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Abstract  

This paper analyzes the effect of parallel execution on the 
complexity of scheduling hard real-time jobs on 
multiprocessors. In particular, we study the scheduling 
problem in which a job may be parallelized and executed on 
any number of processors concurrently. In hard real-time 
systems, each job must complete before a deadline. 
Parallelization gives a scheduler the flexibility to allocate more 
processors to a job whose deadline is near. Unfortunately, 
with this flexibility, some of the multiprocessor scheduling 
problems are very difficult. We prove the "-hardness of 
scheduling parallelizable jobs where each job has a fixed 
priority. We thus propose a heuristic algorithm for finding an 
approximate job partition on two processors. Simluation 
results show that the heuristic algorithm usually has a very 
good performance. 

1. Introduction 

A real-time system usually consists of a set of jobs to be 
executed. Jobs may be periodic if they are to be executed 
periodically; otherwise, we say they are aperiodic. Each job 
has a ready time when the job is ready to be executed, a 
deadline when the job must be finished, and its ezecution time 
which is the amount of time required to finish the job. In this 
paper, we assume all these timing properties are 
predetermined. With such timing requirements, we want to 
find a feasible schedule for a system in which every job begins 
its execution after its ready time and completes before its 
deadline. 

A deadline for a computation is said to be hard if any 
result produced by the computation must be before the 
deadline, or the result is useless. A real-time system with 
hard deadlines is called a hard real-time syatem In hard real- 
time systems, jobs must not only be functionally correct, but 
must also meet strict timing requirements. A hard deadline 
cannot be missed, even just by a small amount of time, since 
the host system may be in the middle of a safety critical event. 
Missing a hard deadline may cause a job failure, a system 
crash, or even an environmental disaster. Job scheduling thus 
plays an important role in the design of real-time systems. 

Future real-time systems are likely to be built on 
multiprocessor architectures. Efficient scheduling algorithms 
for multiprocessors are needed so that jobs will have 
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predictable behaviors. Unfortunately, many multiprocessor 
scheduling problems have been shown to be NP-complete. For 
example, the problem of scheduling nonpreemptive jobs on two 
processors in order to minimize the overall completion time of 
jobs in a system is NP-complete [6]. One possible way to 
handle the problem is to employ job parallelisation. Many 
task partitioning and distribution algorithms have been 
developed recently. Rather than running on a single processor, 
many computations can now be divided into parallel 
components and executed on more than one processor 
concurrently. This gives schedulers more flexibility since they 
can allocate several processors to execute a job in parallel to 
reduce the execution time. 

This paper investigates the effect of job parallelization on 
the complexity of real-time scheduling on multiprocessors. In 
particular, we show that with the parallel execution capability, 
some of the multiprocessor scheduling problems are solvable in 
polynomial time. Unfortunately, many others remain 
intractable. The remainder of this paper is organized as 
follows: Section 2 defines the multiprocessor scheduling 
problem with parallelization and the basic policy for job 
scheduling. In Section 3, we analyze the effect of parallel 
execution capability on several basic problems when all jobs 
are aperiodic. In Section 4, we discuss the problems for 
scheduling periodic jobs with parallel execution capability, and 
show that one of the problem is NP-hard. Section 5 presents 
a heuristic algorithm that can be used to provide feasible 
schedules for some of the problems defined in Section 3. Our 
conclusions are presented in Section 6. 

2. Background 

An assumption in many scheduling problems is that each 
job can be executed on only one processor at a time. This 
assumption was modified in [2,3] such that different jobs are to 
be executed on different, but fixed, numbers of processors a t  a 
time. With recent development of parallel algorithms and 
architectures, however, neither of these assumptions remains 
necessary in many systems. For example, using the Parallel 
Random Access Machine (PRAM) model [lo], algorithms 
requiring O(n) time on one processor can now be executed on 
m processors in O(n/m+logm) time. Cvetanovic [4] analyzed 
the effects of problem partitioning, allocation and granularity 
on the performance of multiprocessor systems. In both works, 
jobs are not required to be executed on some fixed number of 
processors. Instead, they can be run on a variable number of 
processors. 
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With such a parallel execution capability, the scheduler 
has more flexibility in assigning the jobs to processors. Real- 
time jobs thus have a better chance to meet their timing 
constraints. This can be seen from the following example. 

Example 2.1. A set of jobs J = {Jl, Jz, J3}, where job 
Ji has execution time ti and deadline di ,  are executed on 
two processors. Let f l  = 4, t z  = 4, and t,  = 3. Also 
assume that di = 6, for all i .  If no parallel execution is 
allowed, i t  is easy to see that no feasible schedule is 
possible for the jobs. However, Figure 2.1 shows that 
there is processor idle time before the deadline a t  time 6. 
In fact, if job 3, could be executed on both processors 
simultaneously, all deadlines can be met as shown in 
Figure 2.2. 

Suppose that the time needed to execute job J3 on one 
processor is t,. A reasonable amount of time needed to 
execute J3 on two processors in parallel is f3/2 + 
overhead. Some examples of the overhead are 
synchronization, communication, and strict serial nature 
of the program. A detailed discussion about possible 
overheads is outside of the scope of this paper. In Figure 
2.2, the overhead is assumed to be zero. However, even if 
the overhead is 0.5 the above job set is still schedulable. 
0 
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Figure 2.1. 
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Figure 2.2. 

Example 2.1 shows that the multiprocessor scheduling 
problem with parallel execution capability may achieve a 
better processor utiliaation. We define the scheduling problem 
with parallelizable jobs as follows. 

The problem of scheduling parallelizable jobs is to  find a 
feasible schedule for J = {J1, J2, ..., J,,} on m processors. 
Job Ji has a deadline dj and its sequential execution time 
is ti if i t  is executed on one processor. Moreover, one or 
more of the jobs in J may be executed in parallel on 
multiple processors. In general, a job may be divided 
into many segments, each of which is composed of a 
different number of parallel tasks. The parallel execution 
time ei of Ji is defined as follows: 

where F k ( t )  is the parallel execution time function on k 
processors, f, is the portion of the sequential execution 

time of job Ji that is executed on k processors ( xt,=ti). 

0 

m 

k-1 

A possible definition of F is 

(2.2) Fk(t )  = f / k  + & ( k , t )  

where t is the execution time required if the segment is 
executed on a single processor and O u ( k , t )  is the overhead 
function. It is obvious that F l ( t ) = t ,  that is, Ou(l,t)=O. In 
other words, no parallelization overhead occurs if a job is 
executed on a single processor. 

An example of such a system is shown in Figure 2.3. 
Assume that the execution time of job Ji on a single processor 
is 28. Now i t  is divided into three segments: til = 10 of Ji is 
executed on one processor, tiz = 6 of Ji is executed on two 
processors, and tj3 = 12 of Ji is executed on three processors. 
Assume that the overhead is always zero, the total execution 
time for Ji will be 10 + 6/2 + 12/3 = 17. 

Figure 2.3. 

In this paper, we assume that systems use a preemptive 
priority-driven scheduling approach. A priority-driven 
scheduling always selects the highest priority job among all 
ready jobs to  execute next. Using such a policy, each job is 
assigned a priority before its execution. A preemptive 
scheduling allows a high priority job to preempt a low priority 
active job whenever the high priority job becomes ready. The 
scheduling algorithms that we are interested must meet the 
following rules: 

Before a job may be executed, all ready but unfinished 
jobs with higher priorities must be running on at least 
one processor; 

Processors may not all be idle if there is at least one 
ready job; 

A job may be executed on any number of processors as 
long as they are free. 

Consequently, in addition to assigning a priority to each job, 
the scheduling algorithm must decide the number of processors 
to be allocated to a job during its execution. 

A related work on parallel task scheduling was done by 
Du and Leung [5 ] .  In their work, a job can be executed by 1, 
2, ..., m processors. The execution time of job Ji on k 
processors is defined by a function 7(Jilk). However, in their 
model, the number of processors assigned to  a job is 

(1) 

(2) 

(3) 



predetermined and not allowed to change during'the execution 
of the job. Moreover, no deadline is given to any job and the 
goal is to find the shortest overall schedule length for a set of 
jobs with or without precedence constraints. The problem 
with precedence constraints has been shown to be strongly 
NP-hard for m22.  The problem without precedence 
constraints can be solved in pseudo-polynomial time for m = 2 
and 3. For m>5, i t  is again strongly NP-hard. 

3. Simple Scheduling Problems for Parallelizsble Jobs 

In this section, we discuss several simple scheduling 
problems for real-time systems with parallelizable jobs under 
varying sets of assumptions. For job 4, we define ri to be its 
ready time, di its deadline, and ti its required sequential 
execution time. 

Problem 1. All jobs in J = {J1, J,, ..., Jn} have the same 
ready time ri = 0. Without loss of generality, assume that 
their deadlines are ordered dl<d2< . . . <d,,. Jobs are totally 
independent, i.e. there is no precedence constraint and jobs do 
not share any resource except processors. All jobs can be 
parallelized with no overhead, that is, O u ( k , t )  = 0 for all k 
and t .  

For this problem the earliest-deadline-Frst (EDF) 
algorithm [9] with all jobs parallelized on all m processors is 
optimal. The Parallel EDF (PEDF) algorithm always executes 
the job with the earliest deadline on all processors when it 
becomes ready. To see that PEDF is optimal, suppose J 
cannot be feasibly scheduled using PEDF. There exists a t  
least one job which cannot meet its deadline. Let us choose 
the first tardy job (a tardy job is a job that does not meet its 

deadline), say Jk. Then we have z t i / m > d k ,  or z t i > m - d k .  

In other words, the total processor time required before dk is 
more than m processors can provide. There is no way to 
schedule Jl, J,, ..., Jk before time dk. Hence, the PEDF 
algorithm must be optimal. 

i=l i-1 

Although we are interested in preemptive scheduling, the 
job executions in this problem will be exactly the same as 
those using non-preemptive scheduling. This is because all 
jobs have the same ready time and they are independent. 
With these assumptions, a job is executed only when i t  has the 
highest priority among all remaining jobs and thus will not be 
preempted. The non-preemptive multiproessor scheduling 
problem has been shown to be NP-complete if no parallel 
execution is allowed [6]. With the flexibility of parallel 
execution, jobs can be easily scheduled. Also, the schedule 

length E t i / m  is minimum. In fact, the above problem is the 

same as the single processor problem with ei=ti/m for all 
jobs. 

n 

i-1 

Problem 2. All jobs have the same ready time but different 
deadlines as in Problem 1, but only a proper subset of the jobs 
can be parallelized. 

Although the problem is only slightly different from 
Problem 1, i t  is NP-complete. The reason is that for those 
non-parallelisable jobs, finding a feasible schedule is still 
intractable. 

61 

Theorem 3.1. Problem 2 is NP-complete. 

The NP-completeness of Problem 2 can be seen from the 
following example. A job set J = {J1, J,, ..., J,,} is to be run 
on two processors with only jobs J1 and J ,  being 
parallelisable. Let t ,  = t ,  = dl  = d ,  = d ,  and di = D > d ,  
for i = 3, 4, ..., n. Since both J1 and J ,  have execution times 
equal to their deadlines, J1 and J ,  must be executed within 
time intervial [O,d] and all the other jobs must be executed 
within the time intervial (d,D] (Figure 3.1). To schedule jobs 
J3, J4, ..., J,, on two processors in [ d , D ]  without 
parallelization is the same as the traditional multiprocessor 
non-preemptive scheduling problem with one system deadline, 
which is known to be NP-complete [6] (transformed from the 
PARTITION problem). We do not show the formal proof in 
this paper which can be easily constructed. 

0 d D 

Figure 3.1. 

Problem 3. All jobs have the same ready time and deadline 
D. Also, they are totally independent. All jobs are 
parallelisable with constant overhead, that is, O u ( k , t )  = C, 
where C > 0. 

Since the overheads are non-zero the optimal way to 
schedule a job set might be to execute each job on a single 
processor so that no overhead will be introduced. But to test 
whether a job set can be scheduled on m processors without 
parallelisation is an NP-complete problem. Therefore, this 
problem is NP-complete. 

Theorem 3.2. Problem 3 is NP-complete. 

Again we do not present the formal proof in this paper. In 
fact, the problem is NP-complete even on only two processors 
with F2(t)=t/2+C. The necessary condition for the set of 
jobs to be schedulable is: 

i t i  1 2 0  (3.1) 
i-1 

but a sufficient condition for a feasible schedule is: 
n 

i-1 
Eti t 2 C  5 2 0  

We now show that equation (3.2) is a sufficient condition. 
Let us first consider scheduling with no parallel execution 
capability. For any fixed priority assignment, suppose the last 
job scheduled on processor 1 is J1 and on processor 2 is J p ,  
with finish times f l  and f2, respectively. Withut loss of 
generality, assume that fl<fP The inequality (f2-fl)5t2, 
where t ,  is the execution time of job J,, must always hold 
(Figure 3.2). This is because if fl<(f2-t2), then we will 
schedule J ,  on processor 1, instead of processor 2, and have an 
earlier overall finish time. 



Now, instead of executing J2 only on processor 2, we can 
parallelize the part of J ,  that runs beyond f l ,  and execute 
them on both processors (Figure 3.3). In this way, only one 
job needs to carry the overhead. Thus, equation (3.2) is a 
sufficient condition for the job set to be schedulable. 

w 

J2 I C (  - 

processors (Figure 4.1). The job set is schedulable with the 
priority assignment J3 > J1 > J2 and each job executed on 
one processor (Figure 4.2). 

0 5 6  

Figure 4.1. 
Figure 3.2. 

J3 misses deadline 

Figure 3.3. 

4. Scheduling Periodic Parallelizable Jobs 

Problem 3 shows that if the overhead function is not 
equal to zero, the scheduling problem is intractable. In the 
following discussion, we shall assume that the overhead 
function is always zero. We investigate real-time systems 
with periodic jobs that are parallelizable. Two classes of 
scheduling policies are investigated; they are referred to as 
f ized and dynamic priority assignment in [9]. For job Ji, we 
define Pi to  be its period and Vi its utilization factor 
( Ui=ti/Pi). We also define U to be the total utilization factor 
for the entire system, that is U=Ul+U2+.  . . +U,,. 

Problem 4. Job priorities are assigned dynamically according 
to some run-time characteristics (Dynamic Priority 
Scheduling). 

The PEDF algorithm with all jobs parallelized on all 
processors is optimal for both synchronous and asynchronous 
systems [7] with di=Pi. A periodic job system is called 
synchronous if all jobs start their first period at the same 
time; otherwise, it is asynchronous. The optimality of PEDF 
can be proved in both cases, and will be presented in a future. 
paper. 

Problem 5. Jobs have predetermined priorities which are 
fixed throughout their executions (Fixed Priority Scheduling). 

Unfortunately, Rate-Monotonic Algorithm (Rh4A) [a] 
with all jobs executed on all processors is not optimal for this 
case. The RMA assigns job priorities according to their 
periods: the shorter the period, the higher the priority is 
assigned to  a job. For example, a system with the jobs 
(Pi , t i )  = (5,2.5), (5,2.5), (6,6) will have a priority assignment 
of J1=Jz>J3. However, this priority assignment will not 
produce a feasible schedule with all jobs executed on 2 

0 5 6  10 12 
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Figure 4.2. 

Before proceeding, let us take a closer look at the 
multiprocessor scheduling problem with fixed priority 
assignment. We observe that no fixed priority algorithm is 
optimal if the priority assignment is based solely on the period 
Pi or the execution time ti of jobs in a system. This can be 
easily seen from the following example. 

Example 4.1. There are three sets of jobs to be 
scheduled on two processors. 

Set 1: (Pi , t i )  = (5, 2.5), (5, 2.5), (6, 6) 

Set 2: (Pi , t i )  = (5, 5), (5, 0.5), (6, 5) 

Set 3: (Pi , t i )  = (2.5, 2.5), (5, 2.5), (13.5, 6) 

From earlier discussion, we know that the only feasible 
priority assignments for the first set are (J3>Jl>Jz), 

there are only two variations since J1 and J2 are 
interchangeable. 

Jobs in the second set have the same periods as those jobs 
in the first set. But the four priority assignments are no 
longer feasible to  the system. The only feasible priority 
assignment is (J1>Jz>J3),  or (J2>J1>J3). Therefore, 
any algorithm assigning priority based solely on the 
periods is not optimal. 

Jobs in the third set have the same execution times as 
those jobs in the first set. The only feasible priority 
assignment is (J1>J2>J3), or (J2>J1>J3). Therefore, 
assigning priority based solely on the execution times will 
not be the optimal algorithm. 0 

Since a set of periodic jobs can be uniquely identified by { 
(Pi,ti) }, an interesting question to ask is whether there is an 
optimal polynomial-time scheduling algorithm whose priority 
assignment is based on some simple function f (Pi t t i ) .  For 
example, two such simple functions are: 

(J3>JZ>J1), (J1>J3>JJ9 and (J2>33>51). Actually, 
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(I) f ( P i , t i )  = t j / P i  (utilization) 

(2) f ( P i , t i )  = Pi-ti (slack) 

Unfortunately, these two functions do not always produce a 
feasible priority assignment when one exists. In Set 2 of 
Example 4.1, U,>U,>U,. But the only feasible priority 
assignments are: J1>J2>J3 and J2>J1>J3. We may 
conclude that algorithms based only on utilization are not 
optimal. A similar example shows that algorithms based only 
on slack are not optimal. 

We suspect that the difficulty of multiprocessor 
scheduling problem (with or without parallel execution 
capability) is in the priority assignment. Even with the 
flexibility of parallel execution, the problem is still intractable. 
The following theorem shows the I"-hardness of the problem. 

Theorem 4.1. The problem of deciding whether there exists 
a fixed-priority assignment for a periodic job system such that 
the jobs are schedulable on two processors with parallel 
execution capability is NP-hard. 

Proof: We reduce the PARTITION problem to our problem. 
The PARTITION problem is defined as follows: 

Given a set of numbers A = {a,, a2, ..., a,,}, is there a 
subset A' of A such that a = a = S/2, where 

S = z a ?  
.EA' .EA-A' 

a EA 

We assume that all ai<S/2 ,  otherwise the problem is trivial. 
Given an instance of the PARTITION problem, we create an 
instance of our schedulability problem: 

A system has jobs J = B , u B 2 ,  where 

execution time of Ji is ai in the PARTITION problem, 
for i s n .  The execution times of J,+, and JB+2 are 5S/4 
and S/4, respectively. Jn+, and J,,,, have the same 
period 3S/2, while the other 4's all have the same period 
S. 

We want to show that A' for the PARTITION problem exists 
if and only if the jobs are schedulable on two processors. We 
first show the if part: if the job set is schedulable then the 
partition exists. 

We only need to  consider the time interval which is the 
least common multiple (LCM) of all periods. In our case, LCM 
is 3s .  For ease of discussion, the LCM is divided into 4 
regions (Figure 4.3): RI = [0, SI, R ,  = [SI 3S/2], R3 =f 

[3S/2, 251 and R ,  = [2S, 3S]. Assume that J is schedulable 
on two processors, we can show the following lemmas. 

B,= {J1, J,, . . . I  Jn} and B, = {Jn+l, Jn+d.  The 

0 s s+s/2 2s  3s  
R I  1 R ,  I R ,  I R,  

Figure 4.3. 

Lemma 4.1. Jobs in B, will consume exactly S/2  unit 
of processor time in R,. 

Proof: There can be no processor idle time in the 
schedule since the total utilization U is 2. Since all jobs 
in B ,  have the deadline SI all B,  jobs must be scheduled 

in the interval R,. They will require exactly S units of 
processor time. Therefore, another S units of processor 
time in R ,  will be available and used by jobs of B,. The 
rest of the required execution time for B,, S/2, must be 
allocated from R,. 0 

In the following, we use Ji,i for the j-th period task of 
4. 

Lemma 4.2. J,,+z,l must be finished in R,. 

Proof: Assume that part of (or all of) J,,+,,,, J',,+,,I, 

and part of J,,+,,,, J',,+,,,, are executed in R,. Jn+, must 
have been started earlier than J,+, since only S/2 unit of 
processor time in R ,  is available to both jobs (Lemma 
4.1). Moreover, all jobs in B, must have finished when 
J,+, is started, otherwise they will miss their deadline S. 
This means that J,,,, is the lowest priority job among all 
jobs in J since i t  has the latest starting time. Therefore, 
before J',,+,,, can be executed in R,, J',,+,,, and all the 
second period tasks in B, must be started. Since all 
execution times of the jobs in B, are less than S/2  and 
the total execution time is equal to SI there will not be 
enough time for J',,+,,, to finish before its deadline 
(3/2)S. This is because if both J,,+,,, and J,,,,,, are 
finished before time (3/2)S then at  least one of the jobs 
in B, must be started after time (3/2)S. This 
contradicts the fact that J',,+,,, is the lowest priority job. 
0 

Lemma 4.3. J,+, cannot be the highest priority job, 
nor can it be the lowest priority job in J. 

Proof: From Lemmas 4.1 and 4.2, we know that J,,+,,, 
has exactly S/2 processor time in R,. If J,+, is the 
highest priority job it must be started before all other 
jobs at time 0. It will need at most S/4  in R,. Thus 
J,+, cannot be the highest priority job. If Jn+, is the 
lowest priority job, all second period tasks of B,  must be 
started before J,,+,,, can continue in R,. J,,+,,, will not 
have S/2  processor time available in R,. 0 

In the following, we define B', to  be the jobs in B,  which have 
higher priorities than J,,+,, and B", to be the rest of jobs in 
4. 

Lemma 4.4. 
must be less than or equal to S/2. 

Proof: Note that J',+,,, and the second period tasks of 
all jobs in B', must be scheduled in R,. Jobs in B', can 
be finished in R,. If the total execution time of jobs in 
B', is larger than S/2  then a t  least one of the jobs in B', 
must be continued in R,, that means its start time will 
be later than the start time of J',,+, (since the execution 
times of all B,  jobs are less than S/2). This contradicts 
the fact that all the jobs in B', have priorities higher 
than that of J,,+,, and their start times must be earlier 
than that of J',,+, (Figure 4.4). 0 

The total execution time of jobs in B', 
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S s+s/2 
R2 

Figure 4.4. 

Lemma 4.6. J,,, has the lowest priority among all 
jobs. 

Proof: If not, J,,,,, must be executed in time slot R, 
(since both J,,+l and J,,,, have priorities higher than 
some of the jobs in B",). Also, since J,+l has priority 
higher than those of the jobs in B", and the total 
execution time of jobs in B", is >S/2 (Lemma 4.4), if 
J,,,, has priority higher than that of J,+l then a t  least 
S/2 - (S/4)/2 = (3/8)S of J,,,,, must be executed in 
R,. In this case, the time left for the second period tasks 
in B, in time slots R, and R, is 

priority lower than that of Jn+, then at  least S/2 of 
J,,+,,, must be executed in R, (Figure 4.5). Again, the 
time left for the second period tasks in B, in time slots 
R, and R, is 5 2 s  - S/2 - S/4 - S/2 = (314)s < S. 
In both cases, at least one of E ,  will miss its deadline. 
This contradicts with our assumption that a feasible 
schedule exists. 0 

5 2 5  - 5/2 - 5/4  - (3/8)S = (7/8)S < S. If J,,,, has 

S s+s 12 2s 

Figure 4.5. 

Lemma 4.6. The total execution time of jobs in B', 
must be larger than or equal to S/2. 

Proof: From Lemma 4.5, we know that only the jobs in 
B', have priorities higher than that of J,+l. And, since 
the start time of J,+, cannot be later than half of the 
total execution time of jobs in Bfl, if the total execution 
time of jobs in B', is less than 5/2, then the start time of 
J,+, will be earlier than S/4 and this means that J,,+, 
will not require S/2 time in R,, contradicting Lemmas 
4.1 and 4.2. 0 

From Lemmas 4.4 and 4.6, we can conclude that the total 
execution time of jobs in Bfl is exactly S/2. Therefore, A' 
does exist for the PARTITION problem if J is schedulable on 
two processors. 

We now show the only if part: if the partition A' exists 
for the PARTITION problem, then there is a feasible schedule 
for J. 

For each i such that ai E A', we assign to  J;  a priority 
higher than that of J,,+,. For each i such that ai E A" 
(A" = A  - A'), we assign to Jj a priority lower than that of 
J,+,. We assign to job Jn+, a priority lower than all others. 
Then, a feasible schedule for J is shown in Figure 4.6. 

0 s s+s/2 2s 3s 
R l  I Ra I Rs I R4 

1 At1 I Alll lJ.+al At2 lJ.+ll A", I Ats 1 J,,+l I At's],,J 

Figure 4.6. 

Since the PARTITION problem is NP-complete, by the 
above reduction (note that the construction of the reduction 
can be carried out in polynomial time) we have shown that our 
schedulability problem is NP-hard [1,6]. 0 

Corollary. In a real-time system with n periodic jobs, the 
problem of deciding whether there exists a ked-priority 
assignment such that all jobs are schedulable on m processors 
with parallel execution capability is NP-hard for m > 2. 0 

The corollary can be proved as in Theorem 4.1 by 
introducing m - 2 additional jobs all of which have execution 
times and periods equal to  3s. The proof is not presented in 
this paper due to  space constraint. 

5. A Heurbtic Solution 

In the following, we discuss a heuristic algorithm for the 
PARTITION problem which may be used to solve some of the 
problems discussed earlier. Consider the following problem. 

Given a number set A = {a,, a,, ..., a,,}, find a subset A' 
of A to minimire 

'aCA E;- oEA-A' E 01 

This is the minimization version of the PARTITION problem 
[6]., It can also phrased in terms of the following 
multiprocessor scheduling problem: 

Given a job set of n jobs with execution times ti=ai, and 
ready times rj = 0, for all i, schedule this job set on two 
processors so as to minimise the overall finish time. 

Since the PARTITION problem is NP-complete, i t  is unlikely 
to find an exact solution for the problem in polynomial time. 
However, in some applications a sub4ptimal solution may be 
satisfactory. We propose a heuristic algorithm that runs in 
polynomial time and produces an acceptable result. 
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Algorithm 5.1. Heuristic algorithm for partitioning. 

Step 1 (sorting): 

Step 2 (initial partition): 

fork= 1 to n d o  

Sort a,. and reindex them s.t. al&> * . . >an. 

A' =A" =er, 
if a< a then A'=A' U {ak} else A"=A" U 

.EA' .EA" 

{akh 
Step 3 (refinement): 

In the following loop, let A' = { b l ,  b,, ..., bnl}, 
A" = { c 1 ,  e,, ..., e,). 

A = z b j - z c j ;  
A' AV 

while there exists i , j ,  s.t. A > ( b i - c j )  > 0 or A < 
(bi-cj) < 0 do 

begin 
find bk and cI with I 2(bk-cl)-AI = 

mipi 2(bj-cj)-AI;  
181 

A = A - 2(bk-C1); 
exchange bk with c1; 

end. 

The idea behind this heuristic algorithm is the concept of 
imprecise computation [8]. The optimal solution for the 
PARTITION problem can be found by algorithms which need 
O(2") time. But since 

2" = C(n,o) + C(n,l)  + * . + C(n,n) 

= 1 + ~ ( n )  + O ( n 2 )  + * * . + O(n) + 1 

we can combine several polynomial time algorithms to 
approximate an exponential time algorithm. In Algorithm 5.1, 
only exchanges between two numbers of different partitions are 
considered. However, Algorithm 5.1 could have also tried to 
exchange two numbers in one partition with one number in 
another partition, or three numbers in one partition with one 
number in another partition, etc., which may be necessary to  
produce the optimal solution. The result produced by 
Algorithm 5.1 is usually nonoptimal, or imprecise. If more 
precise result is desired, we can conduct more comparisons 
(between a number from one partition and the sum of more 
than one number from the other partition) and have more 
exchanges to  make I A I smaller. 

One concern about Algorithm 5.1 is whether i t  will 
terminate. The answer is yes since IA I monotonically 
decreases in each iteration of Step 3. Another question is how 
many exchanges (iterations) are needed in Step 3. Theorem 
5.1 answers this question. 

Lemma 6.1. Once a number is exchanged to a new partition, 
it will not be exchanged back to the original partition. 

Proof: Let A' = { b l ,  b,, ..., a, , }  and A'' = { c l ,  c,, ..., c,t) be 
the original partitions. Assume that bi has been exchanged 
with ck earlier. So b,. is now in A" while ck is in A'. 

If bi is to be exchanged back to partition A', there are two 
possibilities: 

bj  is to be exchanged with cI which is now in A'. cl 
must have been exchanged with b j  earlier when I A lwas 
reduced from D ,  to D,. Since 1 A I monotonically 
decreases, if bi is to  be exchanged with cl, the exchange 
must change 1 A I to a new value D ,  which is less than 
D,. However, when b j  was exchanged with C , ,  

Algorithm 5.1 could have exchanged b j  with ck and 
reduce I A I to D ,  directly. Since b j  was not exchanged 
with ck, we know that D, is not less than D,. We have 
a contradiction. So bi cannot be exchanged with any c,  
now in A'. 

bj is to be exchanged with bj  in A'. Again, the new I A I 
after such an exchange must have a smaller value than 
that of after exchanging bi and ck. In other words, we 
would have exchanged bi and ck instead of b,. and ck  

earlier. A contradiction shows that bi cannot be 
exchanged with any bj in A'. 

From (1) and (2), we know that bi cannot be exchanged 
back to A' once it is moved to A". 0 

Theorem 5.1. The number of iterations in Step 3 of 
Algorithm 5.1 is O(n). 

Proof: By Lemma 5.1 we know that the number of iterations 
is less than or equal to  min(nl,nz), the smaller of the numbers 
of elements in two initial partitions. In the worst case the 
number of iteration is O(n/Z)=O(n). 0 

The following example shows that the algorithm will require 
more than one exchange. 

Example 5.1. A = (200, 194, 102, 100, 11, 10, 9}. After 
Step 2 A' = (200, 100, lo} and A" = (194, 102, 11, 9}. 
Step 3 will exchange pairs (102, 100) and (11, 10) (in that 
order). 0 

Actually, Step 1 (sorting) is not needed if Step 3 is executed 
until no more exchange is possible. In fact, sometimes the 
result is better if Step 1 is skipped. 

Example 5.2. Given the sequence of ai is (3, 52, 63, 99, 
15, 39, 94, 83, 8, 89, 51, 55, 39, 79, 78, 21), Algorithm 5.1 
without sorting will achieve a even partitioning, but will 
not if sorting is conducted first. 

Without sorting, the following example shows that O(n) 
exchanges are needed. Therefore, the O(n) upper bound is 
tight for non-sorting case. 

&ample 6.3. 

I>>k and there are (k-1) k ' s  in the set A. After Step 2 
A' = { I ,  k-1, k-2, ..., l} and 
A" = {1/2, k, k, ..., k, 1/2+ k(k-1)/2}. Then, Step 3 
will exchange pairs (1, k), (2, k), ..., (k-1, k) (in that 

A = { I ,  1/2, k, k, ..., k, 1/2 + k(k-1)/2, k-1, k-2, ..., l}, 
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order). There are O ( k )  = O(n/2) = O(n) exchanges. 0 

We have run some simulations to  see how many 
exchanges are usually required using the algorithm. Two sets 
of simulations were conducted: one with manually arranged 
data sets and the other data sets were generated randomly. In 
each set, we executed the algorithm twice: once with the 
sorting step and the other without sorting. Tables I and II 
show the number of exchanges needed in each case and the 
value of A in final partitions. As can be seen from the tables, 
with sorting, we need only one or two exchanges to have a 
perfect partitioning even for 500 numbers. 

Table I. Simulation with arranged data. 

Datarange I A 1 #exchanges 

1200 2 ”p.1 
199 0 

1200 0 

Table II. Simulation with random data. 
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We can use Algorithm 5.1 to find a sub-optimal solution 
for some of the multiprocessor scheduling problems discussed 
earlier. For example, given a set of periodic jobs with total 
utilization factor 5 2, and we want to execute i t  on two 
processors using the EDF algorithm. The job set is 
schedulable if we can partition the job set into two subsets 
such that each has a utilization factor smaller than 1. The 
heuristic algorithm may be used to  produce a vague partition 
such that both A‘ and A“ have utilization factors close to one. 
If both are smaller than one, we have a feasible schedule. If 
one utilization factor is greater than one, we can parallelise 
one of the jobs in the partition to move part of the work to 
the other partition. 

6. Concluaiona 

We have proposed a model of job scheduling with 
parallelizable jobs. Traditional scheduling problems assume 
that the execution time of a job is always k e d ,  and the 
number of processors required is not dynamic. In our model, 
we suggest that schedulers may determine the degree of 
parallelism for a job execution. In this way, jobs with high 
priorities can use more than one processor to reduce response 
time. With recent progress in multiprocessor technology and 
parallel computing, programs with such models can be easily 
implemented. Although the problem of static priority 
assignment using this model is “-hard, heiristic algorithms 
with good performance can be found. 

However, even if an optimal priority assignment is 
available, the scheduling algorithm still must decide the 
number of processors to  be used by a job during its execution. 
Deciding an optimal processor assignment is another difficult 
problem that must be solved in order to  completely handle the 
parallelizable job scheduling problem. 
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