
SMART (Strategic Memory Allocation for Real-Time) Cache Design

David B. Kirk

Department of Electrical and Computer Engineering
Camegie Mellon University, Pittsburgh, Pennsylvania 15213

and IBM Systems Integration Division

Abstract

Caches have been bridging the gap between CPU speeak and
main memory speeds since they were first introduced in the IBM
360185 computer in 1969. Their absence in real-time system
designs, however, has been noticeable. In the past, this was ofen
the result of space, power and weight limitations imposed on
many embedded real-time systems. However, even though sig-
nificant progress in solid-state technology has provided small
efficient cache structures, few real-time systems choose to imple-
ment hierarchical memory designs. The extremely efficient, but
unpredictable, performance of cache architectures provides little
benefit to real-time systems that must guarantee hard deadlines.
This paper discusses why the present approach to cache architec-
ture design results in unpredictable performance improvements
in real-time systems with priority-based preemptive scheduling
algorithms. The SMART cache design is then presented, and
shown to be compatible with the goals of scheduling in a real-
time sysrem.

Keywords: Real-Time Scheduling; Cache Memories; Perfor-
mance Predictability; Cache Partitioning; Priority-Driven
Preemptive Scheduling; Cache Coherence.

1. Introduction

1.1. Real-Time Systems and Scheduling
Task scheduling in a time-shared system addresses different con-
cems than those of importance to real-time systems. Efficient use
of system resources, and maximized system throughput are the
critical performance measures in a time-shared system. Multiple
job streams are active simultaneously, and are often serviced with
a round-robin ordering. Execution fairness (i.e. starvation
avoidance) predominates as a scheduling concem. On the other
hand, real-time systems are directed at an environment that im-
poses tight timing constraints on system behavior. They typically
handle large amounts of data for use in computations that have
hard deadlines. These deadlines are often the result of periodic
events that provide large quantities of data at regular intervals.
The computations to be performed on one data sampling must be
completed before the next sampling overwrites the data buffer.
In real-time systems, the value of a result is a function of both its
accuracy and the time at which the result is produced. This
time-value of a result is expressed as a constraint which if missed
can cause system failure. Thus, maximized throughput is subject
to ensuring that all externally imposed deadlines are met. Fur-
thermore, task starvation may be unavoidable under conditions of
transient overload. Transient overload occurs when there is not

enough computation time available to meet all task deadlines, and
usually results from stochastic execution times and aperiodics

Real-time systems are often composed of periodic and aperiodic
tasks, where periodic tasks have regular arrival times and hard
deadlines, and aperiodic tasks have random arrival times with
hard or soft deadlines. Hard deadlines imply that the value
(usefulness to the mission) of the computation is zero once the
deadline is missed. Often the consequence of a missed hard
deadline is system failure, and possibly catastrophic loss. Soft
deadlines, however, are modelled by a value function which
decreases once the deadline is missed, but does not go im-
mediately to zero. Many systems are composed of both hard and
soft deadlines.

In the past, the solution to meeting real-time system timing con-
straints was to provide an overabundance of processing power
and schedule tasks using a cyclical executive. An example of this
static time-slicing of system resources is shown in Figure 1-la.
Tasks are placed along the time line such that all deadlines are
met. They are typically partitioned to fill in the available time
slots. Asynchronous (aperiodic) tasks are processed by dedicat-
ing a time slice to a synchronous server task which polls for
aperiodic service requests. Fine tuning of the time line is often
performed during lab debug. This can result in a very ad hoc
development of the schedule.

1231.

D2
I D1 I D1 I

D2

D2 D1 ?2 D1

(+E) Missed
Deadline

b)

7i=Task i Di = Deadline for task i

Figure 1-1: TlME LINES - a. original b. after modification

Changes in the task set or in any individual task can be devas-

229
CH2803-5/89/oooO/0229/$01.00 0 1989 IEEE

tating to the completed time line. This phenomenon is depicted
in Figure 1-lb where an alteration to task 3 has caused task 2 to
miss a deadline. Correcting the time line usually involves shuf-
fling task pieces around, repartitioning individual tasks, and may
even result in a complete redesign of the time line sequence. For
this reason, maintenance and system upgrade are particularly
painful in a cyclical executive system. In addition, under con-
ditions of transient overload, deadlines will be missed with no
regard to the semantic importance of the task.

There is currently a trend to replace this ad hoc scheduling
approach with scientifically-based algorithmic scheduling tech-
niques. These scheduling policies use a static or dynamic priority
assignment to guarantee that the system timing constraints are
met. Two such algorithms are the rate-monotonic (static), and
the deadline driven (dynamic) scheduling techniques [13] . Since
the deadline driven algorithm misses deadlines unpredictably un-
der conditions of transient overload [16], and often results in
NP-hard problems when proving the schedulability of a task set
[15], the remainder of this paper will focus on a modified rate-

monotonic algorithm.

Under the rate monotonic algorithm, the priorities assigned to
periodic tasks are directly proportional to their rate of requests.
Assuming a task requests service each period, the task with the
shortest period will have the highest priority. Liu and Layland
[13] proved this algorithm guarantees that n independent peri-

odic tasks can be scheduled to meet all task deadlines if the sum
of the task utilizations (defined as the task computation time
divided by the task period) for all n tasks is less than n(2’/”-1).
This bound converges to In 2 (= 0.69) for large n. It is, however,
pessimistic, and represents the absolute worst case conditions.
The average case scheduling bound is 88% [1 I]. In practice, the
bound is often between 90 and 100% because task periods are
often harmonic or near haqonic. Finally, through the period
transformation method, the scheduling bound can be made ar-
bitrarily close to 100% [18].

While the rate-monotonic algorithm works well with periodic
tasks with fixed execution times, some modifications need to be
incorporated to handle aperiodic task scheduling and task
priorities during overload. Scheduling of aperiodic tasks can be
done through methods such as the priority exchange algorithm,
and the deferrable server as discussed in [12]. Stochastic execu-
tion times can lead to a required utilization greater than the
scheduling bound. When this occurs, load shedding must take
place to ensure that critical deadlines are met. Strategic load
shedding can be incorporated into the static scheduler through
techniques such as period transformation as discussed in [16].
Interprocess synchronization can lead to an unbounded number of
priority inversions which can significantly reduce attainable
utilization with guaranteed deadlines. Implementation of the
priority inheritance and priority ceiling protocols [171 provides a
bound on this type of priority inversion, as well as ensuring that
deadlock can not occur as a result of synchronization.

1.2. Cache Memories - an Overview
Cache memories are small, fast buffers that are used to tem-
porarily hold recently used information, as well as information
that might be needed in the near future. These buffers are placed
between the CPU and main memory and provide the functionality
of main memory at the speed of the CPU. However, since the
cache buffer is smaller than main memory, various techniques
have been developed to determine what information should be
held in cache. While the solutions to this problem are plentiful,
they are all driven by two program properties: temporal and

spatial locality. Temporal locality refers to the tendency of a
program to revisit areas of memory that have recently been ac-
cessed. This time related behavior is exemplified by program
loops and repeated procedure calls. Spatial locality refers to the
tendency of a program to access memory locations close to those
locations that have recently been accessed. This space related
behavior is exemplified by the execution of regions of sequential
code, or the access of sequentially stored data structures. The
cache attempts to ensure that information, local both in time and
in space to the current information, is readily available [21].
When this attempt is successful, the cache request results in a
cache hit, and the access is performed at the speed of the cache.
When the attempt fails, the cache request results in a cache miss,
and the access is performed at the speed of main memory - often
three or four times slower than cache.

VIRTUAL ADDRESS

m

Figure 1-2: Virtual Address Cache Design

Figure 1-2 shows a high level cache design in a computer with
virtual addressing. The CPU presents a virtual address to the
memory management unit which in turn checks the entries in the
translation lookaside buffer (TLB) for the translation to a real
address. If there is no valid entry corresponding to that virtual
address, it is passed to the slower translation logic which provides
the real address to be saved in the TLB for future references.
While the virtual page address is being translated by the TLB, the
set address is used by the cache to identify a set of potential lines
that may contain the desired information. The tag field of each
line in the set is compared to the real address returned by the TLB
or translation logic. If the tags match (a hit), the byte address is
used to select the data for the CPU, and the cache status fields are
updated to reflect the recent access. If the tags do not match (a
miss), a main-memory access is started. The desired line of data
is read into the cache, and the requested information is passed on
to the CPU.

In a multi-tasking environment, it is very difficult (if not impos-
sible) to predict the cache performance. This unpredictable be-
havior results from a phenomenon referred to as cold start

230

1

Task A Task 0

time +

2.1. Scheduling Enhancements
An important evaluation criterion for real-time systems is the
schedulable utilization, the highest attainable resource utilization
at or below which all hard deadlines can be guaranteed. Schedul-
able utilization is the sum of all the task utilizations at a point
when an increase in any one task utilization would cause the
system to miss one of the deadlines. Clearly it would be ideal to
design a system such that all deadlines were met, and all
resources were utilized 100%. This, however, is not always
possible when using static priority-driven preemptive scheduling
algorithms. Consider the example shown in Figure 2-1 where the

Task A Task 0 Task A utilization of task 1 is 4/10 = .4 (in the introduction, we defined
utilization to be the worst case execution time divided by the
period), and the utilization of task 2 is 6/14 = .43, for a total of
83%. Furthermore, assume that a task’s dadline is equal to its
period. However, an increase in either task’s computation re-
quirement would cause task 2 to miss its deadline when
scheduled using the rate-monotonic algorithm. Therefore, the
schedulable utilization for this task set is 83%, which is equal to
the Liu and Layland bound for n = 2, and the computation
requirement for neither task can be increased.

t
cache
reload

t time -
6 preempts A

(b)

Figure 1-3: a. normal execution b. preemption & cache reload

[25] which occurs whenever there is a significant change in the
active working set of the task in execution. Cold starts result in
reload-transients while the cache loads the newly activated work-
ing set. During the reload-transient, the hit rate is significantly
lower than during normal cache operation. The effect of this
lower hit rate on execution times is depicted in Figure 1-3. The
exact execution time for Task A in Figure 1-3b is dependent on
the number of cache lines previously owned by Task A that were
displaced by Task B. The shaded region indicates additional
execution time caused by cache misses while these lines are
reloaded. The relationship of interrupts preemptions and cold
starts is discussed further in the next section.

For more information on caches (line sizes, replacement policies,
write policies, prefetch policies, and more), an excellent summary
is provided in [20] and [4]. A good discussion on placement
policies (associativity) is found in [8]. Cache coherence snoop-
ing and directory schemes are discussed in [l], and the write-once
scheme is discussed in [7] and [26].

2. Real-Time Scheduling and Caches
Cache memory structures have enhanced system performance for
generations of computers. The absence of such memory hierar-
chies in real-time computers can significantly reduce the potential
system performance. Furthermore, when caches are present in
real-time systems, the resulting performance improvement often
leads to the underutilization of system resources. This is exactly
the case in the Navy’s AEGIS Combat System. The AN/UYK-43
computer, which provides the central computing power for the
system, has a 32K-word cache partitioned for instructions and
data. However, due to unpredictable cache performance, all
module (task) utilizations are calculated as if the cache were
turned off (cache bypass option). As a result, the theoretically
overutilized CPU is often underutilized at run-time. This section
will discuss the reasons this type of cache is unpredictable, and
the benefits to task schedulability if the cache performance could
be made predictable.

23 I

For Task I I
U, =4/10-.40 Ti = Task Period I ci - Computation Time

I D1 D2 D1

I I l ‘o 14 20
time +

Di indicates the deadline for task i.

Figure 2-1: Scheduling 2 tasks with utilization of .83

It can be seen that task utilization is a limiting factor in increasing
the schedulability (the task load that can be scheduled with
guaranteed deadlines) of a system. Therefore, if individual task
utilizations could be predictably reduced, additional computa-
tional responsibilities could be added to the system. For ex-
ample, if the above two tasks were run uninterrupted on a system
with a cache and executed with worst-case utilizations of 3/10 =
.3 and 5/14 = .36 (the reduction in execution time results from
decreased memory access times) the remaining processor utiliza-
tion could no be used to schedule a third task. Thus, predictable
cache behavior can indeed increase the task schedulability of a
real-time system. Unfortunately, as the next section discusses,
when the requirement that these tasks run uninterrupted is
removed, the cache predictability is lost.

2.2. Predictability and Preemption
Having established the desirability of predictable cache behavior
to achieve better schedulability, we must define the predictability
required. For schedulability concerns, a cache is predictable if
the performance achieved running the task uninterrupted can be
guaranteed in a priority-driven preemptive scheduling environ-
ment. Thus, the worst case execution time (WCET) calculated

1

with the cache enabled will never be exceeded due to unusually
low hit rates. This WCET can then be safely used to determine
the schedulability of a task set. Unfortunately, conventional
caches do not meet this requirement for predictability.

In the environment of priority-driven preemptible schedulers, the
contents of a cache are virtually random for any task that is
subject to preemption. During the preemption of a low priority
task, the footprint ("which is the number of distinct cache lines
touched by a program" [24]) of the preempting task overlays the
footprint of the preempted task. As Stone points out in [24], even
if the two programs could have fit in the cache simultaneously,
because the cache lines each program occupies are not strategi-
cally distributed to avoid overlap, the probability for conflict is
high. As a result of these conflicts, the preempting task displaces
useful lines of the preempted task. When the preempted task
resumes, it incurs an unusually high miss rate as it reloads its
working set in cache. As depicted in Figure 2-2, a low priority
task may run to completion without any preemptions, or it may
be preempted one or more times by each of the tasks with higher
priority. In addition, even the highest priority task can be subject
to reload-transients caused by interrupt service routines which
utilized the cache.

T, :

7, :

C l = l T1=5 U1=.2 7,:C2=l T2=7 U,= .14

C3=l T,=9 U =.A1 2,:C = 3 T=20 U,= .15
3 4 4

Ri indicates a request for service by task i

t 6 4
R 2 I I R3 I

R I dl

a) Task 4 Runs to completion without any preemptions

I
R3

I
R I

d4

b) Task 4 completes after four preemptions

Figure 2-2: Variation in preemption occurrences

Therefore the problem of predictable caches is reduced to hiding
the effects of preemption and interrupts for all tasks presently in
execution. Hiding the effects of preemption in a cache can be
achieved through one of two mechanisms: protection or restora-
tion.

Protecting the cache contents involves implementing a scheme
that prevents the preempting task from being able to destroy the
information in cache that belongs to the preempted task. If the
preempting task is not allowed to overlay information owned by
the preempted task, then once the preempted task is allowed to
continue, the cache appears undisturbed by the preemption. In

232

reality, the cache contents changed, but not in areas seen by the
preempted task. Approaches to cache predictability using protec-
tion are achieved through cache partitioning. The analysis of
cache partitioning costs, benefits, and techniques are discussed in

Restoration of cache contents involves allowing the preempting
task to overwrite the information in cache owned by the
preempted task. However, before the preempted task resumes
execution, the cache is reloaded to provide the information resi-
dent before preemption occurred. The overhead involved with
restoring the cache can lead to a significant reduction in perfor-
mance, and could easily negate the benefits of a cache.

Caches in real-time systems must implement design strategies
which in some way address the effects of preemption on predict-
able cache performance. During this research, various ap-
proaches involving both restoration and protection were ex-
amined. These approaches are summarized below, and further
discussed in [9]. Each approach led to design goals used in
developing the SMART cache design technique.

[201,[21, [W , and W l .

3. Partitioning
Predictable cache performance requires knowledge about the con-
tents of the cache in an environment that allows preemptions.
This section discusses various techniques for meeting this re-
quirement in order to guarantee a certain minimal cache hit count.
Three cache partitioning approaches are presented. The pros and
cons of each approach are used to establish the design goals of
the SMART cache partitioning approach.

3.1. N-Way Partitioning
The N-Way Partitioning (N W P) scheme divides a cache into N
separate partitions and provides predictability through protection.
These partitions can then be statically or dynamically allocated to
various tasks. A task is forced to use only the partition which it
owns, and therefore all other cache data is protected. A task
which is preempted in the middle of its execution resumes execu-
tion with the exact cache partition contents that it had established
before being preempted, and therefore experiences no reload-
transients due to multitasking. Figure 3-1 shows N tasks stati-
cally bound to partitions comprising a cache of size c. The cache
partitioning is accomplished by mapping the cache address to a
specific area of cache defined by the User ID.

The ELXSI System 6460 used a technique similar to N-way
partitioning, with a cache size of 1-MByte divided into separate
512-Kbyte Data and Instruction caches [5]. The cache can be
further divided into halves, quarters, eighths, or a combination
thereof. Each partition is then dynamically allocated to one
real-time task. If the cache requests exceed the available cache,
tasks with outstanding requests wait for enough cache to be
released. This approach provides cache data protection, but can
not be used in a system with hard deadlines due to the potential
stall while waiting for a cache partition. Techniques for main-
taining cache coherence within the partitions are provided [5] .

The N-way partitioning scheme is easy to implement, requiring
only a hashing function, and provides complete protection of task
specific data across preemptions. However, to prevent unpre-
dictable stalls while tasks wait for cache partitions, only static
binding of partitions can be used. Therefore, a maximum of N
tasks can be active at any time. Tasks are limited to using only
one partition, and shared data must not be cached. The SMART
cache design will provide increased cache partition sizes, and
areas to cache shared data structures.

Part l t loned Cache
(N=16)

I Task 3 1
I I

Address Function

I Task 13

I Task 16 t

undesirable characteristics. It will be shown how the SMART
partitioning scheme:

is implemented with minimal hardware overhead;

allows each task to utilize a large fraction of the total

results in no overhead during context switch;

utilizes compile time information to improve predic-

provides overlay protection of frequently accessed

does not compete with the CPU for system or cache

maps readily onto n-way associative memory;

allows an unlimited number of tasks to be active;

allows shared data structures to be cache.

cache;

tability;

information by infrequently accessed information;

resources;

Figure 3-1: N-Way Partitioning

3.2. Static-Locked Partition
The Static-Locked Partitioning (SLP) approach, discussed in [9],
divides a fully-associative cache into two partitions (one small
and one large), each of which is available to the task now execut-
ing. The smaller partition is loaded with frequently accessed
subroutines, and is restored in the event that the task is
preempted. Routines to be loaded in this partition are determined
at compile time. Since the contents of this partition are always
known, any access to this region of the cache is predictable.
However, this approach requires an intelligent cache controller to
perform the reload, and returns a limited number of cache hits
due to the fixed contents (determined at compile time) of the
smaller cache partition.

3.3. Dynamic-Locked Partitioning
The Dynamic-Locked Partitioning (DLP) approach, discussed in
[9], uses an approach very similar to the SLP approach with the

cache divided into two partitions. However, unlike the SLP
approach, the contents of the smaller partition can change when
the task reaches certain checkpoints. The new contents of par-
tition are determined by which checkpoint has been reached. A
table of checkpoints and cache contents is built at compile time
and referenced by the cache controller as checkpoints are
reached. This smaller cache partition contains a minimized
working set whose lifetime is defied as the activation interval,
or the time between the two bounding checkpoints. In the event
of a preemption (or interrupt), when the preempted task is
swapped back in, the contents of the cache partition are restored
to the latest checkpoint.

Although the DLP approach provides more flexibility in the
partition contents, it requires an intelligent cache controller to
handle the checkpoints, and introduces contention between the
cache controller and the CPU for cache resources.

4. SMART Cache Partitioning
The three previous partitioning techniques have introduced im-
portant desirable features of predictable cache designs. The
SMART (Strategic Memory Allocation for Real-Time) cache par-
titioning strategy attempts to incorporate the beneficial charac-
teristics of the previous three approaches, while eliminating the

4.1. The Partitioning
Under the SMART cache partitioning scheme, a cache of size C
is partitioned into M+l segments. These segments are then
allocated to the N tasks in an active task set, where N may be
greater than, equal to, or less than M. The partitioning is per-
formed such that a large fraction of the cache is contained in one
partition referred to as the shared pool, and the remainder of the
cache is divided into M segments as shown in Figure 4-1. The M
segments are allocated to those tasks considered performance
critical. These tasks, due to the frequency of their occurrence or
their semantic importance, require predictable cache hits. Each
such task is allocated one or more of the segments. The shared
pool is used to service tasks that are considered performance
noncritical, usually due to low service frequency. For example,
the Navy’s Inertial Navigation System (INS) [3] task set con-
tained tasks such as the Update Ship Attitude which occurred
every 2.5 ms, as well as the Update Ship Position which occurred
every 1.25 sec. In this task set, the position updater would be
considered performance non-critical and allocated to the shared
pool, while the attitude updater would be granted one or more of
the remaining M segments. It is assumed that hits generated by
the task running every 1.25 sec are not as beneficial to those hits
generated by the task running every 2.5 ms.

Cache segments can also be allocated to a group of tasks if these
tasks share the same preemption level, and are not allowed to
preempt one another. The AEGIS Tactical Executive System
(ATES) implements such a scheduling scheme. ATES supports
four preemption levels, but prevents preemptions of tasks within
the same level regardless of the scheduling priorities.

Each of the M segments can only be accessed by the task (or
preemption group) to which it was allocated, and is consequently
protected across preemptions. This logical grouping of one or
more cache segments is referred to as the task’s cache partition.
Each task owning a cache partition is also free to use the shared
pool to store infrequently accessed, and shared memory locations.
Since the shared pool is accessed by multiple tasks, it is not
protected across preemptions, and resulting cache hits are not
predictable. Assume for example, a 64K 2-way set-associative
cache, and a task set of 8 performance critical tasks and 4 perfor-
mance non-critical background tasks. For simplicity assume that
each of the 8 tasks is granted a 4K cache partition, and 32K is
allocated to the shared pool. Each of the critical tasks is capable

233

1

Cache of using 36K of the cache, 4K of which is protected through
partitioning. As each task runs, it is permitted to selectively store
information in the private partition, or the shared pool. This
allows a task to determine a priori just how the 4K partition
should be used at run-time.

4.2. Partitioning and Hit Rates
As discussed in [22], 16K caches can easily attain hit rates above
90 percent, while 4K caches typically achieve hit rates around 90
percent for a range of program traces including database manage-
ment, scientific applications and batch jobs. In addition, [101 and
[22] have shown that caches as small as 256 words typically

achieve hit rates of 75%. When the SMART cache partitioning
strategy is applied to a 32K cache with a 16K shared pool, then
all tasks can utilize at least 16K of cache, and even more for
those tasks allocated private segments. Therefore, both total and
predictable cache hits rates are expected to be high when the
SMART cache partitioning scheme is applied to caches of size
greater than or equal to 32K.

Returning to the 64K cache example with eight tasks evenly
sharing the private segments, each task would own 4K of predict-
able cache. As an example of the potential benefit to
schedulability, we now consider a 1 ms task executing on a 2
MlP processor with one instruction fetch and .15 data fetches per
instruction (a number sometimes used for RISC machines), a 50
ns cache, and a main memory capable of performing a 200 ns
read through access when a cache miss occurs. The 1 ms com-
putation requirement assumes no cache hits. With the above
requirements, the task requires 2300 memory accesses, or .460
ms memory access time. If the 4K private partition results in a
90 percent hit rate, the 2070 accesses result in cache hits, each of
which saves 150 ns, for a total reduction of .31 ms. The original
task which required 1 ms now requires only .69 ms, for a 31%
improvement in execution time. Since the period did not change,
this results in a 31% reduction in the original task utilization.
This utilization reduction is predictable, and can be used directly
to increase the schedulability of a specific task set. In addition,
hits occurring in the shared pool reduce execution time and result
in increased service time for aperiodics.

4.3. Controlling the Partitions
SMART cache design allows both real-time caching as well as
conventional cache operation. A single hardware flag is used to
toggle between the two modes. The implementation of the
SMART cache partitioning scheme for real-time is straightfor-
ward. This discussion assumes a set-associative cache, but the
same conclusions hold for a direct-mapped cache (a comprehen-
sive discussion of the differences appears in [8]). The set address
for the cache is combined with the cache ID and a one bit
hardware flag as shown in Figure 4-1. The cache ID is loaded in
the ID register during the context swap. The ID is used to
identify how many segments are owned by the task, and which
segments they are. The hardware flag is used to determine if the
shared pool or private partition is to be used. All performance
non-critical tasks would set this flag to indicate the shared pool at
the start of the task and it would not change until a performance
critical task gained control. Performance critical tasks on the
other hand would be allowed to set and reset this flag during the
program execution, thereby utilizing both the shared pool as well
as the private segments. Instructions to set and reset th is flag
would be embedded in the execution code either as additional
instructions (vertical insertion), or as additional bits in the present
instructions (horizontal insertion).

I I . -. I

t Partition 7

Figure 4-1: Hardware for SMART Partitioning

Software contrd UT the partitions give the programmer (or com-
piler) the ability to determine exactly what data should be placed
in the private partitions. These decisions are made based on
information about semantic importance, code frequency, branch
decisions, inter-reference locality [141, and any other information
useful in determining access pattems and the effects of resulting
cache hits on schedulability. As in the DLP approach, compile
time information about variables and loop counts can be used in
this process, or direct compiler commands can be inserted by the
programmer. In addition, separate data and instruction hardware
flags are supported to allow instructions to be mapped into the
private partition while data is being mapped into the shared pool
(see Section 4.5).

4.4. Allocating Segments to Tasks
The SMART cache partitioning scheme divides the cache into
finer grain segments than the N-way partitioning scheme, and
then allocates one or more segments to each task based on its
performance criticality. Once again we will use the 64K cache
example in which eight tasks divide 32K for private partitions,
and 32K is used for the shared pool. However, now we relax the
requirement that the tasks evenly share the available cache. If the
cache to be allocated is divided into 1K segments rather than 4K
segments, the fmer resolution allows the high priority tasks to
utilize 8K for example, while lower priority tasks may use 1K or
2K of private cache. Cache segments are allocated in a manner
which results in the highest change in the total utilization of the
task set. If we assume that initially no segments are allocated, we
assign the segments one at a time to taski if and only if

where pi represents the partition size for taski. The allocation
scheme attempts to:

N wcmi
Minimize UT = Vi , where Vi = - T; ’

i= 1
and WCET; is the worst case execution time for taski, Ti is the
period of taski, and N is the number of tasks. The subscript i will
be used to refer to taski throughout the remainder of th is analysis.
Then, looking at the components of the execution time we see
that

234

WCET, = ‘memi + fexi + ‘mixi 9

where tmem is time spent accessing memory, tex is time spent
executing instructions, tmisc is time spent performing miscel-
laneous operations such as task synchronization and YO. For this
exercise, we can consider t , and t ~ s , fixed, and

‘memi = ‘ci + tmi

where t, is the time expended accessing cache memory and t , is
the time expended accessing main memory. Both these
parameters are dependent on the number of memory accesses by
taski, the hit rate for the cache partition, and the characteristic
access time of the memory. Therefore we have

where A is the number of memory references, p is the hit rate, T,
is the access time for the cache, and T,,, is the access time for the
main memory.

Now if we examine how the utilization varies with the partition
size we have

- = su; S (7) = _ . 1 6 (‘memi + ‘exi + tmisc)

SP, Qi Ti 6pi

But since fex and tmiSc are constant with respect to pi, their
derivatives are zero. Therefore, if we substitute for t,, we get

and since A , T, and T, are constant with respect to pi. this
reduces to

These findings are consistent with expectations. Since cache is
faster than main memory, T, will be less than T,, and the quan-
tity (T, - T,) will be negative. Both Ai and Ti are positive, and
the hit rate increases monotonidly with the partition size.
Therefore, the derivative of the utilization with respect to the
partition size is negative, and the utilization will decrease with
increasing partition size. Furthermore, the rate of decrease is
proportional to the number of memory references, the frequency
of occurrence of the task (IE‘;), the difference between the access
times of the two memories, and-+& which the hit rate
changes with the pa&tmr5Et?me hit rate is the only parameter
that varies with the partition size.

While cache designs with small segments provide more resolu-
tion during the allocation phase, there is overhead associated with
finer grain segments. Finer grain segments reqube larger tags to
be stored in the cache directory. When the segments are small,
fewer of the original address bits are being used to address the
cache. As a result, additional tag bits must be stored to provide
the comparison needed to determine a cache hit. Since there is a
cost associated with smaller cache segments, the cost of finer
granularity should be weighed against the benefits.

4.5. Shared Data Structures
As with any partitioning scheme or multiple cache system, cache
coherence is a concem. Cache coherence deals with maintaining
the contents of the cache in such a way that valid lines always
reflects the latest information [26]. Different techniques, such as
directory schemes and snoopy caches are used to assure cache
coherence in multiple cache systems.

The SMART cache partitioning scheme must assure intemal
cache coherence between the multiple partitions when data struc-
tures are shared. If such data structures are allowed to be con-
tained in the private partitions, problems with predictability arise.
If the structures are moved to different partitions as they are
needed, then invalidation causes unpredicted cache misses. On
the other hand, if each data structure is allocated to the private
partition of some parent process, problems arise when another
process accesses that structure and experiences a cache miss. To
bring the data structure into the cache requires replacing a line in
the parent’s cache partition, leading to unexpected misses by the
parent. An altemative is for shared data structures to be kept in
the shared pool. This eliminates the possibility for multiple
copies of the same data, and removes the risk of stale data when
two tasks share a common data structure. For reasons discussed
earlier, data accesses to these structures do not have predictable
cache hits.

Maintaining cache coherence in multi-cache systems (i.e. mul-
tiprocessor systems) can also be solved by mapping shared data
structures to the common pool. This approach is compatible with
the proposed EEE Futurebus coherence protocol [6]. Depending
on the memory and I/O configuration, the Futurebus coherence
protocol can be maintained across the entire cache, or just the
shared pool. Various memory hierarchies and the associated
SMART cache design approach are currently under investigation.

Unpredictable cache behavior resulting from shared data struc-
tures in both uniprocessors and multiprocessors can be avoided if
we assume that such data structures are protected by read and
write locks. Once write access is granted to a process, no other
process can read or write the structure until it has been released.
This process could then access the data structure through its
private partition without concem for cache coherence while the
write lock is active. Before releasing the lock, these cache lines
would either be flushed and/or invalidated depending on the write
policy (copy-back or write-through). This prevents aliasing
problems in the SMART cache caused by mapping identical
addresses to different partitions determined by the requesting
task. If the flush were not performed, and the most recent copy
was maintained in the private partition for process P1, any refer-
ence by process P2 would result in old data since F’2 can not
“see“ the private partition for P1. If the invalidate were not
performed, it is possible that task P1 might read an old version of
the data from its own private partition following modification by
P2 elsewhere.

4.6. Partitioning for Aperiodics and Interrupts
Aperiodics are often serviced using some type of pseudo periodic
service routine such as the deferrable server and priority ex-
change algorithms [12]. This periodic server, or any other
aperiodic task, can be allocated a partition using the same type of
decision scheme used for periodic tasks. An average arrival time
could be used for the task period. All aperiodics could be
assigned to the shared pool, assigned separate partitions, or
groups of aperiodics could share a single partition. A similar
approach can be used to handle interrupts. A good approach for
interrupts might be to allocate a private partition for each inter-
rupt level.

235

5. Conclusions and Future Work
Present cache architectures do not support priorities and predic-
tability. Consequently it is impossible to use their resulting
performance enhancement to ease the scheduling burden in real-
time systems which guarantee hard deadlines. The SMART
cache partitioning scheme extends scheduling concems into the
system hardware architecture resulting in a new approach to
cache design. This approach allows a single cache design to
support both time-share and batch applications with a conven-
tional cache architecture, as well as provide a predictable cache
management scheme for use in priority-driven preemptive real-
time scheduling environments. Switching between the two
modes is accomplished with one instruction to setheset a
hardware indicator specifying the mode.

While operating in the real-time mode, the cache is divided into
private partitions allocated to individual tasks or preemption
priority levels. Unlike other schemes, partitions are not granted
on a first come first serve basis, but rather based on a static
analysis of the task priorities, semantic content, and contribution
to schedulability. Furthermore, static assignmeilt of partitions
assures that no task is ever forced to wait for a cache partition to
become available. In addition, a large fraction of cache is dedi-
cated as a common pool used primarily by low priority tasks.
The introduction of the common pool allows the number of tasks
to exceed the number of partitions. The common pool is also
utilized by critical tasks vis embedded cache instructions which
provide software control over the placement of cache contents.
Thus, the SMART cache partitioning scheme continues the cur-
rent trend of allowing compilers to make decisions related to the
use of system hardware resources. Use of compile time infor-
mation to provide more efficient utilization of system resources is
very feasible in real-time systems which have minimal compila-
tion requirements due to a fixed task set.

In summary, the results of this research not only provide a
scheme for utilizing the performance enhancement provided by
hierarchical memory designs, but also for fine tuning these en-
hancements to provide increased benefit to the desired scheduling
goal. In the past, hierarchical memory design costs made their
use impractical for many real-time applications where the perfor-
mance benefits only served to reduce risk of transient overload.
The SMART cache partitioning approach provides a technique
for using hierarchical memory designs to increase functionality
and/or decrease design costs of the processor.

Future work in SMART caching will focus on investigating
models of memory access patterns which can be used to represent
the tasks competing for cache segments. These models will be
used to predict the expected benefit of allocating individual seg-
ments to the various tasks. Algorithms are presently being
developed which allocate the cache segments based on weighted
scores achieved by each task.

References
1. A. Aganval, R. Simoni, J. Hennessy, and M. Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. The 15th
Annual International Symposium on Computer Architecture Con-
ference Proceedings, IEEE, Hoholulu, Hawaii, May, 1988, pp.

2. J. Bell, D. Casasent, C. G. Bell. "An investigation of alter-
native cache organizations". IEEE Transactions on Computers
TC-23,4 (April 1974), 346-351.

280-289.

3. M. W. Borger. VAXELN Experimentation: Programming a
Real-time Periodic Task Dispatcher using VAXELN Ada 1.1.
Software Engineering Institute, Camegie Mellon University,
Pittsburgh, PA, September, 1987.

4. D. W. Clark, B. W. Lampson, and K. A. Pier. "The memory
system of a high performance personal computer". IEEE Trans-
actions on Computers TC-30, 10 (October 1981), 715-733.

5. ELXU System 6400 - The System Foundation Guide. ELXSI,
2334 Lundy Place, San Jose, CA, 95131, 1988. Order No.
D95 12.

6. Futurebus P896.2 Specification, Draji 1 .O. IEEE, 345 East
47th St., New York, NY 10017, 1988. Prepared by the P896.2
Working Group of the Microprocessor Standards Committee.

7. James R. Goodman. Using Cache Memory to Reduce
Processor-Memory Traffic. The 10th Annual International Sym-
posium on Computer Architecture Conference Proceedings,
IEEE, Hoholulu, Hawaii, June, 1983, pp. 124-131.

8. Mark Hill. "A Case for Direct Mapped Caches". IEEE
Computer 21,12 (December 1988), 2540.

9. David B. Kirk. SMART (Strategic Memory Allocation for
Real-Time) Cache Design. PhD Thesis Proposal. Camegie-
Mellon University.

10. David B. Kirk. Process Dependent Static Cache Partitioning
for Real-Time Systems. Proceedings of the Real-Time Systems
Symposium, IEEE, Huntsville, AL, December, 1988, pp.

11. J. P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm --- Exact Characterization and Average
Case Behavior. Department of Statistics, Camegie Mellon
University, 1987.

12. John P. Lehoczky, Lui Sha, Jay K. Strosnider. Enhanced
Aperiodic Scheduling In Hard Real-Time Environments.
Proceedings of the Real-Time Systems Symposium, IEEE, San
Jose, CA, December, 1987, pp. 261-270.

13. C. L. Liu and James W. Layland. "Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment".
Journal of the Association for Computing Machinery 20, 1
(January 1973), 46-61.

14. Carl McCrosky. An Analytical Model For Cache Memories.
Deptartment of Computational Science, University of Sas-
katchewan, Saskatchewan, Canada, November, 1986.

15. A. K. Mok. Fundamental Design Problems of Distributed
Systems For The Hard Real Time Environment. Ph.D. Th., Mas-
sachusetts Institute of Technology, 1983.

16. Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar.
Solutions for Some Practical Problems in Prioritized Preemptive
Scheduling. Proceedings of the Real-Time Systems Symposium,
IEEE, New Orleans, Louisiana, December, 1986, pp. 181-191.

17. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
Priority Inheritance Protocols: An Approach to Real-Time
Synchronization. Computer Science Department, Camegie Mel-
Ion University, Pittsburgh, PA, 1987.

181 -190.

236

18. Lui Sha, John Goodenough. Real-Time Scheduling Theory
and Ada. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, to be published, 1988.

19. G. S . Shedler, D. R. Slutz. "Derivation of m i s s ratios for
merged access streams". IBM Journal of Research and Develop-
ment 20,5 (Sept 1976), 505-517.

20. Alan J. Smith. "Cache Memories". ACM Computing Sur-
veys 14,3 (September 1982). 473-530.

21. Alan J. Smith. "Cache memory design: an evolving art".
IEEE Spectrum 24, 12 (December 1987), 4044.

22. Kimming So, Rudolph N. Rechtschaffen. "Cache Operations
by MRU Change". IEEE Transactions on Computers 37,6 (June

23. Brinkley Sprunt, David B. Kirk, and Lui Sha. Priority-
Driven, Preemptive I/O Controllers for Real-Time Systems.
Proceedings of the International Symposium on Computer Ar-
chitecture, IEEE, Honolulu, Hawaii, 1988, pp. 152-159.

24. Harold S . Stone, Dominique F. Thiebaut. Footprints in the
Cache. Proceedings of the ACM Sigmetrics Conf. on Meas.
Mod. of Comp. Sys., ACM, May, 1986, pp. 4-8.

25. Harold S . Stone. High-Performance Computer Architecture.
Addison-Wesley, Reading, Massachusetts, 1987.

26. Paul Sweazy and Alan Smith. A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE Futurebus.
The 13th International Symposium on Computer Architecture
Conference Proceedings, IEEE, Tokyo, Japan, June, 1986, pp.
4 14423.

27. D. F. Thiebaut, H. S . Stone, and J. L. Wolf. A Theory of
Cache Behavior. IBM Research Division, Yorktown, NY, 1987.

1988), 700-709.

231

1

