
Scheduling Parallelizable Jobs on Multiprocessorst

Ching-Chih Han and Kwei-Jay Lin

Department of Computer Science
University of Illinois

1304 West Springfield Avenue
Urbana, Illinois 61801

Abstract

This paper analyzes the effect of parallel execution on the
complexity of scheduling hard real-time jobs on
multiprocessors. In particular, we study the scheduling
problem in which a job may be parallelized and executed on
any number of processors concurrently. In hard real-time
systems, each job must complete before a deadline.
Parallelization gives a scheduler the flexibility to allocate more
processors to a job whose deadline is near. Unfortunately,
with this flexibility, some of the multiprocessor scheduling
problems are very difficult. We prove the "-hardness of
scheduling parallelizable jobs where each job has a fixed
priority. We thus propose a heuristic algorithm for finding an
approximate job partition on two processors. Simluation
results show that the heuristic algorithm usually has a very
good performance.

1. Introduction

A real-time system usually consists of a set of jobs to be
executed. Jobs may be periodic if they are to be executed
periodically; otherwise, we say they are aperiodic. Each job
has a ready time when the job is ready to be executed, a
deadline when the job must be finished, and its ezecution time
which is the amount of time required to finish the job. In this
paper, we assume all these timing properties are
predetermined. With such timing requirements, we want to
find a feasible schedule for a system in which every job begins
its execution after its ready time and completes before its
deadline.

A deadline for a computation is said to be hard if any
result produced by the computation must be before the
deadline, or the result is useless. A real-time system with
hard deadlines is called a hard real-time syatem In hard real-
time systems, jobs must not only be functionally correct, but
must also meet strict timing requirements. A hard deadline
cannot be missed, even just by a small amount of time, since
the host system may be in the middle of a safety critical event.
Missing a hard deadline may cause a job failure, a system
crash, or even an environmental disaster. Job scheduling thus
plays an important role in the design of real-time systems.

Future real-time systems are likely to be built on
multiprocessor architectures. Efficient scheduling algorithms
for multiprocessors are needed so that jobs will have

tThis work was supported in part by contracts from the ONR
N00014-87-K-0827 and N00014-89-J-118 1.

predictable behaviors. Unfortunately, many multiprocessor
scheduling problems have been shown to be NP-complete. For
example, the problem of scheduling nonpreemptive jobs on two
processors in order to minimize the overall completion time of
jobs in a system is NP-complete [6]. One possible way to
handle the problem is to employ job parallelisation. Many
task partitioning and distribution algorithms have been
developed recently. Rather than running on a single processor,
many computations can now be divided into parallel
components and executed on more than one processor
concurrently. This gives schedulers more flexibility since they
can allocate several processors to execute a job in parallel to
reduce the execution time.

This paper investigates the effect of job parallelization on
the complexity of real-time scheduling on multiprocessors. In
particular, we show that with the parallel execution capability,
some of the multiprocessor scheduling problems are solvable in
polynomial time. Unfortunately, many others remain
intractable. The remainder of this paper is organized as
follows: Section 2 defines the multiprocessor scheduling
problem with parallelization and the basic policy for job
scheduling. In Section 3, we analyze the effect of parallel
execution capability on several basic problems when all jobs
are aperiodic. In Section 4, we discuss the problems for
scheduling periodic jobs with parallel execution capability, and
show that one of the problem is NP-hard. Section 5 presents
a heuristic algorithm that can be used to provide feasible
schedules for some of the problems defined in Section 3. Our
conclusions are presented in Section 6.

2. Background

An assumption in many scheduling problems is that each
job can be executed on only one processor at a time. This
assumption was modified in [2,3] such that different jobs are to
be executed on different, but fixed, numbers of processors a t a
time. With recent development of parallel algorithms and
architectures, however, neither of these assumptions remains
necessary in many systems. For example, using the Parallel
Random Access Machine (PRAM) model [lo], algorithms
requiring O(n) time on one processor can now be executed on
m processors in O(n/m+logm) time. Cvetanovic [4] analyzed
the effects of problem partitioning, allocation and granularity
on the performance of multiprocessor systems. In both works,
jobs are not required to be executed on some fixed number of
processors. Instead, they can be run on a variable number of
processors.

59
CH2803-5/89/oooo/oo59/$01.00 0 1989 IEEE

With such a parallel execution capability, the scheduler
has more flexibility in assigning the jobs to processors. Real-
time jobs thus have a better chance to meet their timing
constraints. This can be seen from the following example.

Example 2.1. A set of jobs J = {Jl, Jz, J3}, where job
Ji has execution time ti and deadline di , are executed on
two processors. Let f l = 4, t z = 4, and t, = 3. Also
assume that di = 6, for all i . If no parallel execution is
allowed, i t is easy to see that no feasible schedule is
possible for the jobs. However, Figure 2.1 shows that
there is processor idle time before the deadline a t time 6.
In fact, if job 3, could be executed on both processors
simultaneously, all deadlines can be met as shown in
Figure 2.2.

Suppose that the time needed to execute job J3 on one
processor is t,. A reasonable amount of time needed to
execute J3 on two processors in parallel is f3/2 +
overhead. Some examples of the overhead are
synchronization, communication, and strict serial nature
of the program. A detailed discussion about possible
overheads is outside of the scope of this paper. In Figure
2.2, the overhead is assumed to be zero. However, even if
the overhead is 0.5 the above job set is still schedulable.
0

0 4 6 7
ti : 10 6 12

JZ I processor idle

Figure 2.1.

0 4 5.5 6 7

J1

J1

5 3

I J3 I
I J2 I J3 I

Figure 2.2.

Example 2.1 shows that the multiprocessor scheduling
problem with parallel execution capability may achieve a
better processor utiliaation. We define the scheduling problem
with parallelizable jobs as follows.

The problem of scheduling parallelizable jobs is to find a
feasible schedule for J = {J1, J2, ..., J,,} on m processors.
Job Ji has a deadline dj and its sequential execution time
is ti if i t is executed on one processor. Moreover, one or
more of the jobs in J may be executed in parallel on
multiple processors. In general, a job may be divided
into many segments, each of which is composed of a
different number of parallel tasks. The parallel execution
time ei of Ji is defined as follows:

where F k (t) is the parallel execution time function on k
processors, f, is the portion of the sequential execution

time of job Ji that is executed on k processors (xt,=ti).

0

m

k-1

A possible definition of F is

(2.2) Fk(t) = f / k + & (k , t)

where t is the execution time required if the segment is
executed on a single processor and O u (k , t) is the overhead
function. It is obvious that F l (t) = t , that is, Ou(l,t)=O. In
other words, no parallelization overhead occurs if a job is
executed on a single processor.

An example of such a system is shown in Figure 2.3.
Assume that the execution time of job Ji on a single processor
is 28. Now i t is divided into three segments: til = 10 of Ji is
executed on one processor, tiz = 6 of Ji is executed on two
processors, and tj3 = 12 of Ji is executed on three processors.
Assume that the overhead is always zero, the total execution
time for Ji will be 10 + 6/2 + 12/3 = 17.

Figure 2.3.

In this paper, we assume that systems use a preemptive
priority-driven scheduling approach. A priority-driven
scheduling always selects the highest priority job among all
ready jobs to execute next. Using such a policy, each job is
assigned a priority before its execution. A preemptive
scheduling allows a high priority job to preempt a low priority
active job whenever the high priority job becomes ready. The
scheduling algorithms that we are interested must meet the
following rules:

Before a job may be executed, all ready but unfinished
jobs with higher priorities must be running on at least
one processor;

Processors may not all be idle if there is at least one
ready job;

A job may be executed on any number of processors as
long as they are free.

Consequently, in addition to assigning a priority to each job,
the scheduling algorithm must decide the number of processors
to be allocated to a job during its execution.

A related work on parallel task scheduling was done by
Du and Leung [5] . In their work, a job can be executed by 1,
2, ..., m processors. The execution time of job Ji on k
processors is defined by a function 7(Jilk). However, in their
model, the number of processors assigned to a job is

(1)

(2)

(3)

predetermined and not allowed to change during'the execution
of the job. Moreover, no deadline is given to any job and the
goal is to find the shortest overall schedule length for a set of
jobs with or without precedence constraints. The problem
with precedence constraints has been shown to be strongly
NP-hard for m22. The problem without precedence
constraints can be solved in pseudo-polynomial time for m = 2
and 3. For m>5, i t is again strongly NP-hard.

3. Simple Scheduling Problems for Parallelizsble Jobs

In this section, we discuss several simple scheduling
problems for real-time systems with parallelizable jobs under
varying sets of assumptions. For job 4, we define ri to be its
ready time, di its deadline, and ti its required sequential
execution time.

Problem 1. All jobs in J = {J1, J,, ..., Jn} have the same
ready time ri = 0. Without loss of generality, assume that
their deadlines are ordered dl<d2< . . . <d,,. Jobs are totally
independent, i.e. there is no precedence constraint and jobs do
not share any resource except processors. All jobs can be
parallelized with no overhead, that is, O u (k , t) = 0 for all k
and t .

For this problem the earliest-deadline-Frst (EDF)
algorithm [9] with all jobs parallelized on all m processors is
optimal. The Parallel EDF (PEDF) algorithm always executes
the job with the earliest deadline on all processors when it
becomes ready. To see that PEDF is optimal, suppose J
cannot be feasibly scheduled using PEDF. There exists a t
least one job which cannot meet its deadline. Let us choose
the first tardy job (a tardy job is a job that does not meet its

deadline), say Jk. Then we have z t i / m > d k , or z t i > m - d k .

In other words, the total processor time required before dk is
more than m processors can provide. There is no way to
schedule Jl, J,, ..., Jk before time dk. Hence, the PEDF
algorithm must be optimal.

i=l i-1

Although we are interested in preemptive scheduling, the
job executions in this problem will be exactly the same as
those using non-preemptive scheduling. This is because all
jobs have the same ready time and they are independent.
With these assumptions, a job is executed only when i t has the
highest priority among all remaining jobs and thus will not be
preempted. The non-preemptive multiproessor scheduling
problem has been shown to be NP-complete if no parallel
execution is allowed [6]. With the flexibility of parallel
execution, jobs can be easily scheduled. Also, the schedule

length E t i / m is minimum. In fact, the above problem is the

same as the single processor problem with ei=ti/m for all
jobs.

n

i-1

Problem 2. All jobs have the same ready time but different
deadlines as in Problem 1, but only a proper subset of the jobs
can be parallelized.

Although the problem is only slightly different from
Problem 1, i t is NP-complete. The reason is that for those
non-parallelisable jobs, finding a feasible schedule is still
intractable.

61

Theorem 3.1. Problem 2 is NP-complete.

The NP-completeness of Problem 2 can be seen from the
following example. A job set J = {J1, J,, ..., J,,} is to be run
on two processors with only jobs J1 and J , being
parallelisable. Let t , = t , = dl = d , = d , and di = D > d ,
for i = 3, 4, ..., n. Since both J1 and J , have execution times
equal to their deadlines, J1 and J , must be executed within
time intervial [O,d] and all the other jobs must be executed
within the time intervial (d,D] (Figure 3.1). To schedule jobs
J3, J4, ..., J,, on two processors in [d , D] without
parallelization is the same as the traditional multiprocessor
non-preemptive scheduling problem with one system deadline,
which is known to be NP-complete [6] (transformed from the
PARTITION problem). We do not show the formal proof in
this paper which can be easily constructed.

0 d D

Figure 3.1.

Problem 3. All jobs have the same ready time and deadline
D. Also, they are totally independent. All jobs are
parallelisable with constant overhead, that is, O u (k , t) = C,
where C > 0.

Since the overheads are non-zero the optimal way to
schedule a job set might be to execute each job on a single
processor so that no overhead will be introduced. But to test
whether a job set can be scheduled on m processors without
parallelisation is an NP-complete problem. Therefore, this
problem is NP-complete.

Theorem 3.2. Problem 3 is NP-complete.

Again we do not present the formal proof in this paper. In
fact, the problem is NP-complete even on only two processors
with F2(t)=t/2+C. The necessary condition for the set of
jobs to be schedulable is:

i t i 1 2 0 (3.1)
i-1

but a sufficient condition for a feasible schedule is:
n

i-1
Eti t 2 C 5 2 0

We now show that equation (3.2) is a sufficient condition.
Let us first consider scheduling with no parallel execution
capability. For any fixed priority assignment, suppose the last
job scheduled on processor 1 is J1 and on processor 2 is J p ,
with finish times f l and f2, respectively. Withut loss of
generality, assume that fl<fP The inequality (f2-fl)5t2,
where t , is the execution time of job J,, must always hold
(Figure 3.2). This is because if fl<(f2-t2), then we will
schedule J , on processor 1, instead of processor 2, and have an
earlier overall finish time.

Now, instead of executing J2 only on processor 2, we can
parallelize the part of J , that runs beyond f l , and execute
them on both processors (Figure 3.3). In this way, only one
job needs to carry the overhead. Thus, equation (3.2) is a
sufficient condition for the job set to be schedulable.

w

J2 I C (-

processors (Figure 4.1). The job set is schedulable with the
priority assignment J3 > J1 > J2 and each job executed on
one processor (Figure 4.2).

0 5 6

Figure 4.1.
Figure 3.2.

J3 misses deadline

Figure 3.3.

4. Scheduling Periodic Parallelizable Jobs

Problem 3 shows that if the overhead function is not
equal to zero, the scheduling problem is intractable. In the
following discussion, we shall assume that the overhead
function is always zero. We investigate real-time systems
with periodic jobs that are parallelizable. Two classes of
scheduling policies are investigated; they are referred to as
f ized and dynamic priority assignment in [9]. For job Ji, we
define Pi to be its period and Vi its utilization factor
(Ui=ti/Pi). We also define U to be the total utilization factor
for the entire system, that is U=Ul+U2+. . . +U,,.

Problem 4. Job priorities are assigned dynamically according
to some run-time characteristics (Dynamic Priority
Scheduling).

The PEDF algorithm with all jobs parallelized on all
processors is optimal for both synchronous and asynchronous
systems [7] with di=Pi. A periodic job system is called
synchronous if all jobs start their first period at the same
time; otherwise, it is asynchronous. The optimality of PEDF
can be proved in both cases, and will be presented in a future.
paper.

Problem 5. Jobs have predetermined priorities which are
fixed throughout their executions (Fixed Priority Scheduling).

Unfortunately, Rate-Monotonic Algorithm (Rh4A) [a]
with all jobs executed on all processors is not optimal for this
case. The RMA assigns job priorities according to their
periods: the shorter the period, the higher the priority is
assigned to a job. For example, a system with the jobs
(Pi , t i) = (5,2.5), (5,2.5), (6,6) will have a priority assignment
of J1=Jz>J3. However, this priority assignment will not
produce a feasible schedule with all jobs executed on 2

0 5 6 10 12

>

I Jll I J21 I J12 I J22 1

Figure 4.2.

Before proceeding, let us take a closer look at the
multiprocessor scheduling problem with fixed priority
assignment. We observe that no fixed priority algorithm is
optimal if the priority assignment is based solely on the period
Pi or the execution time ti of jobs in a system. This can be
easily seen from the following example.

Example 4.1. There are three sets of jobs to be
scheduled on two processors.

Set 1: (Pi , t i) = (5, 2.5), (5, 2.5), (6, 6)

Set 2: (Pi , t i) = (5, 5), (5, 0.5), (6, 5)

Set 3: (Pi , t i) = (2.5, 2.5), (5, 2.5), (13.5, 6)

From earlier discussion, we know that the only feasible
priority assignments for the first set are (J3>Jl>Jz),

there are only two variations since J1 and J2 are
interchangeable.

Jobs in the second set have the same periods as those jobs
in the first set. But the four priority assignments are no
longer feasible to the system. The only feasible priority
assignment is (J1>Jz>J3), or (J2>J1>J3). Therefore,
any algorithm assigning priority based solely on the
periods is not optimal.

Jobs in the third set have the same execution times as
those jobs in the first set. The only feasible priority
assignment is (J1>J2>J3), or (J2>J1>J3). Therefore,
assigning priority based solely on the execution times will
not be the optimal algorithm. 0

Since a set of periodic jobs can be uniquely identified by {
(Pi,ti) }, an interesting question to ask is whether there is an
optimal polynomial-time scheduling algorithm whose priority
assignment is based on some simple function f (Pi t t i) . For
example, two such simple functions are:

(J3>JZ>J1), (J1>J3>JJ9 and (J2>33>51). Actually,

62

(I) f (P i , t i) = t j / P i (utilization)

(2) f (P i , t i) = Pi-ti (slack)

Unfortunately, these two functions do not always produce a
feasible priority assignment when one exists. In Set 2 of
Example 4.1, U,>U,>U,. But the only feasible priority
assignments are: J1>J2>J3 and J2>J1>J3. We may
conclude that algorithms based only on utilization are not
optimal. A similar example shows that algorithms based only
on slack are not optimal.

We suspect that the difficulty of multiprocessor
scheduling problem (with or without parallel execution
capability) is in the priority assignment. Even with the
flexibility of parallel execution, the problem is still intractable.
The following theorem shows the I"-hardness of the problem.

Theorem 4.1. The problem of deciding whether there exists
a fixed-priority assignment for a periodic job system such that
the jobs are schedulable on two processors with parallel
execution capability is NP-hard.

Proof: We reduce the PARTITION problem to our problem.
The PARTITION problem is defined as follows:

Given a set of numbers A = {a,, a2, ..., a,,}, is there a
subset A' of A such that a = a = S/2, where

S = z a ?
.EA' .EA-A'

a EA

We assume that all ai<S/2 , otherwise the problem is trivial.
Given an instance of the PARTITION problem, we create an
instance of our schedulability problem:

A system has jobs J = B , u B 2 , where

execution time of Ji is ai in the PARTITION problem,
for i s n . The execution times of J,+, and JB+2 are 5S/4
and S/4, respectively. Jn+, and J,,,, have the same
period 3S/2, while the other 4's all have the same period
S.

We want to show that A' for the PARTITION problem exists
if and only if the jobs are schedulable on two processors. We
first show the if part: if the job set is schedulable then the
partition exists.

We only need to consider the time interval which is the
least common multiple (LCM) of all periods. In our case, LCM
is 3s . For ease of discussion, the LCM is divided into 4
regions (Figure 4.3): RI = [0, SI, R , = [SI 3S/2], R3 =f

[3S/2, 251 and R , = [2S, 3S]. Assume that J is schedulable
on two processors, we can show the following lemmas.

B,= {J1, J,, . . . I Jn} and B, = {Jn+l, Jn+d. The

0 s s+s/2 2s 3s
R I 1 R , I R , I R,

Figure 4.3.

Lemma 4.1. Jobs in B, will consume exactly S/2 unit
of processor time in R,.

Proof: There can be no processor idle time in the
schedule since the total utilization U is 2. Since all jobs
in B , have the deadline SI all B, jobs must be scheduled

in the interval R,. They will require exactly S units of
processor time. Therefore, another S units of processor
time in R , will be available and used by jobs of B,. The
rest of the required execution time for B,, S/2, must be
allocated from R,. 0

In the following, we use Ji,i for the j-th period task of
4.

Lemma 4.2. J,,+z,l must be finished in R,.

Proof: Assume that part of (or all of) J,,+,,,, J',,+,,I,

and part of J,,+,,,, J',,+,,,, are executed in R,. Jn+, must
have been started earlier than J,+, since only S/2 unit of
processor time in R , is available to both jobs (Lemma
4.1). Moreover, all jobs in B, must have finished when
J,+, is started, otherwise they will miss their deadline S.
This means that J,,,, is the lowest priority job among all
jobs in J since i t has the latest starting time. Therefore,
before J',,+,,, can be executed in R,, J',,+,,, and all the
second period tasks in B, must be started. Since all
execution times of the jobs in B, are less than S/2 and
the total execution time is equal to SI there will not be
enough time for J',,+,,, to finish before its deadline
(3/2)S. This is because if both J,,+,,, and J,,,,,, are
finished before time (3/2)S then at least one of the jobs
in B, must be started after time (3/2)S. This
contradicts the fact that J',,+,,, is the lowest priority job.
0

Lemma 4.3. J,+, cannot be the highest priority job,
nor can it be the lowest priority job in J.

Proof: From Lemmas 4.1 and 4.2, we know that J,,+,,,
has exactly S/2 processor time in R,. If J,+, is the
highest priority job it must be started before all other
jobs at time 0. It will need at most S/4 in R,. Thus
J,+, cannot be the highest priority job. If Jn+, is the
lowest priority job, all second period tasks of B, must be
started before J,,+,,, can continue in R,. J,,+,,, will not
have S/2 processor time available in R,. 0

In the following, we define B', to be the jobs in B, which have
higher priorities than J,,+,, and B", to be the rest of jobs in
4.

Lemma 4.4.
must be less than or equal to S/2.

Proof: Note that J',+,,, and the second period tasks of
all jobs in B', must be scheduled in R,. Jobs in B', can
be finished in R,. If the total execution time of jobs in
B', is larger than S/2 then a t least one of the jobs in B',
must be continued in R,, that means its start time will
be later than the start time of J',,+, (since the execution
times of all B, jobs are less than S/2). This contradicts
the fact that all the jobs in B', have priorities higher
than that of J,,+,, and their start times must be earlier
than that of J',,+, (Figure 4.4). 0

The total execution time of jobs in B',

63

1

S s+s/2
R2

Figure 4.4.

Lemma 4.6. J,,, has the lowest priority among all
jobs.

Proof: If not, J,,,,, must be executed in time slot R,
(since both J,,+l and J,,,, have priorities higher than
some of the jobs in B",). Also, since J,+l has priority
higher than those of the jobs in B", and the total
execution time of jobs in B", is >S/2 (Lemma 4.4), if
J,,,, has priority higher than that of J,+l then a t least
S/2 - (S/4)/2 = (3/8)S of J,,,,, must be executed in
R,. In this case, the time left for the second period tasks
in B, in time slots R, and R, is

priority lower than that of Jn+, then at least S/2 of
J,,+,,, must be executed in R, (Figure 4.5). Again, the
time left for the second period tasks in B, in time slots
R, and R, is 5 2 s - S/2 - S/4 - S/2 = (314)s < S.
In both cases, at least one of E , will miss its deadline.
This contradicts with our assumption that a feasible
schedule exists. 0

5 2 5 - 5/2 - 5/4 - (3/8)S = (7/8)S < S. If J,,,, has

S s+s 12 2s

Figure 4.5.

Lemma 4.6. The total execution time of jobs in B',
must be larger than or equal to S/2.

Proof: From Lemma 4.5, we know that only the jobs in
B', have priorities higher than that of J,+l. And, since
the start time of J,+, cannot be later than half of the
total execution time of jobs in Bfl, if the total execution
time of jobs in B', is less than 5/2, then the start time of
J,+, will be earlier than S/4 and this means that J,,+,
will not require S/2 time in R,, contradicting Lemmas
4.1 and 4.2. 0

From Lemmas 4.4 and 4.6, we can conclude that the total
execution time of jobs in Bfl is exactly S/2. Therefore, A'
does exist for the PARTITION problem if J is schedulable on
two processors.

We now show the only if part: if the partition A' exists
for the PARTITION problem, then there is a feasible schedule
for J.

For each i such that ai E A', we assign to J; a priority
higher than that of J,,+,. For each i such that ai E A"
(A" = A - A'), we assign to Jj a priority lower than that of
J,+,. We assign to job Jn+, a priority lower than all others.
Then, a feasible schedule for J is shown in Figure 4.6.

0 s s+s/2 2s 3s
R l I Ra I Rs I R4

1 At1 I Alll lJ.+al At2 lJ.+ll A", I Ats 1 J,,+l I At's],,J

Figure 4.6.

Since the PARTITION problem is NP-complete, by the
above reduction (note that the construction of the reduction
can be carried out in polynomial time) we have shown that our
schedulability problem is NP-hard [1,6]. 0

Corollary. In a real-time system with n periodic jobs, the
problem of deciding whether there exists a ked-priority
assignment such that all jobs are schedulable on m processors
with parallel execution capability is NP-hard for m > 2. 0

The corollary can be proved as in Theorem 4.1 by
introducing m - 2 additional jobs all of which have execution
times and periods equal to 3s. The proof is not presented in
this paper due to space constraint.

5. A Heurbtic Solution

In the following, we discuss a heuristic algorithm for the
PARTITION problem which may be used to solve some of the
problems discussed earlier. Consider the following problem.

Given a number set A = {a,, a,, ..., a,,}, find a subset A'
of A to minimire

'aCA E;- oEA-A' E 01

This is the minimization version of the PARTITION problem
[6]., It can also phrased in terms of the following
multiprocessor scheduling problem:

Given a job set of n jobs with execution times ti=ai, and
ready times rj = 0, for all i, schedule this job set on two
processors so as to minimise the overall finish time.

Since the PARTITION problem is NP-complete, i t is unlikely
to find an exact solution for the problem in polynomial time.
However, in some applications a sub4ptimal solution may be
satisfactory. We propose a heuristic algorithm that runs in
polynomial time and produces an acceptable result.

64

Algorithm 5.1. Heuristic algorithm for partitioning.

Step 1 (sorting):

Step 2 (initial partition):

fork= 1 to n d o

Sort a,. and reindex them s.t. al&> * . . >an.

A' =A" =er,
if a< a then A'=A' U {ak} else A"=A" U

.EA' .EA"

{akh
Step 3 (refinement):

In the following loop, let A' = { b l , b,, ..., bnl},
A" = { c 1 , e,, ..., e,).

A = z b j - z c j ;
A' AV

while there exists i , j , s.t. A > (b i - c j) > 0 or A <
(bi-cj) < 0 do

begin
find bk and cI with I 2(bk-cl)-AI =

mipi 2(bj-cj)-AI;
181

A = A - 2(bk-C1);
exchange bk with c1;

end.

The idea behind this heuristic algorithm is the concept of
imprecise computation [8]. The optimal solution for the
PARTITION problem can be found by algorithms which need
O(2") time. But since

2" = C(n,o) + C(n,l) + * . + C(n,n)

= 1 + ~ (n) + O (n 2) + * * . + O(n) + 1

we can combine several polynomial time algorithms to
approximate an exponential time algorithm. In Algorithm 5.1,
only exchanges between two numbers of different partitions are
considered. However, Algorithm 5.1 could have also tried to
exchange two numbers in one partition with one number in
another partition, or three numbers in one partition with one
number in another partition, etc., which may be necessary to
produce the optimal solution. The result produced by
Algorithm 5.1 is usually nonoptimal, or imprecise. If more
precise result is desired, we can conduct more comparisons
(between a number from one partition and the sum of more
than one number from the other partition) and have more
exchanges to make I A I smaller.

One concern about Algorithm 5.1 is whether i t will
terminate. The answer is yes since IA I monotonically
decreases in each iteration of Step 3. Another question is how
many exchanges (iterations) are needed in Step 3. Theorem
5.1 answers this question.

Lemma 6.1. Once a number is exchanged to a new partition,
it will not be exchanged back to the original partition.

Proof: Let A' = { b l , b,, ..., a, , } and A'' = { c l , c,, ..., c,t) be
the original partitions. Assume that bi has been exchanged
with ck earlier. So b,. is now in A" while ck is in A'.

If bi is to be exchanged back to partition A', there are two
possibilities:

bj is to be exchanged with cI which is now in A'. cl
must have been exchanged with b j earlier when I A lwas
reduced from D , to D,. Since 1 A I monotonically
decreases, if bi is to be exchanged with cl, the exchange
must change 1 A I to a new value D , which is less than
D,. However, when b j was exchanged with C , ,

Algorithm 5.1 could have exchanged b j with ck and
reduce I A I to D , directly. Since b j was not exchanged
with ck, we know that D, is not less than D,. We have
a contradiction. So bi cannot be exchanged with any c,
now in A'.

bj is to be exchanged with bj in A'. Again, the new I A I
after such an exchange must have a smaller value than
that of after exchanging bi and ck. In other words, we
would have exchanged bi and ck instead of b,. and ck

earlier. A contradiction shows that bi cannot be
exchanged with any bj in A'.

From (1) and (2), we know that bi cannot be exchanged
back to A' once it is moved to A". 0

Theorem 5.1. The number of iterations in Step 3 of
Algorithm 5.1 is O(n).

Proof: By Lemma 5.1 we know that the number of iterations
is less than or equal to min(nl,nz), the smaller of the numbers
of elements in two initial partitions. In the worst case the
number of iteration is O(n/Z)=O(n). 0

The following example shows that the algorithm will require
more than one exchange.

Example 5.1. A = (200, 194, 102, 100, 11, 10, 9}. After
Step 2 A' = (200, 100, lo} and A" = (194, 102, 11, 9}.
Step 3 will exchange pairs (102, 100) and (11, 10) (in that
order). 0

Actually, Step 1 (sorting) is not needed if Step 3 is executed
until no more exchange is possible. In fact, sometimes the
result is better if Step 1 is skipped.

Example 5.2. Given the sequence of ai is (3, 52, 63, 99,
15, 39, 94, 83, 8, 89, 51, 55, 39, 79, 78, 21), Algorithm 5.1
without sorting will achieve a even partitioning, but will
not if sorting is conducted first.

Without sorting, the following example shows that O(n)
exchanges are needed. Therefore, the O(n) upper bound is
tight for non-sorting case.

&le 6.3.

I>>k and there are (k-1) k ' s in the set A. After Step 2
A' = { I , k-1, k-2, ..., l} and
A" = {1/2, k, k, ..., k, 1/2+ k(k-1)/2}. Then, Step 3
will exchange pairs (1, k), (2, k), ..., (k-1, k) (in that

A = { I , 1/2, k, k, ..., k, 1/2 + k(k-1)/2, k-1, k-2, ..., l},

65

1

order). There are O (k) = O(n/2) = O(n) exchanges. 0

We have run some simulations to see how many
exchanges are usually required using the algorithm. Two sets
of simulations were conducted: one with manually arranged
data sets and the other data sets were generated randomly. In
each set, we executed the algorithm twice: once with the
sorting step and the other without sorting. Tables I and II
show the number of exchanges needed in each case and the
value of A in final partitions. As can be seen from the tables,
with sorting, we need only one or two exchanges to have a
perfect partitioning even for 500 numbers.

Table I. Simulation with arranged data.

Datarange I A 1 #exchanges

1200 2 ”p.1
199 0

1200 0

Table II. Simulation with random data.

66

We can use Algorithm 5.1 to find a sub-optimal solution
for some of the multiprocessor scheduling problems discussed
earlier. For example, given a set of periodic jobs with total
utilization factor 5 2, and we want to execute i t on two
processors using the EDF algorithm. The job set is
schedulable if we can partition the job set into two subsets
such that each has a utilization factor smaller than 1. The
heuristic algorithm may be used to produce a vague partition
such that both A‘ and A“ have utilization factors close to one.
If both are smaller than one, we have a feasible schedule. If
one utilization factor is greater than one, we can parallelise
one of the jobs in the partition to move part of the work to
the other partition.

6. Concluaiona

We have proposed a model of job scheduling with
parallelizable jobs. Traditional scheduling problems assume
that the execution time of a job is always k e d , and the
number of processors required is not dynamic. In our model,
we suggest that schedulers may determine the degree of
parallelism for a job execution. In this way, jobs with high
priorities can use more than one processor to reduce response
time. With recent progress in multiprocessor technology and
parallel computing, programs with such models can be easily
implemented. Although the problem of static priority
assignment using this model is “-hard, heiristic algorithms
with good performance can be found.

However, even if an optimal priority assignment is
available, the scheduling algorithm still must decide the
number of processors to be used by a job during its execution.
Deciding an optimal processor assignment is another difficult
problem that must be solved in order to completely handle the
parallelizable job scheduling problem.

Acknowledgement

The authors wish t o thank Jane Liu for her many
insightful and detailed comments. We would also like to
thank Phil McKinley and Wei-Kuan Shih for their careful
reading on our earlier draft.

Reference8

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
1974.

J. Blazewicz, M. Drabowski, and J. Weglarz ,
“Scheduling multiprocessor tasks to minimize schedule
length,” IEEE Tram. on Computers, Vol. C-35, No. 5,
May 1986.

J. Blazewicz, J. Weglarz, and M. Drabowski, “Scheduling
independent 2-Processor tasks to minimize schedule
length,” Inform. Processing Letter, Vol. 18, 1984.

Z. Cvetanovic, “The effects of problem partitioning,
allocation, and granularity on the performance of
multiple-processor systems,” IEEE Tram. on
Computers, Vol. C-36, No.4, April 1987.

J. Du and J. Y.-T. Leung, “Complexity of scheduling
parallel task systems,” Technical Report UTDCS 6-87,
Uinv. Texas at Dallas, 1987.

___- I

[6] M.R. Garey and D.S. Johnson, Computer and
Intractability: A Guide to the Theory of NP-completeness,
Freeman, San Francisco, CA, 1979.

J. Y.-T. Leung and J. Whitehead, “On the complexity of
ked-priority scheduling of periodic, real-time tasks, ”
Performance Evaluation, 2, 1982.

K.J. Lin, S. Natarajan, and J. W.-S. Liu, “Imprecise
result: Utilizing partial computations in real-time
systems,” RTSS 87, San Jose, CA, Dec. 1987.

C.L. Liu and J.M. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J.
AGM, Vol. 20, No. 1, Jan. 1973.

[lo] J.D. Ullman, Computational Aspects of VLSZ, CSP, 1984

[7]

[8]

[9]

67

