are treated identically
on repeated references, except for first misses and first
hits. Assuming that the instructions have been catego-
rized correctly for each loop and the pipeline analysis was
correct, it remains to be shown that first misses and first

292

pipeline-information = NULL.
first-mieises-encountered I NULL.
first-hitis-encountered = NULL.
curr-iter = 0 .
WHILE curr-iter != n - 1 Do

curr-iter +I 1.
Find the longest continue path.
first-inioae~-encountered +=

f irist minses that were misseai
in this path.

firiat hit8 that were hits in this path.

union of the information for a l l paths.

are encountered in the path THEN
break.

f irst/hits_encountered +=

Concatimnate pipeline-informationr with the

IF no n e w f i r s t misses or f i r s t hits

Concatenate pipeline-information with the union
of the pipeline information for a l l paths
(n - 1 - curr-iter) times.

FOR each iaet of exit paths that have a
trans:Ltion to a unique exit block DO

Find tlhe longest exit path in the aet.
firat~nisaes-encountered +=

firiat misses that were misses1
in this path.

firiat hits that were hits in this path.

union of the information for a l l exit
patlhe in the set .

Store this information with the exit block
for the loop.

firstlhits-encountered +I

Concatmate pipeline-informationr with the

:Figure 6. Loop analysis algorithm.

Child => Parent
fm => fm

m=>fh

hits are interpreted appropriately for a given iteration of
the loop. A correctness argument about the interpretation
of first hits and first misses is given in previous work [4].

Once no1 more first hit or first miss instructions are
encountered that hit or miss respectively, the pipeline
effects associated with the path chosen will not change
since the caching behavior of the instructions within a
path will always be treated the same. The pipeline effects
of the last path are efficiently replicated for all but one of
the remaining iterations. The last iteration of the loop is
treated separately. The longest exit path for a loop may
be shorter tlm the longest continue path. By examining
the exit paths separately, a tighter es8timate can be
obtained. Thus, the algorithm estimates a bound that is at
least as great as the actual worst-case bound.

Action to Adjust Child Loop l ime
Use the child loop time for the
first iteration. For all remaining
iterations subtract the miss penal-
ty from the child loop time.

For the first iteration subtract the
miss penalty from the child loop
time. For all remaining iterations
use the child loop time directly.

5. Prograim analysis

A timin:g analysis tree is constructed to predict the
worst-case times of code segments cointaining nested
loops and function calls. Each node of the tree represents
either a loop or a function in the function instance graph.
Each node is considered a natural loop. The nodes repre-
senting the outer level of function instances are treated as

9

loops that will iterate only once when entered.
The loops in the timing analysis tree are processed in a

bottom-up manner. In other words, the worst-case time
for a loop is not calculated until the times for all of its
immediate child loops are known. The algorithm given in
the previous section described how a loop containing no
other loops would be analyzed. The timing of a non-leaf
loop is accomplished using this algorithm and the pipeline
infomation and total times from its immediate child
loops. Associated with each loop is a set of exit blocks,
which indicates the possible blocks outside the loop that
can be reached from the last block in each exit path. A
unique set of timing information is stored for the child
loop with each of these exit blocks. If a path within a
loop enters a child loop, then the pipeline information and
total time from the appropriate exit block are used at that
point during the analysis of the path."

The transition of an instruction categorization from the
child loop level to the current loop level will be used to
determine if any adjustment to the the child loop time is
required. These transitions between categorizations
requiring adjustments are described in Table 4. The
fm=>fm adjustment is necessary since there should be
only one miss associated with the instruction and a miss
should only occur the first time the child loop is entered.
The m=>fh adjustment is necessary since the first refer-
ence to the instruction in the outer loop will be a hit.

Table 4. Use of child loop times.

Making these adjustments when pipelining is involved
resulted in some slight overestimations. The problem is
that tlhe caching behavior of a particular instruction
depends on the loop level being analyzed. When an
adjustment at an outer level would be needed for an
instruction, the authors conservatively added the maxi-
mum number of cycles associated with a cache miss

A natural loop is a loop with a single ently block. While the
static simulator can process unnatural loops, the timing analyzer is re-
stricted to only analyzing natural loops since it would be difficult for
both the timing analyzer and the user to determine the set of possible
blocks associated with a single iteration in an unnatural loop. It should
be noted that unnatural loops occur quite infrequently.

'" The timing analysis across loop levels is only briefly introduced
in this section. It is described in more detail elsewhere [2], 141.

293

penalty to the total time of the path containing the instruc-
tion and treated the instruction fetch as a cache hit within
the path pipeline analysis. When the instruction fetch
should be viewed as a cache hit at an outer loop level, the
previously added miss penalty cycles were subtracted
from the loop’s time. This strategy permitted a single
pipeline analysis of each loop, yet adjustments could still
be made at outer levels of the program. An overestima-
tion occurs when the instruction fetch is treated as a miss
and the cache miss penalty could be overlapped with the
execution of other instructions or stalls (as shown in Fig-
ure 1). Fortunately, these adjustments are not that com-
mon. Results indicated that only about 4.5% of the
instructions within the function instance graph were clas-
sified as first misses or first hits and many of these did not
require adjustments. Thus, these adjustments resulted in
only small and relatively infrequent overestimations.

Hit
Ratio

81.41%
81.81%

99.24%
88.22%
83.99%
88.41%

6. Results

Description or Emphasis

Enclypts and Decrypts 64 Bits
Counts and Sums Values in a
lOOxl00 Matrix
Multiplies 2 50x50 Matrices
Sums Values in a lOOxl00 Matrix
Bubblesort of 500 Numbers
Calcs Sum, Mean, Var., StdDev.,
& Linear Con. Cceff.

Measurements were obtained on code generated for
the SPARC architecture by the vpo optimizing compiler
[6]. Six simple programs described in Table 5 were used
to assess the effectiveness of the timing analyzer. A
direct-mapped instruction cache configuration containing
8 lines of 16 bytes was used. Thus, the cache contained
128 bytes of instructions. The programs were 4 to 17
times larger than the cache as shown in column 2 of Table
5. Column 3 shows the hit ratio of each program. Only
Matmul had a very high ratio due to three tightly nested
loops in a single function to perform the matrix multipli-
cation. Each program was highly modularized to test the
handling of timing predictions across function calls.

Name

Des
Matcnt

Matmul
Matsum
sort
Stats

-
NWll
Bytes
2,240

812

768
644
556

1,428

-

Table 5. Test programs.

The results of evaluating these programs are shown in
Table 6. The observed cycles for these measurements
were obtained by enhancing a traditional cache simulator
171. The simulator produced the pipeline only observed
cycles and the timing analyzer produced the pipeline only
esfimafed cycles by assuming that all instruction fetches
(IF stages) were cache hits and only required a single
cycle. The pipeline only naive cycles were obtained by

assuming that only a single pipeline stage could be
executing at one time (i.e. no overlap). The caching only
observed cycles and caching only estimated cycles were
obtained with the assumption that the pipeline had only a
single stage (an IF), a cache hit required a single cycle,
and a cache miss required an additional miss penalty of
nine cycles. The naive caching only cycles were calcu-
lated by assuming every instruction fetch resulted in a
cache miss. The pipeline and caching estimated cycles
were produced by the techniques that were described in
this paper for integrating the analysis of pipelining and
instruction caching behavior. All data cache references
were assumed to be hits in the three sets of measurements.

66,594
Matcnt 1.063.572

Matsum 933,540
3,380,660

900,231

Cvcles

Matcnt 1.169.055

Matsum 707,219
7,639.61 1

372.4 10

149,706
1,769,321

7,165,125
Stats 1.01 6,048

Estimated I Estim. I Naive I

4,347,806 1.00 2.13
933,540 1.00 2.28

6,748,925 2.00 8.13
900,231 1.00 1.70

Estimated Estim. Naive
Cycles Ratio Ratio
163,015 1.14 3.86

1,259,055 1.08 3.79
1,527,648 1.00 9.36

707,219 1.00 4.85
15,253,902 2.00 8.17

372,410 1.00 4.90

Estimated Estim. Naive
Cvcles Ratio Ratio

I I

169,613 1.13 5.02
1.859.323 1.05 3.69
414451413 1.00 4.98
1,277,471 1.00 4.08

15,504,172 2.00 10.78
1.016.145 1 1.00 1 3.12 1

Table 6. Dynamic results for the test programs.

The pipelining only timing analysis had exact predic-
tions for all programs except Des and Sort. The analysis
of these two programs depicts problems faced by all tim-
ing analyzers. The timing analyzer did not accurately
determine the worst-case paths in a function within Des
primarily due to data dependencies. A longer path
deemed feasible by the timing analyzer could not be taken
in a function due to a variable’s value in an i f statement.
The Sort program contains an inner loop whose number
of iterations depends on the counter of an outer loop. At
this point the timing tool either automatically receives the
maximum loop iterations from the control-flow informa-
tion produced by the compiler or requests a maximum
number of iterations from the user. Yet, the tool would
need a sequence of values representing the number of

294

iterations for each invocation of the inner loop. The num-
ber of iteralions performed was overrepresented on aver-
age by a factor of two for this specific Iloop. Note that
both of these problems are encountered by other timing
tools and are not directly related to the pipeline analysis.

As reported previously [4], the caching only timing
analysis results were also quite accurate. This analysis
had exact predictions for Matmul, Malsum, and Stats
since there were few conditional constructs except to exit
loops. The Matcnt program used an i f -then-else
construct to either add a nonnegative value to a sum and
increment ai counter for the number of nonnegative ele-
ments or just increment a counter for the negative ele-
ments. The adding of the nonnegative value to a sum was
accomplished in a separate function, which was purposely
placed in a location that would conflict with the program
line containing the code to increment a counter for the
negative elements. Multiple executions of the then path,
which includes the call to the function to perform the
addition, still required more cycles than alternating
between the two paths. Yet, the algorithm for estimating
the worst-case instruction caching performance assumes
that the first reference to a program linte within a path
would alwaiys be a miss if there were accesses to any
other conflicting program lines within the same loop.
This assumption simplified the algorithm since the effect
of all combiinations of paths need not be cidculated. Thus,
one reference was counted repeatedly as ai miss instead of
a hit. This]path was executed 10,OOO times and accounted
for a 90,00(3 cycle [10,000*miss penalty] or an 8% over-
estimation. Note that the execution of this single path
accounted for 40.61% of the total instructions referenced
during the program execution. The programs Des and
Sort had overestimations caused by the same problems
described previously for the pipeline only measurements.
The naive catio was lower than initially anticipated by the
authors. These test programs contained many long run-
ning instructions (floating-point operations and integer
multiply and divides) that were frequently executed and
often resulted in stalls. In addition, transfers of control
were also quite frequent and were onky considered to
require two pipeline stages in our analysis.

The integrated pipeline and caching analysis also
resulted in quite tight predictions. Again the predictions
for the programs Matmul, Matsum, and Stats were very
accurate. Note that the estimated cycles were slightly
greater than the observed cycles for these programs. This
overestimation was due to the problem of an instruction's
caching belhavior changing between loop levels. These
changes require an adjustment as shown in Table 4. The
approach used by the authors was to treat such an instruc-
tion as a hit in the pipeline analysis and simply add the

miss penalty to the total time. When the instruction
should be viewed as a hit at an outer level, then this miss
penalty was simply subtracted and an accurate estimation
is obtained. However, in these three programs the poten-
tial overlap between a miss penalty and a stall due to a
hazard were not always detected." The Des, Matcnt, and
Sort programs had its usual overestimations due to data
dependencies, a cache conflict, and an inaccurate number
of estimated loop iterations, respectively. The naive ratio
indicates that much tighter WCET bounds can be obtained
when the benefits of pipelining and instruction caching
are analyzed.

7. User interface

Once the initial timing analysis has been completed, a
graphical user interface is invoked, This interface allows
the user to quickly request timing predictions for func-
tions, loops, paths, or subpaths via mouse clicks and
reports the best and worst-case timing estimations.
Whenever a different construct is selected, the highlighted
lines in windows containing the source and assembly code
are automatically updated and scrolled to the appropriate
position. Thus, the user can quickly observe the relation-
ship between timing constraints associated with the
source: code and sequences of machine instructions. This
interface is described in more detail elsewhere [8].

8. Comparison with previous work
There has been much work on the issue of predicting

execution time of programs. Most approaches in the past
have not dealt with the effects of pipelining and instruc-
tion caching [9], [lo], [I l l . There have also been some
recent studies on predicting pipeline performance by Har-
mon et. al. [12] and Namsimhan and Nilsen 131. Yet,
these studies did not address caching issues." Further-
more, the former study was limited to nonnested functions
and the latter study required the sequence of executed
instructions to be known. Finally, there has been some
recent work on predicting instruction caching perfor-
mance. Arnold et. al. [4] implemented a timing analysis
system to tightly bound instruction cache performance.
However, this approach did not address pipelining issues.

There has been only one previous study that attempted
to address the issue of predicting the WCET of programs
on machines with both pipelining and an instruction

" For instance, the 502 cycle overestimation in Mutmul occurred
from 50 miss penalties completely overlapping with stalls from an inte-
ger multiply instruct& and 52 misses overlapping with one cycle load
hazards.

Harmon assumed the entire code segment would fit into cache.
Thus, he assumed at most one miss for each cache reference.

295

cache. Lim et. al. [141 described an method based on an
extension of a previous timing tool [151. Lim’s method
differs quite significantly from our approach described in
this paper, which instead builds on flow analysis tech-
niques found in optimizing compilers. Lim’s method uses
a timing schema associated with each source-level lan-
guage program construct. They stored information about
a predetermined number of cycles at the head and tail of a
reservation table produced as a result of the pipeline anal-
ysis on the instructions associated with a program con-
struct. In addition, this method stored information about
the set of memory blocks whose first reference depends
upon the cache contents prior to the execution of the con-
struct. Lim also stored the set of memory blocks known
to remain in cache after the execution of the construct.
Eventually, this timing information is concatenated with
another construct that would be executed immediately
before the current construct. Their timing analyzer
attempted to overlap the head of the reservation table of
the current construct with the tail of the reservation table
of the other construct as much as possible. Likewise, the
list of memory blocks known to be in cache after execut-
ing the other construct is used to adjust the time of the
current construct by comparing this list to the list of first
reference blocks in the current construct. This method
stored multiple paths for conditional constructs, such as
an if-then-else. Theyprunedoreliminated apartic-
ular path when it was found that the worst-case execution
time of the path was faster than the best-case execution
time of another path within the same construct.

There are some limitations with Lim’s method. The
accuracy of their results is limited by the length of the
head and tail of the reservation table stored with the pro-
gram constructs. They concluded that the length of this
head and tail only had to be large enough to contain infor-
mation for five cycles. This conclusion was based on
experiments indicating that their timing analysis results
did not change significantly when the length was
increased further. However, there are some instructions
that require many cycles. For instance, a floating-point
division on the MicroSPARC I can require up to 56 cycles
to complete [l]. If such an instruction were at the end of
a construct, then many more than five integer instructions
at the head of a following construct could be overlapped
with the floating-point division. In addition, their method
stores information about each stage for every cycle in the
head and tail of the reservation table. In contrast, our
method requires much less information and imposes no
limit on the length of the potential pipeline overlap. Only
the relative distance from the beginning and end of the
path has to be stored for each stage for the structural haz-
ard pipeline information as shown by the numbers repre-
sented in boldface in Table 1.

The approach that Lim et. al. used to analyze caching
behavior limits the accuracy of the analysis. They used a
single bottom-up pass when performing the timing analy-
sis of a program. The caching behavior of a large percent-
age of the instruction fetches within a construct would be
unknown until many of the surrounding constructs were
processed. Their approach was to treat the instruction
fetch as a hit within the pipeline and add the cycles asso-
ciated with a cache miss penalty to the total time of the
construct. When it was later found that an instruction ref-
erence was a hit, they would subtract the miss penalty
from the total time. However, an overestimation may
result when the instruction is not found in cache. As
shown in Figure 1, the instruction fetch miss penalty of
one instruction (instruction 2) can be completely hidden
by a stall with a long running instruction (data hazard stall
on instruction 3). Whether the fetch of instruction 2 was a
hit or a miss would have no effect on the total number of
cycles. The Lim method would rarely detect instruction
fetches that would always be misses until the surrounding
constructs are analyzed, which is after the pipeline analy-
sis of a construct has already occurred. Our approach of
categorizing the caching behavior of each instruction
before stating the timing analysis allows the detection of
such situations. For instance, we found that the pipeline
and caching estimated ratio for the six test programs
increased on average by about 3% when the complete
miss penalty was always added for each predicted miss.

9. Future work

We are working on several enhancements to the timing
analyzer. An algorithm that predicts best-case pipelining
and instruction cache performance is currently being
implemented. We plan to automate the detection of many
data dependencies using existing compiler optimization
techniques to obtain tighter performance estimations [161.
The retargetability of the timing analyzer will also be
enhanced by isolating any remaining machine dependent
information in data files.

We are exploring methods to predict the timing of
other architectural features associated with RISC proces-
sors. Work is currently ongoing to verify that our tech-
nique accurately predicts performance for the
MicroSPARC I by using a logic analyzer. This will
require predicting the performance of other features, such
as wrap-around filling of cache lines. The effect of data
caching is also an area that we are pursuing. Unlike
instruction caching, many of the addresses of references
to data can change during the execution of a program.
Thus, obtaining reasonably tight bounds for worst-case
and best-case data cache performance is significantly
more challenging. However, many of the data references

296

are known. For instance, static or global data references
retain the same addresses during the execution of a pro-
gram. Due to the analysis of a function instance tree (no
recursion alilowed), addresses of run-time istack references
can be statically determined even when the addresses may
differ for different invocations of the same function.
Compiler flow analysis can be used to detect the pattern
of many callculated references, such as indexing through
an array. While the benefits of using a data cache for real-
time systems will probably not be as signilicant as using
an instruction cache, its effect on performance should still
be substantical.

10. Conclusions
This paper has presented a technique for predicting the

worst-case execution time of programs on machines with
pipelining and instruction caches. First, a static cache
simulator analyzes the control flow of a program to stati-
cally categorize the caching behavior of each instruction
within the program. Second, a timing analyzer uses these
instruction categorizations when analyzing the pipeline
performance of a path of instructions. Tlhird, the timing
analyzer uses a concise representation of the pipeline
information to concatenate the performance of paths in an
efficient manner when predicting the performance of
loops. Fourth, a timing analysis tree is u s d to predict the
performance of an entire program. Finally, a graphical
user interface has been implemented that allows users to
obtain timing predictions of portions of ah~c program. The
results indicate that the timing analyzer cain quickly obtain
tight predictions of WCET.

11. Acknowledgements
The authors thank Robert Amold and Frank Mueller

for providing advice and the platform for this research.
The current timing analyzer, which includes pipeline anal-
ysis, was a direct extension of the previous timing ana-
lyzer implemented by Robert h o l d , which bounded
instruction cache performance. The static simulator
implemented by Frank Mueller was also used in this pro-
ject. Lo KO and Emily Ratliff implemented the user inter-
face. The anonymous reviewers also provided helpful
suggestions that improved the quality of the paper.

12. References
[l] Texas Instruments, Inc., Producf Preview of the

TMS39OSIO Integrated SPARC Processor, 1993.
[2] E Mueller, Static Cache Simulation and Its Applications,

PhD]Dissertation, Florida State University, Tallahassee,
FL (August 1994).

I31

171

t81

11 11

1121

I141

1151

U61

F. Mueller and D. Whalley, “Efficient On-the-fly Analy-
sis of Program Behavior and Static Cache Simulation,”
Static Analysis Symposium, pp. 101-115 (September
1994).
R. Arnold, E Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-case Instruction Cache Performance,”
Proceedings of the Fifreenth IEEE Real-Time Systems
Symposium, pp. 172-181 (December 1994).
F. Mueller and D. B. Whalley, “Fast Instruction Cache
Analysis via Static Cache Simulation,” Proceedings of
the 28th Annual Simulation Symposium, pp. 105-114
(April 1995).
M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,” Proceedings of the SIGPLAN ‘88
Symposium on Programming Language Design and
Implementation, pp. 329-338 (June 1988).
J. W. Davidson and ID. B. Whalley, “A Design Environ-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessors and Microsystems 15(9) pp.
459-472 (November 1991).
L. KO, D. B. Whalley, and M. G. Harmon, “Supporting
User-Friendly Analysis of Timing Constraints,” Proceed-
ings of the ACM SlGpLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, pp.
107-115 (June 1995).
C. Y. Park, “Predicting Program Execution Times by
Analyzing Static and Dynamic Program Paths,” Real-
TimeSysfems5(1) pp. 31-61 (March 1993).
D. Niehaus, “Program Representation and Translation
for Predictable Real-Time Systems,” Proceedings of the
Twelfrh IEEE Real-Time Systems Symposium, pp. 53-63
(December 1991).
P. Puschner and C. Koza, “Calculating the Maximum
Execution Time of Real-Time Programs,” Real-Time Sys-
tems l(2) pp. 159-176 (September 1989).
M. G. Harmon, T. P. Baker, and D. B. Whalley, “A Retar-
getable Technique for Predicting Execution Time,” Pro-
ceedings ofthe Thirteenth IEEE Real-Time Systems Sym-
posium, pp. 68-77 (December 1992).
K. Narasimhan and K. D. Nilsen, “Portable Execution
Time Analysis for RISC Processors,” Proceedings of the
ACM SIGPLAN Workshop on Language, Compiler, and
Tool Support for Real-Time Systems, (June 1994).
S . S . Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S . Kim, “An Accu-
rate Worst Case Timing Analysis Technique for RISC
Processors,” Proceedings of the Fijieenfh IEEE Real-
Time Systems Symposium, pp. 97-108 (December 1994).
A. C. Shaw, “Reasoning about Time in Higher-Level
Language Software,” IEEE Transacfions on Sofnyare
Engineering 15(7) pp. 875-889 (July 1989).
F. Mueller and D. B. Whalley, “Avoiding Conditional
Branches by Code Replication,” Proceedings of the SIG-
PLAN ‘95 Conference on Programming Language
Design and Implementation, pp. 56-66 (June 1995).

297

