
* 
Integrating the Timing Analysis of Pipelining and Instruction Caching 

Christopher A. Healy, David B. Whalley 
Computer Science Dept., Florida State Univ. 

Tallahassee, FL 32306-4019 
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506 

Abstract 
Recently designed machines contain pipelines and caches. 
While both features provide signifrcant performance 
advantages, they also pose problems for predicting execu- 
tion time of code segments in real-time systems. Pipeline 
hazards may result in multicycle delays. Instruction or 
data memory references may nor be found in cache and 
these misses typically require several cycles to resolve. 
Whether an instruction will stall due to a pipeline hazard 
or a cache miss depends on the dynamic sequence of pre- 
vious instructions executed and memory references per- 
formed. Furthermore, these penalties are nor independent 
since delays due to pipeline stalls and cache miss penal- 
ties may overlap. This paper describes an approach for 
bounding the worst-case performance of large code seg- 
ments on machines that exploit both pipelining and 
instruction caching. First, a method is used to analyze a 
program's controljow to statically categorize the caching 
behavior of each instruction. Next, these categorizations 
are used in the pipeline analysis of sequences of instruc- 
tions representing paths within the program. A timing 
analyzer uses the pipeline path analysis to estimate the 
worst-case execution performance of each loop and func- 
tion in the program. Finally, a graphical user interface is 
invoked that allows a user to request timing predictions 
on portions of the program. 

1. Introduction 

Many architectural features, such as pipelines and 
caches, in recent processors present a dilemma for archi- 
tects of real-time systems. Use of these architectural fea- 
tures can result in significant performance improvements. 
In order to exploit these performance improvements in a 
real-time system, the WCET (Worst Case Execution 
Time) must be determined statically. Yet these same fea- 
tures introduce a potentially high level of unpredictability. 
Dependencies between instructions can cause pipeline 
hazards that may delay the completion of instructions. 
Instruction or data cache misses can also require several 
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cycles to resolve. Predicting the caching behavior of an 
instruction is even more difficult since it may be affected 
by memory references that occurred long before the 
instruction was executed. 

Unfortunately, the timing analysis of these features is 
exacerbated since pipelining and caching behavior are not 
independent. For instance, consider the code segment and 
pipeline dia am in Figure 1 consisting of three SPARC 
instructions. Each number within the pipeline diagram 
represents that the specified instruction is currently in the 
pipeline stage shown to the left and is in that stage during 
the cycle indicated above. The first instruction performs a 
floating-point addition and requires a total of 20 cycles. 
Fetching the second instruction results in a cache miss, 
which is assumed to have a miss penalty of nine addi- 
tional cycles. The third instruction has a data dependency 
with the first instruction and the execution of its MEM 
stage is delayed until the floating-point addition is 
calculated.2 The miss penalty associated with the access 
to main memory to fetch the second instruction is com- 
pletely overlapped with the execution of the floating-point 
addition in the first instruction. If the pipeline analysis 
and cache miss penalty were treated independently, then 
the number of estimated cycles associated with these 

F 

SPARC Instructions 
inst 1: faddd %f2,%fO,%f2 
inst 2: sub %04,%gl,%i2 
inst 3: std %f2,[%00+8] 

Pipeline Diagram 

Figure 1. Overlapping pipeline stages with a cache miss. 

' The pipeline cycles and stages represent the execution of these 
instructions on a MicroSPARC I processor [l]. 

A std instruction has no write back stage since a store instruc- 
tion only updates memory and not a register. The s t d  instruction also 
requires three cycles to complete the MEM stage on the MicroSPARC I. 
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instructions would be increased from 22 to 31 (i.e. by the 
cache miss ]penalty). 

This palper describes an approach for integrating the 
timing analysis of pipelining and insbruction caching 
behavior. Let a task be the portion of code executed 
between hvo scheduling points (context switches) in a 
system with a non-preemptive scheduling paradigm. 
When a task starts execution, the cache memory is 
assumed to be invalidated. During task execution, 
instructions are brought into cache and often result in 
many hits and misses that can be predicted statically. 
These predictions can be integrated with pipeline analysis 
to estimate tight WCET bounds. 

Figure 2 depicts an overview of the approach 
described in this paper for bounding the worst-case per- 
formance of large code segments on machines with 
pipelines and instruction caches. Control-flow informa- 
tion, which could have been obtained by analyzing assem- 
bly or object files, is stored as the side effect of the compi- 
lation. The control-flow information is passed to a static 
cache simulator. It constructs the contrcd-flow graph of 
the program that consists of the call graph and the control 
flow of each function. The program control-flow graph is 
then analyzled for a given cache configuration and a cate- 
gorization ad each instruction’s potential caching behavior 
is produced. The timing analyzer uses these categoriza- 
tions to detmnine whether an instruction fetch should be 
treated as a hit or a miss during the pipeline analysis. It 
produces a ?worst-case estimate for each bop and function 
within the program. Finally, user interface windows are 
displayed allowing one to request the timing bounds for 
portions of the program. 

2. Instruction caching categorization 

The method of static cache simulation is used to stati- 
cally categorize the caching behavior of each instruction 

3 using a specific cache configuration in a given program. 
The static simulation consists of three phases. First, a 
program control-flow graph of the enlire program is 

constructed. This includes the control flow within each 
function and a function instance graph. A function 
instance graph is simply a call graph where each function 
is uniquely identified by the sequence of call sites 
required for its invocation. Thus, a directed acyclic call 
graph (without recursion) is transformed into a tree of 
function instances. 

Next, this program control-flow graph is analyzed to 
determine the possible program lines that can be in cache 
at the entry and exit of each basic block within the pro- 
gram. The iterative algorithm in Figure 3 is used to calcu- 
late an input and output cache state for each basic block in 
the function instance graph. A cache state is simply the 
subset of all program lines that can potentially be cached 
at that point in the control flow. 

input-state(top) L all invalid lines 
WILE any change DO 
FOR each basic block instance B DO 

input-state(B) = NULL 
FOR each immed pred P of B DO 

input-state(B) += output-state(P) 
output-atate(B) = 

(input-state(B) + prog-linea(B)) - conf-linea(B) 
Figure 3. Algorithm to calculate cache states. 

Finally, the input state for each basic block is used to 
categorize the caching behavior of each instruction within 
the block. An instruction’s caching behavior is assigned 
to one of four categories for each loop level in which an 
instruction is contained. Note that each function is treated 
as a loop that executes for a single iteration. The four cat- 
egories of caching behavior are: 

Always Miss. The instruction is not guaranteed to be in cache 
when it is referenced. 
Always Hit. The instruction is guaranteed to always be in cache 
when it is referenced. 
First Miss. The instruction is not guaranteed to be in cache on 
its first reference each time the loop is entered, but is guaranteed 

Static cache simulation i s  only briefly introduced in this section. 
It is described in more detail elsewhere [2], [3],[4], [5]. 

Control 
Timing 

- Predictions Files Information 

Cache Caching 
Configuration 

Categorizations 

Figure 2. Overview of bounding pipeline and cache performance. 
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to be in cache on subsequent references. 
First Wit. The instruction is guaranteed to be in cache on its 
first reference each time the loop is executed, but is not guaran- 
teed to be in cache on subsequent references. 

Beg Inst 

CyclsfromEnd 

CyclesfromBeg 
End Inst 

3. Pipeline path analysis 
This section describes how the analysis of the pipeline 

performance of a sequence of instructions is accom- 
plished. First, information about each type of instruction 
is read from a machine-dependent data file. This pipeline 
information for each type of instruction includes the 
worst-case number of cycles required by each stage of the 
pipeline for its execution! The analyzer also stores the 
latest stage each source operand of the instruction can 
receive its value via forwarding without delay and the ear- 
liest stage in which the result of the instruction type can 
be forwarded. Finally, information about the specific 
instructions in the sequence is obtained. This information 
includes the actual registers associated with the source 
and destination operands, which is obtained from the con- 
trol-flow information generated by the compiler, and the 
instruction caching categorization of each instruction, 
which is produced by the static cache simulator. 

During the analysis of a path, the analyzer keeps track 
of the total number of cycles required by the path and a 
set of pipeline information. This information includes 
when each pipeline stage was first and last used within the 
path for avoiding structural  hazard^.^ It is represented as 
the number of cycles from the beginning and end of the 
path for each pipeline stage. In addition, information 
indicating when each register was first and last used in the 
path is also maintained to avoid data hazards.6 Again, this 
information is represented as the number of cycles from 
the beginning and end of the path for each register. The 
set of pipeline information for avoiding hazards after the 
three instructions in Figure 1 have been analyzed is shown 
in Tables 1 and 2. Table 1 represents the information for 
avoiding structural hazards. Only the numbers shown in 
bold are required to be stored. These values represent 
when each stage was first used from the beginning of the 
path and last used from the end. The values in the table 
correspond to the information associated with the instruc- 
tion numbers that are represented in bold in Figure 1. 

1 1  2 1 2 2 1  
0 1 U 2 13 14 19 

3 2 1  3 3  3 1 
10 9 3 3 0 7 2  

The number of cycles required for sane floating-point instruc- 
tions on processors can vary depending upon the values of its operands. 

A structural hazard indicates that a stage of an instruction can- 
not be executed earlier due to the pipeline stage already being used. 

A data hazard indicates that a particular stage of an instruction 
cannot be executed earlier due to the pipeline stage using a source regis- 
ter that matches the destination register not yet updated by a pipeline 
stage of another instruction. 

Register 
firstneeded 
lastproduced 

Table 2 represents the information for avoiding data haz- 
ards. Only the information for the registers referenced in 
the instructions in Figure 1 are shown. 

%gl %oO %o4 %i2 %R) %f2 
12 13 U NIA 2 2 
NIA NIA N/A 9 NIA 3 

Table 2. Data hazard information 
for the instructions in Figure 1. 

This set of pipeline information is created by process- 
ing one instruction at a time from the sequence of instruc- 
tions that comprise a path. Each instruction can be repre- 
sented by the same form of pipeline information that is 
shown in Tables 1 and 2 for a path. This information is 
modified if it is found that the instruction’s caching cate- 
gorization indicates that the instruction fetch was a miss. 
The miss penalty is used to increment the total number of 
cycles and the cycles from the beginning (structural haz- 
ard information) for all other stages besides the IF stage 
and the lirst needed registers (data hazard information) for 
that instruction. The addition of an instruction to the 
pipeline information for a path will not only update the 
total number of cycles and the information associated 
with the end of the pipeline, but also the beginning of the 
pipeline if a referenced stage or register in the instruction 
had not been previously used. 

Retaining this set of pipeline information allows addi- 
tions to the beginning or end of a path. Since both the 
pipeline requirements for a path and a single instruction 
can be represented with this set of pipeline information, 
concatenating two paths together can be accomplished in 
the same manner as concatenating an instruction onto the 
end of a path. The concatenation is accomplished one 
stage at a time. A stage from the second set of pipeline 
information is moved to the earliest cycle that does not 
violate any of the following conditions. 

(1) There is no structural hazard with another instruction. For 
instance, the beginning of the IF stage of instruction 2 in 
Figure 1 could not be placed in cycle 1 since that stage was 
already occupied. 

(2) There is no data hazard due to a previous instruction pro- 
ducing a result that is needed by a source operand of the 
current instruction in that stage. For example, the 
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(3) 

beginning of the MEM stage for instruction 3 in Figure 1 
could not be moved past the FEX stage (of instruction 1 at 
cycle 1!2 due to the data hazard between the faddd and 
s t d instructions. 
The placement of the instruction does nlot violate its own 
pipeline requirements. For instance, the ID stage of 
instruction 2 has to occur at least 10 cyclles after the begin- 
ning of its IF stage in Figure 1. 

Other information associated with the pipeline analy- 
sis of a path need not be stored. For instance, it does not 
matter when instruction 2 entered the ID stage after the 
pipeline information has been calculated for all three 
instructions in Figure 1. No instruction being added to 
either the beginning or end of the pipeline could possibly 
have a structural hazard with the ID stage of instruction 2 
since it would first have a structural hazard with the ID 
stage of instruction 1 or instruction 3, reslpectively. Thus, 
the amount of pipeline information associated with a path 
is dramatictally reduced as opposed to storing how each 
stage is used during every cycle. Furthermore, no limit 
need be imposed on the amount of potential overlap when 
concatenatiing the analysis of two paths. 

4. Loop analysis 

In order to predict the worst-case execution time of a 
loop, the timing analyzer has to predict the execution time 
of each possible path within the loop. The timing ana- 
lyzer will rwerve either one cycle or the n,umber of cycles 
associated with a cache miss for the IF (instruction fetch) 
stage for each instruction categorized as ,an always hit or 
always miss, respectively. If an instruction is categorized 
as a first miss, then the timing analyzer will treat the 
instruction fetch as a miss if the program line has not yet 
been encouintered as a first miss in the timing of the loop. 
If the program line has been encountered, then the instruc- 
tion fetch will be treated as a hit instead. Likewise, if an 
instruction is categorized as a first hit, then the timing 
analyzer will treat the instruction fetch as a cache hit on 
the first reference and a cache miss thereafter. 

With pipelining it is possible that the combination of a 
set of paths may produce a longer execution time than just 
selecting the longest path. For instance, consider a loop 
with two paths that take about the same number of cycles 
to execute. One path has a floating-point addition near the 
beginning of the path and the other path has a floating- 
point addition near the end. Altemating between the 
paths will produce the worst case execution time since 
there will be a structural hazard between the two floating- 
point additi ons . 

To avoid the problem of calculating all combinations 
of paths, which would be the only method for obtaining 
perfectly accurate estimations, it was decided to union the 

pipeline effects of the paths for an iteration of a loop 
together. This unioning of pipeline information simplified 
the algorithm and also did not cause a noticeable overesti- 
mation. All paths through a loop start with the same loop 
header block. Thus, the beginning pipeline information 
(stages and registers) is rarely affected. Paths through a 
loop often end with the same block of instructions. In 
addition, one path may be longer than the others, so the 
ending pipeline information is often not affected. 

Figure 4 shows a to function and its corresponding 
SPARC assembly code? There are two possible paths 
through an iteration of the loop in the program, 
<7,8,12,13,14,15,16> and <7,8,9,10,11,13,14,15,16>. 
Figure 5 shows the instructions and corresponding 
pipeline diagrams for the two paths within the loop.* To 
simplify the example, it is assumed that the loop has 
already been executed and all of the instructions and data 
are in cache (i.e. there are no instruction fetch or data 
memory misses). Table 3 shows the structural hazard 
information for the two paths in Figure 5 and how the 
information in path 1 has to be adjusted before it would 
be uniioned. The union of the number of cycles from the 
beginning and end of the paths for a given stage will sim- 
ply be the minimum number encountered. The structural 
hazard information indicating the number of cycles from 
the end of path 1 has to be adjusted since its total number 
of cycles is 13 less than the cycles required by path 2. 
The resulting union of the structural hazard information of 
the two paths would be identical to the structural hazard 
information for path 2. Note that the data hazard informa- 
tion would change slightly since instruction 12 references 
register to0 as a source operand and to1  as both a 
source and destination. Yet, representing access to these 
registers would not likely have an effect when the timing 
analysis is performed between this path and its predeces- 
sor and successor paths since the EX stage is used before 
and after cycle 6, which is when instruction 12 enters the 
EX stage. 

’ Note that the generated assembly code has been optimized by 
the compiler. The local variables i, count, and dcount have been al- 
located to registers %02,  %ol, and % f 2 ,  respectively. The instruction 
following each transfer of control takes effect before the transfer of con- 
trol is taken since the SPARC has delayed branches. The cmp compari- 
son preceding the bge branch (instmction 7) has been moved to both 
immediately precede the loop and in the delay slot (instruction 16) of the 
bl branch (instruction 15). Branches with a “, a” represent that the re- 
sult of Ithe instruction within the delay slot will be annulled if the branch 
is not taken. 

‘I Note instructions 7, 10, and 15 are transfers of control. The ac- 
tual transfer of control (i.e. updating the program counter) occurs in the 
ID stage. Thus, there are no additional pipeline stages associated with 
these instructions. Also note the one cycle stall between instructions 8 
and 12 in the EX stage of path 1 due to a load hazard. Finally, the ldd 
load (instruction 9) requires two cycles to complete the MEM stage [I]. 
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C Source Code 
--------_----------I--- 

main0 
{ 

int i, cnt = 0; 
double dcnt = 0.0; 
extern int incr; 
extern double dincr; 

for (i=O; i < 10; 
i++) 

if (i < 5) 
dcnt += dincr; 

else 
cnt += incr; 

1 

Inat Assembly Code ---- .......................... 
0 m v  %gO,&Ol 
1 sethi %hi(L01),%00 
2 ldd [%oO+%lo(LOl) I ,%fa 
3 mov %g0,%02 
4 sethi %hi(-dincr) ,%03 
5 sethi %hi (-incr) ,%04 
6 cmp %o2,5 
7 L0a bge,a L9 
0 Id [%04+%1o(-incr) I ,%oO 
9 ldd [%03+%lo(-dincr) I ,%fO 
10 ba L6 
11 faddd %f2,%fO,%f2 
12 L9r add %ol,%00,%01 
13 L6r add %02,1,%02 
14 cmp %02,10 
15 bl,a L0 
16 cmp k2.5 
17 ret1 
18 llOp 

Figure 4. Example C source code and 
corresponding SPARC instructions. 

PathZInfa 

CyclesfromBeg 
CyclesfromEnd 

Let n be the maximum number of iterations associated 
with a loop. The algorithm for estimating the worst-case 
time for a loop is shown in Figure 5. The WHILE loop in 
the algorithm terminates when the number of calculated 
iterations reaches n - 1 or no more first misses (first hits) 
are encountered as misses (hits). Thus, the WHILE loop 
will either iterate (n - 1) or (m + l), where m is the num- 
ber of paths in the loop since a k s t  miss (first hit) can 
miss (hit) at most once during the loop execution. 

The algorithm selects the longest path on each itera- 
tion of the loop. In order to demonstrate the correctness 
of the algorithm, one must show that no other path for a 
given iteration of the loop will produce a longer worst- 
case time than that calculated by the algorithm. Since the 
pipeline effects of each of the paths within the loop are 
unioned, it only remains to be shown that the caching 
effects are treated properly. The instruction fetch time 
used for each instruction depends on whether it is 
assumed to be a hit or miss, which depends OR its catego- 
rization. The cache hit time is one cycle on most 

IF ID EX E X  MEM WB FWB 
0 1 3 7 4 5 7 

15 14 13 1 12 11 0 

Path 1 Instructions 
inst 7 :  bge,a L19 
inst 8: Id [%o4+%lo(~incr)j,%oO 
inst 12: add %ol,%oO,%ol 
inst 13: add %02,1,%02 
inst 14: cmp $02.10 
inst 15: b1.a L18 
inst 16: cmp %02,5 

Path 1 Pipeline Diagram 
I cvcle 

- 
mgc 

Path 2 Instructions 
inst 7: bge,a L19 
inst 8: Id [%o4+%lo~~incr)l,%oO 
inst 9: ldd [%03+%1oi_dincr)j,%fO 
inst 1 0 :  ba L16 
inst 11: faddd %f2,%fO,%f2 
inst 13: add %02,1,%02 
inst 14: cmp 'So3,lO 
inst 15: bl,a L18 
inst 16: cmp 802,s 

Path 2 Pipeline Diagram 

F W B I  I I I I I 1 \ 9 1  I I I I I 1 1  I 11 

Figure 5. Pipeline diagrams for the two paths 
through the loop in Figure 4. 

PathlInfa I IF I ID I EX I FEX I MEM I WB I FWB 
CyclesfmmBep. I 0 I 1 1 3 I N/A I 4 I 5 I N/A 

Table 3. Structural hazard information 
for the paths in Figure 5. 

machines. The cache miss time is the cache hit time plus 
the miss penalty, which is the time required to access 
main memory. All categorizations are treated identically 
on repeated references, except for first misses and first 
hits. Assuming that the instructions have been catego- 
rized correctly for each loop and the pipeline analysis was 
correct, it remains to be shown that first misses and first 
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pipeline-information = NULL. 
first-mieises-encountered I NULL. 
first-hitis-encountered = NULL. 
curr-iter = 0 .  
WHILE curr-iter != n - 1 Do 

curr-iter +I 1. 
Find the longest continue path. 
first-inioae~-encountered += 

f irist  minses that were misseai 
in this path. 

firiat hit8 that were hits in this path. 

union of the information for a l l  paths. 

are encountered in the path THEN 
break. 

f irst/hits_encountered += 

Concatimnate pipeline-informationr with the 

IF no n e w  f i r s t  misses or f i r s t  hits 

Concatenate pipeline-information with the union 
of the pipeline information for a l l  paths 
( n  - 1 - curr-iter) times. 

FOR each iaet of exit paths that have a 
trans:Ltion to  a unique exit block DO 

Find tlhe longest exit  path in the aet. 
firat~nisaes-encountered += 

firiat misses that were misses1 
in this path. 

firiat hits  that were hits in this path. 

union of the information for a l l  exit 
patlhe in the set .  

Store this information with the exit  block 
for the loop. 

firstlhits-encountered +I 

Concatmate pipeline-informationr with the 

:Figure 6. Loop analysis algorithm. 

Child => Parent 
fm => fm 

m=>fh  

hits are interpreted appropriately for a given iteration of 
the loop. A correctness argument about the interpretation 
of first hits and first misses is given in previous work [4]. 

Once no1 more first hit or first miss instructions are 
encountered that hit or miss respectively, the pipeline 
effects associated with the path chosen will not change 
since the caching behavior of the instructions within a 
path will always be treated the same. The pipeline effects 
of the last path are efficiently replicated for all but one of 
the remaining iterations. The last iteration of the loop is 
treated separately. The longest exit path for a loop may 
be shorter tlm the longest continue path. By examining 
the exit paths separately, a tighter es8timate can be 
obtained. Thus, the algorithm estimates a bound that is at 
least as great as the actual worst-case bound. 

Action to Adjust Child Loop l ime 
Use the child loop time for the 
first iteration. For all remaining 
iterations subtract the miss penal- 
ty from the child loop time. 

For the first iteration subtract the 
miss penalty from the child loop 
time. For all  remaining iterations 
use the child loop time directly. 

5. Prograim analysis 

A timin:g analysis tree is constructed to predict the 
worst-case times of code segments cointaining nested 
loops and function calls. Each node of the tree represents 
either a loop or a function in the function instance graph. 
Each node is considered a natural loop. The nodes repre- 
senting the outer level of function instances are treated as 

9 

loops that will iterate only once when entered. 
The loops in the timing analysis tree are processed in a 

bottom-up manner. In other words, the worst-case time 
for a loop is not calculated until the times for all of its 
immediate child loops are known. The algorithm given in 
the previous section described how a loop containing no 
other loops would be analyzed. The timing of a non-leaf 
loop is accomplished using this algorithm and the pipeline 
infomation and total times from its immediate child 
loops. Associated with each loop is a set of exit blocks, 
which indicates the possible blocks outside the loop that 
can be reached from the last block in each exit path. A 
unique set of timing information is stored for the child 
loop with each of these exit blocks. If a path within a 
loop enters a child loop, then the pipeline information and 
total time from the appropriate exit block are used at that 
point during the analysis of the path." 

The transition of an instruction categorization from the 
child loop level to the current loop level will be used to 
determine if any adjustment to the the child loop time is 
required. These transitions between categorizations 
requiring adjustments are described in Table 4. The 
fm=>fm adjustment is necessary since there should be 
only one miss associated with the instruction and a miss 
should only occur the first time the child loop is entered. 
The m=>fh adjustment is necessary since the first refer- 
ence to the instruction in the outer loop will be a hit. 

Table 4. Use of child loop times. 

Making these adjustments when pipelining is involved 
resulted in some slight overestimations. The problem is 
that tlhe caching behavior of a particular instruction 
depends on the loop level being analyzed. When an 
adjustment at an outer level would be needed for an 
instruction, the authors conservatively added the maxi- 
mum number of cycles associated with a cache miss 

A natural loop is a loop with a single ently block. While the 
static simulator can process unnatural loops, the timing analyzer is re- 
stricted to only analyzing natural loops since it would be difficult for 
both the timing analyzer and the user to determine the set of possible 
blocks associated with a single iteration in an unnatural loop. It should 
be noted that unnatural loops occur quite infrequently. 

'" The timing analysis across loop levels is only briefly introduced 
in this section. It is described in more detail elsewhere [2], 141. 
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penalty to the total time of the path containing the instruc- 
tion and treated the instruction fetch as a cache hit within 
the path pipeline analysis. When the instruction fetch 
should be viewed as a cache hit at an outer loop level, the 
previously added miss penalty cycles were subtracted 
from the loop’s time. This strategy permitted a single 
pipeline analysis of each loop, yet adjustments could still 
be made at outer levels of the program. An overestima- 
tion occurs when the instruction fetch is treated as a miss 
and the cache miss penalty could be overlapped with the 
execution of other instructions or stalls (as shown in Fig- 
ure 1). Fortunately, these adjustments are not that com- 
mon. Results indicated that only about 4.5% of the 
instructions within the function instance graph were clas- 
sified as first misses or first hits and many of these did not 
require adjustments. Thus, these adjustments resulted in 
only small and relatively infrequent overestimations. 

Hit 
Ratio 

81.41% 
81.81% 

99.24% 
88.22% 
83.99% 
88.41% 

6.  Results 

Description or Emphasis 

Enclypts and Decrypts 64 Bits 
Counts and Sums Values in a 
lOOxl00 Matrix 
Multiplies 2 50x50 Matrices 
Sums Values in a lOOxl00 Matrix 
Bubblesort of 500 Numbers 
Calcs Sum, Mean, Var., StdDev., 
& Linear Con. Cceff. 

Measurements were obtained on code generated for 
the SPARC architecture by the vpo optimizing compiler 
[6]. Six simple programs described in Table 5 were used 
to assess the effectiveness of the timing analyzer. A 
direct-mapped instruction cache configuration containing 
8 lines of 16 bytes was used. Thus, the cache contained 
128 bytes of instructions. The programs were 4 to 17 
times larger than the cache as shown in column 2 of Table 
5. Column 3 shows the hit ratio of each program. Only 
Matmul had a very high ratio due to three tightly nested 
loops in a single function to perform the matrix multipli- 
cation. Each program was highly modularized to test the 
handling of timing predictions across function calls. 

Name 

Des 
Matcnt 

Matmul 
Matsum 
sort 
Stats 

- 
NWll 
Bytes 
2,240 

812 

768 
644 
556 

1,428 

- 

Table 5.  Test programs. 

The results of evaluating these programs are shown in 
Table 6. The observed cycles for these measurements 
were obtained by enhancing a traditional cache simulator 
171. The simulator produced the pipeline only observed 
cycles and the timing analyzer produced the pipeline only 
esfimafed cycles by assuming that all instruction fetches 
(IF stages) were cache hits and only required a single 
cycle. The pipeline only naive cycles were obtained by 

assuming that only a single pipeline stage could be 
executing at one time (i.e. no overlap). The caching only 
observed cycles and caching only estimated cycles were 
obtained with the assumption that the pipeline had only a 
single stage (an IF), a cache hit required a single cycle, 
and a cache miss required an additional miss penalty of 
nine cycles. The naive caching only cycles were calcu- 
lated by assuming every instruction fetch resulted in a 
cache miss. The pipeline and caching estimated cycles 
were produced by the techniques that were described in 
this paper for integrating the analysis of pipelining and 
instruction caching behavior. All data cache references 
were assumed to be hits in the three sets of measurements. 

66,594 
Matcnt 1.063.572 

Matsum 933,540 
3,380,660 

900,231 

Cvcles 

Matcnt 1.169.055 

Matsum 707,219 
7,639.61 1 

372.4 10 

149,706 
1,769,321 

7,165,125 
Stats 1.01 6,048 

Estimated I Estim. I Naive I 

4,347,806 1.00 2.13 
933,540 1.00 2.28 

6,748,925 2.00 8.13 
900,231 1.00 1.70 

Estimated Estim. Naive 
Cycles Ratio Ratio 
163,015 1.14 3.86 

1,259,055 1.08 3.79 
1,527,648 1.00 9.36 

707,219 1.00 4.85 
15,253,902 2.00 8.17 

372,410 1.00 4.90 

Estimated Estim. Naive 
Cvcles Ratio Ratio 

I I 

169,613 1.13 5.02 
1.859.323 1.05 3.69 
414451413 1.00 4.98 
1,277,471 1.00 4.08 

15,504,172 2.00 10.78 
1.016.145 1 1.00 1 3.12 1 

Table 6. Dynamic results for the test programs. 

The pipelining only timing analysis had exact predic- 
tions for all programs except Des and Sort. The analysis 
of these two programs depicts problems faced by all tim- 
ing analyzers. The timing analyzer did not accurately 
determine the worst-case paths in a function within Des 
primarily due to data dependencies. A longer path 
deemed feasible by the timing analyzer could not be taken 
in a function due to a variable’s value in an i f  statement. 
The Sort program contains an inner loop whose number 
of iterations depends on the counter of an outer loop. At 
this point the timing tool either automatically receives the 
maximum loop iterations from the control-flow informa- 
tion produced by the compiler or requests a maximum 
number of iterations from the user. Yet, the tool would 
need a sequence of values representing the number of 
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iterations for each invocation of the inner loop. The num- 
ber of iteralions performed was overrepresented on aver- 
age by a factor of two for this specific Iloop. Note that 
both of these problems are encountered by other timing 
tools and are not directly related to the pipeline analysis. 

As reported previously [4], the caching only timing 
analysis results were also quite accurate. This analysis 
had exact predictions for Matmul, Malsum, and Stats 
since there were few conditional constructs except to exit 
loops. The Matcnt program used an i f -then-else 
construct to either add a nonnegative value to a sum and 
increment ai counter for the number of nonnegative ele- 
ments or just increment a counter for the negative ele- 
ments. The adding of the nonnegative value to a sum was 
accomplished in a separate function, which was purposely 
placed in a location that would conflict with the program 
line containing the code to increment a counter for the 
negative elements. Multiple executions of the then path, 
which includes the call to the function to perform the 
addition, still required more cycles than alternating 
between the two paths. Yet, the algorithm for estimating 
the worst-case instruction caching performance assumes 
that the first reference to a program linte within a path 
would alwaiys be a miss if there were accesses to any 
other conflicting program lines within the same loop. 
This assumption simplified the algorithm since the effect 
of all combiinations of paths need not be cidculated. Thus, 
one reference was counted repeatedly as ai miss instead of 
a hit. This ]path was executed 10,OOO times and accounted 
for a 90,00(3 cycle [10,000*miss penalty] or an 8% over- 
estimation. Note that the execution of this single path 
accounted for 40.61% of the total instructions referenced 
during the program execution. The programs Des and 
Sort had overestimations caused by the same problems 
described previously for the pipeline only measurements. 
The naive catio was lower than initially anticipated by the 
authors. These test programs contained many long run- 
ning instructions (floating-point operations and integer 
multiply and divides) that were frequently executed and 
often resulted in stalls. In addition, transfers of control 
were also quite frequent and were onky considered to 
require two pipeline stages in our analysis. 

The integrated pipeline and caching analysis also 
resulted in quite tight predictions. Again the predictions 
for the programs Matmul, Matsum, and Stats were very 
accurate. Note that the estimated cycles were slightly 
greater than the observed cycles for these programs. This 
overestimation was due to the problem of an instruction's 
caching belhavior changing between loop levels. These 
changes require an adjustment as shown in Table 4. The 
approach used by the authors was to treat such an instruc- 
tion as a hit in the pipeline analysis and simply add the 

miss penalty to the total time. When the instruction 
should be viewed as a hit at an outer level, then this miss 
penalty was simply subtracted and an accurate estimation 
is obtained. However, in these three programs the poten- 
tial overlap between a miss penalty and a stall due to a 
hazard were not always detected." The Des, Matcnt, and 
Sort programs had its usual overestimations due to data 
dependencies, a cache conflict, and an inaccurate number 
of estimated loop iterations, respectively. The naive ratio 
indicates that much tighter WCET bounds can be obtained 
when the benefits of pipelining and instruction caching 
are analyzed. 

7. User interface 

Once the initial timing analysis has been completed, a 
graphical user interface is invoked, This interface allows 
the user to quickly request timing predictions for func- 
tions, loops, paths, or subpaths via mouse clicks and 
reports the best and worst-case timing estimations. 
Whenever a different construct is selected, the highlighted 
lines in windows containing the source and assembly code 
are automatically updated and scrolled to the appropriate 
position. Thus, the user can quickly observe the relation- 
ship between timing constraints associated with the 
source: code and sequences of machine instructions. This 
interface is described in more detail elsewhere [8]. 

8. Comparison with previous work 
There has been much work on the issue of predicting 

execution time of programs. Most approaches in the past 
have not dealt with the effects of pipelining and instruc- 
tion caching [9], [lo], [ I l l .  There have also been some 
recent studies on predicting pipeline performance by Har- 
mon et. al. [12] and Namsimhan and Nilsen 131. Yet, 
these studies did not address caching issues." Further- 
more, the former study was limited to nonnested functions 
and the latter study required the sequence of executed 
instructions to be known. Finally, there has been some 
recent work on predicting instruction caching perfor- 
mance. Arnold et. al. [4] implemented a timing analysis 
system to tightly bound instruction cache performance. 
However, this approach did not address pipelining issues. 

There has been only one previous study that attempted 
to address the issue of predicting the WCET of programs 
on machines with both pipelining and an instruction 

" For instance, the 502 cycle overestimation in Mutmul occurred 
from 50 miss penalties completely overlapping with stalls from an inte- 
ger multiply instruct& and 52 misses overlapping with one cycle load 
hazards. 

Harmon assumed the entire code segment would fit into cache. 
Thus, he assumed at most one miss for each cache reference. 
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cache. Lim et. al. [141 described an method based on an 
extension of a previous timing tool [151. Lim’s method 
differs quite significantly from our approach described in 
this paper, which instead builds on flow analysis tech- 
niques found in optimizing compilers. Lim’s method uses 
a timing schema associated with each source-level lan- 
guage program construct. They stored information about 
a predetermined number of cycles at the head and tail of a 
reservation table produced as a result of the pipeline anal- 
ysis on the instructions associated with a program con- 
struct. In addition, this method stored information about 
the set of memory blocks whose first reference depends 
upon the cache contents prior to the execution of the con- 
struct. Lim also stored the set of memory blocks known 
to remain in cache after the execution of the construct. 
Eventually, this timing information is concatenated with 
another construct that would be executed immediately 
before the current construct. Their timing analyzer 
attempted to overlap the head of the reservation table of 
the current construct with the tail of the reservation table 
of the other construct as much as possible. Likewise, the 
list of memory blocks known to be in cache after execut- 
ing the other construct is used to adjust the time of the 
current construct by comparing this list to the list of first 
reference blocks in the current construct. This method 
stored multiple paths for conditional constructs, such as 
an if-then-else. Theyprunedoreliminated apartic- 
ular path when it was found that the worst-case execution 
time of the path was faster than the best-case execution 
time of another path within the same construct. 

There are some limitations with Lim’s method. The 
accuracy of their results is limited by the length of the 
head and tail of the reservation table stored with the pro- 
gram constructs. They concluded that the length of this 
head and tail only had to be large enough to contain infor- 
mation for five cycles. This conclusion was based on 
experiments indicating that their timing analysis results 
did not change significantly when the length was 
increased further. However, there are some instructions 
that require many cycles. For instance, a floating-point 
division on the MicroSPARC I can require up to 56 cycles 
to complete [l]. If such an instruction were at the end of 
a construct, then many more than five integer instructions 
at the head of a following construct could be overlapped 
with the floating-point division. In addition, their method 
stores information about each stage for every cycle in the 
head and tail of the reservation table. In contrast, our 
method requires much less information and imposes no 
limit on the length of the potential pipeline overlap. Only 
the relative distance from the beginning and end of the 
path has to be stored for each stage for the structural haz- 
ard pipeline information as shown by the numbers repre- 
sented in boldface in Table 1. 

The approach that Lim et. al. used to analyze caching 
behavior limits the accuracy of the analysis. They used a 
single bottom-up pass when performing the timing analy- 
sis of a program. The caching behavior of a large percent- 
age of the instruction fetches within a construct would be 
unknown until many of the surrounding constructs were 
processed. Their approach was to treat the instruction 
fetch as a hit within the pipeline and add the cycles asso- 
ciated with a cache miss penalty to the total time of the 
construct. When it was later found that an instruction ref- 
erence was a hit, they would subtract the miss penalty 
from the total time. However, an overestimation may 
result when the instruction is not found in cache. As 
shown in Figure 1, the instruction fetch miss penalty of 
one instruction (instruction 2) can be completely hidden 
by a stall with a long running instruction (data hazard stall 
on instruction 3). Whether the fetch of instruction 2 was a 
hit or a miss would have no effect on the total number of 
cycles. The Lim method would rarely detect instruction 
fetches that would always be misses until the surrounding 
constructs are analyzed, which is after the pipeline analy- 
sis of a construct has already occurred. Our approach of 
categorizing the caching behavior of each instruction 
before stating the timing analysis allows the detection of 
such situations. For instance, we found that the pipeline 
and caching estimated ratio for the six test programs 
increased on average by about 3% when the complete 
miss penalty was always added for each predicted miss. 

9. Future work 

We are working on several enhancements to the timing 
analyzer. An algorithm that predicts best-case pipelining 
and instruction cache performance is currently being 
implemented. We plan to automate the detection of many 
data dependencies using existing compiler optimization 
techniques to obtain tighter performance estimations [ 161. 
The retargetability of the timing analyzer will also be 
enhanced by isolating any remaining machine dependent 
information in data files. 

We are exploring methods to predict the timing of 
other architectural features associated with RISC proces- 
sors. Work is currently ongoing to verify that our tech- 
nique accurately predicts performance for the 
MicroSPARC I by using a logic analyzer. This will 
require predicting the performance of other features, such 
as wrap-around filling of cache lines. The effect of data 
caching is also an area that we are pursuing. Unlike 
instruction caching, many of the addresses of references 
to data can change during the execution of a program. 
Thus, obtaining reasonably tight bounds for worst-case 
and best-case data cache performance is significantly 
more challenging. However, many of the data references 
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are known. For instance, static or global data references 
retain the same addresses during the execution of a pro- 
gram. Due to the analysis of a function instance tree (no 
recursion alilowed), addresses of run-time istack references 
can be statically determined even when the addresses may 
differ for different invocations of the same function. 
Compiler flow analysis can be used to detect the pattern 
of many callculated references, such as indexing through 
an array. While the benefits of using a data cache for real- 
time systems will probably not be as signilicant as using 
an instruction cache, its effect on performance should still 
be substantical. 

10. Conclusions 
This paper has presented a technique for predicting the 

worst-case execution time of programs on machines with 
pipelining and instruction caches. First, a static cache 
simulator analyzes the control flow of a program to stati- 
cally categorize the caching behavior of each instruction 
within the program. Second, a timing analyzer uses these 
instruction categorizations when analyzing the pipeline 
performance of a path of instructions. Tlhird, the timing 
analyzer uses a concise representation of the pipeline 
information to concatenate the performance of paths in an 
efficient manner when predicting the performance of 
loops. Fourth, a timing analysis tree is u s d  to predict the 
performance of an entire program. Finally, a graphical 
user interface has been implemented that allows users to 
obtain timing predictions of portions of ah~c program. The 
results indicate that the timing analyzer cain quickly obtain 
tight predictions of WCET. 
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