
SMART (Strategic Memory Allocation for Real-Time) Cache Design 

David B. Kirk 

Department of Electrical and Computer Engineering 
Camegie Mellon University, Pittsburgh, Pennsylvania 15213 

and IBM Systems Integration Division 

Abstract 

Caches have been bridging the gap between CPU speeak and 
main memory speeds since they were first introduced in the IBM 
360185 computer in 1969. Their absence in real-time system 
designs, however, has been noticeable. In the past, this was ofen 
the result of space, power and weight limitations imposed on 
many embedded real-time systems. However, even though sig- 
nificant progress in solid-state technology has provided small 
efficient cache structures, few real-time systems choose to imple- 
ment hierarchical memory designs. The extremely efficient, but 
unpredictable, performance of cache architectures provides little 
benefit to real-time systems that must guarantee hard deadlines. 
This paper discusses why the present approach to cache architec- 
ture design results in unpredictable performance improvements 
in real-time systems with priority-based preemptive scheduling 
algorithms. The SMART cache design is then presented, and 
shown to be compatible with the goals of scheduling in a real- 
time sysrem. 

Keywords: Real-Time Scheduling; Cache Memories; Perfor- 
mance Predictability; Cache Partitioning; Priority-Driven 
Preemptive Scheduling; Cache Coherence. 

1. Introduction 

1.1. Real-Time Systems and Scheduling 
Task scheduling in a time-shared system addresses different con- 
cems than those of importance to real-time systems. Efficient use 
of system resources, and maximized system throughput are the 
critical performance measures in a time-shared system. Multiple 
job streams are active simultaneously, and are often serviced with 
a round-robin ordering. Execution fairness (i.e. starvation 
avoidance) predominates as a scheduling concem. On the other 
hand, real-time systems are directed at an environment that im- 
poses tight timing constraints on system behavior. They typically 
handle large amounts of data for use in computations that have 
hard deadlines. These deadlines are often the result of periodic 
events that provide large quantities of data at regular intervals. 
The computations to be performed on one data sampling must be 
completed before the next sampling overwrites the data buffer. 
In real-time systems, the value of a result is a function of both its 
accuracy and the time at which the result is produced. This 
time-value of a result is expressed as a constraint which if missed 
can cause system failure. Thus, maximized throughput is subject 
to ensuring that all externally imposed deadlines are met. Fur- 
thermore, task starvation may be unavoidable under conditions of 
transient overload. Transient overload occurs when there is not 

enough computation time available to meet all task deadlines, and 
usually results from stochastic execution times and aperiodics 

Real-time systems are often composed of periodic and aperiodic 
tasks, where periodic tasks have regular arrival times and hard 
deadlines, and aperiodic tasks have random arrival times with 
hard or soft deadlines. Hard deadlines imply that the value 
(usefulness to the mission) of the computation is zero once the 
deadline is missed. Often the consequence of a missed hard 
deadline is system failure, and possibly catastrophic loss. Soft 
deadlines, however, are modelled by a value function which 
decreases once the deadline is missed, but does not go im- 
mediately to zero. Many systems are composed of both hard and 
soft deadlines. 

In the past, the solution to meeting real-time system timing con- 
straints was to provide an overabundance of processing power 
and schedule tasks using a cyclical executive. An example of this 
static time-slicing of system resources is shown in Figure 1-la. 
Tasks are placed along the time line such that all deadlines are 
met. They are typically partitioned to fill in the available time 
slots. Asynchronous (aperiodic) tasks are processed by dedicat- 
ing a time slice to a synchronous server task which polls for 
aperiodic service requests. Fine tuning of the time line is often 
performed during lab debug. This can result in a very ad hoc 
development of the schedule. 
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Figure 1-1: TlME LINES - a. original b. after modification 

Changes in the task set or in any individual task can be devas- 
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tating to the completed time line. This phenomenon is depicted 
in Figure 1-lb where an alteration to task 3 has caused task 2 to 
miss a deadline. Correcting the time line usually involves shuf- 
fling task pieces around, repartitioning individual tasks, and may 
even result in a complete redesign of the time line sequence. For 
this reason, maintenance and system upgrade are particularly 
painful in a cyclical executive system. In addition, under con- 
ditions of transient overload, deadlines will be missed with no 
regard to the semantic importance of the task. 

There is currently a trend to replace this ad hoc scheduling 
approach with scientifically-based algorithmic scheduling tech- 
niques. These scheduling policies use a static or dynamic priority 
assignment to guarantee that the system timing constraints are 
met. Two such algorithms are the rate-monotonic (static), and 
the deadline driven (dynamic) scheduling techniques [13] . Since 
the deadline driven algorithm misses deadlines unpredictably un- 
der conditions of transient overload [16], and often results in 
NP-hard problems when proving the schedulability of a task set 
[15], the remainder of this paper will focus on a modified rate- 

monotonic algorithm. 

Under the rate monotonic algorithm, the priorities assigned to 
periodic tasks are directly proportional to their rate of requests. 
Assuming a task requests service each period, the task with the 
shortest period will have the highest priority. Liu and Layland 
[13] proved this algorithm guarantees that n independent peri- 

odic tasks can be scheduled to meet all task deadlines if the sum 
of the task utilizations (defined as the task computation time 
divided by the task period) for all n tasks is less than n(2’/”-1). 
This bound converges to In 2 (= 0.69) for large n.  It is, however, 
pessimistic, and represents the absolute worst case conditions. 
The average case scheduling bound is 88% [ 1 I]. In practice, the 
bound is often between 90 and 100% because task periods are 
often harmonic or near haqonic. Finally, through the period 
transformation method, the scheduling bound can be made ar- 
bitrarily close to 100% [18]. 

While the rate-monotonic algorithm works well with periodic 
tasks with fixed execution times, some modifications need to be 
incorporated to handle aperiodic task scheduling and task 
priorities during overload. Scheduling of aperiodic tasks can be 
done through methods such as the priority exchange algorithm, 
and the deferrable server as discussed in [12]. Stochastic execu- 
tion times can lead to a required utilization greater than the 
scheduling bound. When this occurs, load shedding must take 
place to ensure that critical deadlines are met. Strategic load 
shedding can be incorporated into the static scheduler through 
techniques such as period transformation as discussed in [16]. 
Interprocess synchronization can lead to an unbounded number of 
priority inversions which can significantly reduce attainable 
utilization with guaranteed deadlines. Implementation of the 
priority inheritance and priority ceiling protocols [ 171 provides a 
bound on this type of priority inversion, as well as ensuring that 
deadlock can not occur as a result of synchronization. 

1.2. Cache Memories - an Overview 
Cache memories are small, fast buffers that are used to tem- 
porarily hold recently used information, as well as information 
that might be needed in the near future. These buffers are placed 
between the CPU and main memory and provide the functionality 
of main memory at the speed of the CPU. However, since the 
cache buffer is smaller than main memory, various techniques 
have been developed to determine what information should be 
held in cache. While the solutions to this problem are plentiful, 
they are all driven by two program properties: temporal and 

spatial locality. Temporal locality refers to the tendency of a 
program to revisit areas of memory that have recently been ac- 
cessed. This time related behavior is exemplified by program 
loops and repeated procedure calls. Spatial locality refers to the 
tendency of a program to access memory locations close to those 
locations that have recently been accessed. This space related 
behavior is exemplified by the execution of regions of sequential 
code, or the access of sequentially stored data structures. The 
cache attempts to ensure that information, local both in time and 
in space to the current information, is readily available [21]. 
When this attempt is successful, the cache request results in a 
cache hit, and the access is performed at the speed of the cache. 
When the attempt fails, the cache request results in a cache miss, 
and the access is performed at the speed of main memory - often 
three or four times slower than cache. 

VIRTUAL ADDRESS 

m 

Figure 1-2: Virtual Address Cache Design 

Figure 1-2 shows a high level cache design in a computer with 
virtual addressing. The CPU presents a virtual address to the 
memory management unit which in turn checks the entries in the 
translation lookaside buffer (TLB) for the translation to a real 
address. If there is no valid entry corresponding to that virtual 
address, it is passed to the slower translation logic which provides 
the real address to be saved in the TLB for future references. 
While the virtual page address is being translated by the TLB, the 
set address is used by the cache to identify a set of potential lines 
that may contain the desired information. The tag field of each 
line in the set is compared to the real address returned by the TLB 
or translation logic. If the tags match (a hit), the byte address is 
used to select the data for the CPU, and the cache status fields are 
updated to reflect the recent access. If the tags do not match (a 
miss), a main-memory access is started. The desired line of data 
is read into the cache, and the requested information is passed on 
to the CPU. 

In a multi-tasking environment, it is very difficult (if not impos- 
sible) to predict the cache performance. This unpredictable be- 
havior results from a phenomenon referred to as cold start 
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2.1. Scheduling Enhancements 
An important evaluation criterion for real-time systems is the 
schedulable utilization, the highest attainable resource utilization 
at or below which all hard deadlines can be guaranteed. Schedul- 
able utilization is the sum of all the task utilizations at a point 
when an increase in any one task utilization would cause the 
system to miss one of the deadlines. Clearly it would be ideal to 
design a system such that all deadlines were met, and all 
resources were utilized 100%. This, however, is not always 
possible when using static priority-driven preemptive scheduling 
algorithms. Consider the example shown in Figure 2-1 where the 

Task A Task 0 Task A utilization of task 1 is 4/10 = .4 (in the introduction, we defined 
utilization to be the worst case execution time divided by the 
period), and the utilization of task 2 is 6/14 = .43, for a total of 
83%. Furthermore, assume that a task’s dadline is equal to its 
period. However, an increase in either task’s computation re- 
quirement would cause task 2 to miss its deadline when 
scheduled using the rate-monotonic algorithm. Therefore, the 
schedulable utilization for this task set is 83%, which is equal to 
the Liu and Layland bound for n = 2, and the computation 
requirement for neither task can be increased. 

t 
cache 
reload 

t time - 
6 preempts A 

(b) 

Figure 1-3: a. normal execution b. preemption & cache reload 

[25] which occurs whenever there is a significant change in the 
active working set of the task in execution. Cold starts result in 
reload-transients while the cache loads the newly activated work- 
ing set. During the reload-transient, the hit rate is significantly 
lower than during normal cache operation. The effect of this 
lower hit rate on execution times is depicted in Figure 1-3. The 
exact execution time for Task A in Figure 1-3b is dependent on 
the number of cache lines previously owned by Task A that were 
displaced by Task B. The shaded region indicates additional 
execution time caused by cache misses while these lines are 
reloaded. The relationship of interrupts preemptions and cold 
starts is discussed further in the next section. 

For more information on caches (line sizes, replacement policies, 
write policies, prefetch policies, and more), an excellent summary 
is provided in [20] and [4]. A good discussion on placement 
policies (associativity) is found in [8]. Cache coherence snoop- 
ing and directory schemes are discussed in [l], and the write-once 
scheme is discussed in [7] and [26]. 

2. Real-Time Scheduling and Caches 
Cache memory structures have enhanced system performance for 
generations of computers. The absence of such memory hierar- 
chies in real-time computers can significantly reduce the potential 
system performance. Furthermore, when caches are present in 
real-time systems, the resulting performance improvement often 
leads to the underutilization of system resources. This is exactly 
the case in the Navy’s AEGIS Combat System. The AN/UYK-43 
computer, which provides the central computing power for the 
system, has a 32K-word cache partitioned for instructions and 
data. However, due to unpredictable cache performance, all 
module (task) utilizations are calculated as if the cache were 
turned off (cache bypass option). As a result, the theoretically 
overutilized CPU is often underutilized at run-time. This section 
will discuss the reasons this type of cache is unpredictable, and 
the benefits to task schedulability if the cache performance could 
be made predictable. 
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Di indicates the deadline for task i. 

Figure 2-1: Scheduling 2 tasks with utilization of .83 

It can be seen that task utilization is a limiting factor in increasing 
the schedulability (the task load that can be scheduled with 
guaranteed deadlines) of a system. Therefore, if individual task 
utilizations could be predictably reduced, additional computa- 
tional responsibilities could be added to the system. For ex- 
ample, if the above two tasks were run uninterrupted on a system 
with a cache and executed with worst-case utilizations of 3/10 = 
.3 and 5/14 = .36 (the reduction in execution time results from 
decreased memory access times) the remaining processor utiliza- 
tion could no be used to schedule a third task. Thus, predictable 
cache behavior can indeed increase the task schedulability of a 
real-time system. Unfortunately, as the next section discusses, 
when the requirement that these tasks run uninterrupted is 
removed, the cache predictability is lost. 

2.2. Predictability and Preemption 
Having established the desirability of predictable cache behavior 
to achieve better schedulability, we must define the predictability 
required. For schedulability concerns, a cache is predictable if 
the performance achieved running the task uninterrupted can be 
guaranteed in a priority-driven preemptive scheduling environ- 
ment. Thus, the worst case execution time (WCET) calculated 
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with the cache enabled will never be exceeded due to unusually 
low hit rates. This WCET can then be safely used to determine 
the schedulability of a task set. Unfortunately, conventional 
caches do not meet this requirement for predictability. 

In the environment of priority-driven preemptible schedulers, the 
contents of a cache are virtually random for any task that is 
subject to preemption. During the preemption of a low priority 
task, the footprint ("which is the number of distinct cache lines 
touched by a program" [24]) of the preempting task overlays the 
footprint of the preempted task. As Stone points out in [24], even 
if the two programs could have fit in the cache simultaneously, 
because the cache lines each program occupies are not strategi- 
cally distributed to avoid overlap, the probability for conflict is 
high. As a result of these conflicts, the preempting task displaces 
useful lines of the preempted task. When the preempted task 
resumes, it incurs an unusually high miss rate as it reloads its 
working set in cache. As depicted in Figure 2-2, a low priority 
task may run to completion without any preemptions, or it may 
be preempted one or more times by each of the tasks with higher 
priority. In addition, even the highest priority task can be subject 
to reload-transients caused by interrupt service routines which 
utilized the cache. 

T, : 

7, : 

C l = l  T1=5 U1=.2 7,:C2=l T2=7 U,= .14 

C3=l  T,=9 U =.A1 2,:C = 3  T=20 U,= .15 
3 4 4  

Ri indicates a request for service by task i 

t 6 4  
R 2 I  I R3 I 
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a) Task 4 Runs to completion without any preemptions 

I 
R3 

I 
R I  

d4 

b) Task 4 completes after four preemptions 

Figure 2-2: Variation in preemption occurrences 

Therefore the problem of predictable caches is reduced to hiding 
the effects of preemption and interrupts for all tasks presently in 
execution. Hiding the effects of preemption in a cache can be 
achieved through one of two mechanisms: protection or restora- 
tion. 

Protecting the cache contents involves implementing a scheme 
that prevents the preempting task from being able to destroy the 
information in cache that belongs to the preempted task. If the 
preempting task is not allowed to overlay information owned by 
the preempted task, then once the preempted task is allowed to 
continue, the cache appears undisturbed by the preemption. In 
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reality, the cache contents changed, but not in areas seen by the 
preempted task. Approaches to cache predictability using protec- 
tion are achieved through cache partitioning. The analysis of 
cache partitioning costs, benefits, and techniques are discussed in 

Restoration of cache contents involves allowing the preempting 
task to overwrite the information in cache owned by the 
preempted task. However, before the preempted task resumes 
execution, the cache is reloaded to provide the information resi- 
dent before preemption occurred. The overhead involved with 
restoring the cache can lead to a significant reduction in perfor- 
mance, and could easily negate the benefits of a cache. 

Caches in real-time systems must implement design strategies 
which in some way address the effects of preemption on predict- 
able cache performance. During this research, various ap- 
proaches involving both restoration and protection were ex- 
amined. These approaches are summarized below, and further 
discussed in [9]. Each approach led to design goals used in 
developing the SMART cache design technique. 

[201,[21, [ W ,  and W l .  

3. Partitioning 
Predictable cache performance requires knowledge about the con- 
tents of the cache in an environment that allows preemptions. 
This section discusses various techniques for meeting this re- 
quirement in order to guarantee a certain minimal cache hit count. 
Three cache partitioning approaches are presented. The pros and 
cons of each approach are used to establish the design goals of 
the SMART cache partitioning approach. 

3.1. N-Way Partitioning 
The N-Way Partitioning ( N W P )  scheme divides a cache into N 
separate partitions and provides predictability through protection. 
These partitions can then be statically or dynamically allocated to 
various tasks. A task is forced to use only the partition which it 
owns, and therefore all other cache data is protected. A task 
which is preempted in the middle of its execution resumes execu- 
tion with the exact cache partition contents that it had established 
before being preempted, and therefore experiences no reload- 
transients due to multitasking. Figure 3-1 shows N tasks stati- 
cally bound to partitions comprising a cache of size c. The cache 
partitioning is accomplished by mapping the cache address to a 
specific area of cache defined by the User ID. 

The ELXSI System 6460 used a technique similar to N-way 
partitioning, with a cache size of 1-MByte divided into separate 
512-Kbyte Data and Instruction caches [5]. The cache can be 
further divided into halves, quarters, eighths, or a combination 
thereof. Each partition is then dynamically allocated to one 
real-time task. If the cache requests exceed the available cache, 
tasks with outstanding requests wait for enough cache to be 
released. This approach provides cache data protection, but can 
not be used in a system with hard deadlines due to the potential 
stall while waiting for a cache partition. Techniques for main- 
taining cache coherence within the partitions are provided [5] .  

The N-way partitioning scheme is easy to implement, requiring 
only a hashing function, and provides complete protection of task 
specific data across preemptions. However, to prevent unpre- 
dictable stalls while tasks wait for cache partitions, only static 
binding of partitions can be used. Therefore, a maximum of N 
tasks can be active at any time. Tasks are limited to using only 
one partition, and shared data must not be cached. The SMART 
cache design will provide increased cache partition sizes, and 
areas to cache shared data structures. 
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undesirable characteristics. It will be shown how the SMART 
partitioning scheme: 

is implemented with minimal hardware overhead; 

allows each task to utilize a large fraction of the total 

results in no overhead during context switch; 

utilizes compile time information to improve predic- 

provides overlay protection of frequently accessed 

does not compete with the CPU for system or cache 

maps readily onto n-way associative memory; 

allows an unlimited number of tasks to be active; 

allows shared data structures to be cache. 

cache; 

tability; 

information by infrequently accessed information; 

resources; 

Figure 3-1: N-Way Partitioning 

3.2. Static-Locked Partition 
The Static-Locked Partitioning (SLP) approach, discussed in [9], 
divides a fully-associative cache into two partitions (one small 
and one large), each of which is available to the task now execut- 
ing. The smaller partition is loaded with frequently accessed 
subroutines, and is restored in the event that the task is 
preempted. Routines to be loaded in this partition are determined 
at compile time. Since the contents of this partition are always 
known, any access to this region of the cache is predictable. 
However, this approach requires an intelligent cache controller to 
perform the reload, and returns a limited number of cache hits 
due to the fixed contents (determined at compile time) of the 
smaller cache partition. 

3.3. Dynamic-Locked Partitioning 
The Dynamic-Locked Partitioning (DLP) approach, discussed in 
[9], uses an approach very similar to the SLP approach with the 

cache divided into two partitions. However, unlike the SLP 
approach, the contents of the smaller partition can change when 
the task reaches certain checkpoints. The new contents of par- 
tition are determined by which checkpoint has been reached. A 
table of checkpoints and cache contents is built at compile time 
and referenced by the cache controller as checkpoints are 
reached. This smaller cache partition contains a minimized 
working set whose lifetime is defied as the activation interval, 
or the time between the two bounding checkpoints. In the event 
of a preemption (or interrupt), when the preempted task is 
swapped back in, the contents of the cache partition are restored 
to the latest checkpoint. 

Although the DLP approach provides more flexibility in the 
partition contents, it requires an intelligent cache controller to 
handle the checkpoints, and introduces contention between the 
cache controller and the CPU for cache resources. 

4. SMART Cache Partitioning 
The three previous partitioning techniques have introduced im- 
portant desirable features of predictable cache designs. The 
SMART (Strategic Memory Allocation for Real-Time) cache par- 
titioning strategy attempts to incorporate the beneficial charac- 
teristics of the previous three approaches, while eliminating the 

4.1. The Partitioning 
Under the SMART cache partitioning scheme, a cache of size C 
is partitioned into M+l segments. These segments are then 
allocated to the N tasks in an active task set, where N may be 
greater than, equal to, or less than M. The partitioning is per- 
formed such that a large fraction of the cache is contained in one 
partition referred to as the shared pool, and the remainder of the 
cache is divided into M segments as shown in Figure 4-1. The M 
segments are allocated to those tasks considered performance 
critical. These tasks, due to the frequency of their occurrence or 
their semantic importance, require predictable cache hits. Each 
such task is allocated one or more of the segments. The shared 
pool is used to service tasks that are considered performance 
noncritical, usually due to low service frequency. For example, 
the Navy’s Inertial Navigation System (INS) [3] task set con- 
tained tasks such as the Update Ship Attitude which occurred 
every 2.5 ms, as well as the Update Ship Position which occurred 
every 1.25 sec. In this task set, the position updater would be 
considered performance non-critical and allocated to the shared 
pool, while the attitude updater would be granted one or more of 
the remaining M segments. It is assumed that hits generated by 
the task running every 1.25 sec are not as beneficial to those hits 
generated by the task running every 2.5 ms. 

Cache segments can also be allocated to a group of tasks if these 
tasks share the same preemption level, and are not allowed to 
preempt one another. The AEGIS Tactical Executive System 
(ATES) implements such a scheduling scheme. ATES supports 
four preemption levels, but prevents preemptions of tasks within 
the same level regardless of the scheduling priorities. 

Each of the M segments can only be accessed by the task (or 
preemption group) to which it was allocated, and is consequently 
protected across preemptions. This logical grouping of one or 
more cache segments is referred to as the task’s cache partition. 
Each task owning a cache partition is also free to use the shared 
pool to store infrequently accessed, and shared memory locations. 
Since the shared pool is accessed by multiple tasks, it is not 
protected across preemptions, and resulting cache hits are not 
predictable. Assume for example, a 64K 2-way set-associative 
cache, and a task set of 8 performance critical tasks and 4 perfor- 
mance non-critical background tasks. For simplicity assume that 
each of the 8 tasks is granted a 4K cache partition, and 32K is 
allocated to the shared pool. Each of the critical tasks is capable 
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Cache of using 36K of the cache, 4K of which is protected through 
partitioning. As each task runs, it is permitted to selectively store 
information in the private partition, or the shared pool. This 
allows a task to determine a priori just how the 4K partition 
should be used at run-time. 

4.2. Partitioning and Hit Rates 
As discussed in [22], 16K caches can easily attain hit rates above 
90 percent, while 4K caches typically achieve hit rates around 90 
percent for a range of program traces including database manage- 
ment, scientific applications and batch jobs. In addition, [ 101 and 
[22] have shown that caches as small as 256 words typically 

achieve hit rates of 75%. When the SMART cache partitioning 
strategy is applied to a 32K cache with a 16K shared pool, then 
all tasks can utilize at least 16K of cache, and even more for 
those tasks allocated private segments. Therefore, both total and 
predictable cache hits rates are expected to be high when the 
SMART cache partitioning scheme is applied to caches of size 
greater than or equal to 32K. 

Returning to the 64K cache example with eight tasks evenly 
sharing the private segments, each task would own 4K of predict- 
able cache. As an example of the potential benefit to 
schedulability, we now consider a 1 ms task executing on a 2 
MlP processor with one instruction fetch and .15 data fetches per 
instruction (a number sometimes used for RISC machines), a 50 
ns cache, and a main memory capable of performing a 200 ns 
read through access when a cache miss occurs. The 1 ms com- 
putation requirement assumes no cache hits. With the above 
requirements, the task requires 2300 memory accesses, or .460 
ms memory access time. If the 4K private partition results in a 
90 percent hit rate, the 2070 accesses result in cache hits, each of 
which saves 150 ns, for a total reduction of .31 ms. The original 
task which required 1 ms now requires only .69 ms, for a 31% 
improvement in execution time. Since the period did not change, 
this results in a 31% reduction in the original task utilization. 
This utilization reduction is predictable, and can be used directly 
to increase the schedulability of a specific task set. In addition, 
hits occurring in the shared pool reduce execution time and result 
in increased service time for aperiodics. 

4.3. Controlling the Partitions 
SMART cache design allows both real-time caching as well as 
conventional cache operation. A single hardware flag is used to 
toggle between the two modes. The implementation of the 
SMART cache partitioning scheme for real-time is straightfor- 
ward. This discussion assumes a set-associative cache, but the 
same conclusions hold for a direct-mapped cache (a comprehen- 
sive discussion of the differences appears in [8]). The set address 
for the cache is combined with the cache ID and a one bit 
hardware flag as shown in Figure 4-1. The cache ID is loaded in 
the ID register during the context swap. The ID is used to 
identify how many segments are owned by the task, and which 
segments they are. The hardware flag is used to determine if the 
shared pool or private partition is to be used. All performance 
non-critical tasks would set this flag to indicate the shared pool at 
the start of the task and it would not change until a performance 
critical task gained control. Performance critical tasks on the 
other hand would be allowed to set and reset this flag during the 
program execution, thereby utilizing both the shared pool as well 
as the private segments. Instructions to set and reset th is  flag 
would be embedded in the execution code either as additional 
instructions (vertical insertion), or as additional bits in the present 
instructions (horizontal insertion). 

I I . -. .. .. . . . . I 

t Partition 7 

Figure 4-1: Hardware for SMART Partitioning 

Software contrd UT the partitions give the programmer (or com- 
piler) the ability to determine exactly what data should be placed 
in the private partitions. These decisions are made based on 
information about semantic importance, code frequency, branch 
decisions, inter-reference locality [ 141, and any other information 
useful in determining access pattems and the effects of resulting 
cache hits on schedulability. As in the DLP approach, compile 
time information about variables and loop counts can be used in 
this process, or direct compiler commands can be inserted by the 
programmer. In addition, separate data and instruction hardware 
flags are supported to allow instructions to be mapped into the 
private partition while data is being mapped into the shared pool 
(see Section 4.5). 

4.4. Allocating Segments to Tasks 
The SMART cache partitioning scheme divides the cache into 
finer grain segments than the N-way partitioning scheme, and 
then allocates one or more segments to each task based on its 
performance criticality. Once again we will use the 64K cache 
example in which eight tasks divide 32K for private partitions, 
and 32K is used for the shared pool. However, now we relax the 
requirement that the tasks evenly share the available cache. If the 
cache to be allocated is divided into 1K segments rather than 4K 
segments, the fmer resolution allows the high priority tasks to 
utilize 8K for example, while lower priority tasks may use 1K or 
2K of private cache. Cache segments are allocated in a manner 
which results in the highest change in the total utilization of the 
task set. If we assume that initially no segments are allocated, we 
assign the segments one at a time to taski if and only if 

where pi represents the partition size for taski. The allocation 
scheme attempts to: 

N wcmi 
Minimize UT = Vi , where Vi = - T; ’ 

i= 1 
and WCET; is the worst case execution time for taski, Ti is the 
period of taski, and N is the number of tasks. The subscript i will 
be used to refer to taski throughout the remainder of th is  analysis. 
Then, looking at the components of the execution time we see 
that 
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WCET, = ‘memi + fexi + ‘mixi 9 

where tmem is time spent accessing memory, tex is time spent 
executing instructions, tmisc is time spent performing miscel- 
laneous operations such as task synchronization and YO. For this 
exercise, we can consider t ,  and t ~ s ,  fixed, and 

‘memi = ‘ci + tmi 

where t, is the time expended accessing cache memory and t ,  is 
the time expended accessing main memory. Both these 
parameters are dependent on the number of memory accesses by 
taski, the hit rate for the cache partition, and the characteristic 
access time of the memory. Therefore we have 

where A is the number of memory references, p is the hit rate, T, 
is the access time for the cache, and T,,, is the access time for the 
main memory. 

Now if we examine how the utilization varies with the partition 
size we have 

- =  su; S ( 7 )  = _ .  1 6 (‘memi + ‘exi + tmisc) 

SP, Qi Ti 6pi 

But since fex and tmiSc are constant with respect to pi, their 
derivatives are zero. Therefore, if we substitute for t,, we get 

and since A ,  T, and T,  are constant with respect to pi. this 
reduces to 

These findings are consistent with expectations. Since cache is 
faster than main memory, T, will be less than T,, and the quan- 
tity (T, - T,) will be negative. Both Ai and Ti are positive, and 
the hit rate increases monotonidly with the partition size. 
Therefore, the derivative of the utilization with respect to the 
partition size is negative, and the utilization will decrease with 
increasing partition size. Furthermore, the rate of decrease is 
proportional to the number of memory references, the frequency 
of occurrence of the task (IE‘;), the difference between the access 
times of the two memories, and-+& which the hit rate 
changes with the pa&tmr5Et?me hit rate is the only parameter 
that varies with the partition size. 

While cache designs with small segments provide more resolu- 
tion during the allocation phase, there is overhead associated with 
finer grain segments. Finer grain segments reqube larger tags to 
be stored in the cache directory. When the segments are small, 
fewer of the original address bits are being used to address the 
cache. As a result, additional tag bits must be stored to provide 
the comparison needed to determine a cache hit. Since there is a 
cost associated with smaller cache segments, the cost of finer 
granularity should be weighed against the benefits. 

4.5. Shared Data Structures 
As with any partitioning scheme or multiple cache system, cache 
coherence is a concem. Cache coherence deals with maintaining 
the contents of the cache in such a way that valid lines always 
reflects the latest information [26]. Different techniques, such as 
directory schemes and snoopy caches are used to assure cache 
coherence in multiple cache systems. 

The SMART cache partitioning scheme must assure intemal 
cache coherence between the multiple partitions when data struc- 
tures are shared. If such data structures are allowed to be con- 
tained in the private partitions, problems with predictability arise. 
If the structures are moved to different partitions as they are 
needed, then invalidation causes unpredicted cache misses. On 
the other hand, if each data structure is allocated to the private 
partition of some parent process, problems arise when another 
process accesses that structure and experiences a cache miss. To 
bring the data structure into the cache requires replacing a line in 
the parent’s cache partition, leading to unexpected misses by the 
parent. An altemative is for shared data structures to be kept in 
the shared pool. This eliminates the possibility for multiple 
copies of the same data, and removes the risk of stale data when 
two tasks share a common data structure. For reasons discussed 
earlier, data accesses to these structures do not have predictable 
cache hits. 

Maintaining cache coherence in multi-cache systems (i.e. mul- 
tiprocessor systems) can also be solved by mapping shared data 
structures to the common pool. This  approach is compatible with 
the proposed EEE Futurebus coherence protocol [6]. Depending 
on the memory and I/O configuration, the Futurebus coherence 
protocol can be maintained across the entire cache, or just the 
shared pool. Various memory hierarchies and the associated 
SMART cache design approach are currently under investigation. 

Unpredictable cache behavior resulting from shared data struc- 
tures in both uniprocessors and multiprocessors can be avoided if 
we assume that such data structures are protected by read and 
write locks. Once write access is granted to a process, no other 
process can read or write the structure until it has been released. 
This process could then access the data structure through its 
private partition without concem for cache coherence while the 
write lock is active. Before releasing the lock, these cache lines 
would either be flushed and/or invalidated depending on the write 
policy (copy-back or write-through). This prevents aliasing 
problems in the SMART cache caused by mapping identical 
addresses to different partitions determined by the requesting 
task. If the flush were not performed, and the most recent copy 
was maintained in the private partition for process P1, any refer- 
ence by process P2 would result in old data since F’2 can not 
“see“ the private partition for P1. If the invalidate were not 
performed, it is possible that task P1 might read an old version of 
the data from its own private partition following modification by 
P2 elsewhere. 

4.6. Partitioning for Aperiodics and Interrupts 
Aperiodics are often serviced using some type of pseudo periodic 
service routine such as the deferrable server and priority ex- 
change algorithms [12]. This periodic server, or any other 
aperiodic task, can be allocated a partition using the same type of 
decision scheme used for periodic tasks. An average arrival time 
could be used for the task period. All aperiodics could be 
assigned to the shared pool, assigned separate partitions, or 
groups of aperiodics could share a single partition. A similar 
approach can be used to handle interrupts. A good approach for 
interrupts might be to allocate a private partition for each inter- 
rupt level. 
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5. Conclusions and Future Work 
Present cache architectures do not support priorities and predic- 
tability. Consequently it is impossible to use their resulting 
performance enhancement to ease the scheduling burden in real- 
time systems which guarantee hard deadlines. The SMART 
cache partitioning scheme extends scheduling concems into the 
system hardware architecture resulting in a new approach to 
cache design. This approach allows a single cache design to 
support both time-share and batch applications with a conven- 
tional cache architecture, as well as provide a predictable cache 
management scheme for use in priority-driven preemptive real- 
time scheduling environments. Switching between the two 
modes is accomplished with one instruction to setheset a 
hardware indicator specifying the mode. 

While operating in the real-time mode, the cache is divided into 
private partitions allocated to individual tasks or preemption 
priority levels. Unlike other schemes, partitions are not granted 
on a first come first serve basis, but rather based on a static 
analysis of the task priorities, semantic content, and contribution 
to schedulability. Furthermore, static assignmeilt of partitions 
assures that no task is ever forced to wait for a cache partition to 
become available. In addition, a large fraction of cache is dedi- 
cated as a common pool used primarily by low priority tasks. 
The introduction of the common pool allows the number of tasks 
to exceed the number of partitions. The common pool is also 
utilized by critical tasks vis embedded cache instructions which 
provide software control over the placement of cache contents. 
Thus, the SMART cache partitioning scheme continues the cur- 
rent trend of allowing compilers to make decisions related to the 
use of system hardware resources. Use of compile time infor- 
mation to provide more efficient utilization of system resources is 
very feasible in real-time systems which have minimal compila- 
tion requirements due to a fixed task set. 

In summary, the results of this research not only provide a 
scheme for utilizing the performance enhancement provided by 
hierarchical memory designs, but also for fine tuning these en- 
hancements to provide increased benefit to the desired scheduling 
goal. In the past, hierarchical memory design costs made their 
use impractical for many real-time applications where the perfor- 
mance benefits only served to reduce risk of transient overload. 
The SMART cache partitioning approach provides a technique 
for using hierarchical memory designs to increase functionality 
and/or decrease design costs of the processor. 

Future work in SMART caching will focus on investigating 
models of memory access patterns which can be used to represent 
the tasks competing for cache segments. These models will be 
used to predict the expected benefit of allocating individual seg- 
ments to the various tasks. Algorithms are presently being 
developed which allocate the cache segments based on weighted 
scores achieved by each task. 
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