
Use of Preferred Preemption Points in Cache-Based Real-Time Systems

Jonathan Simonson and Janak H. Patel

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign

Urbana, Illinois 6 180 1-2307
USA

Abstract
Time-critical applications require known worst-case exe-
cution times to ensure that system timing constraints are
met. Traditional cache memory arrangements, howevel;
significantly impede the determination of tight upper
bounds on these worst-case execution times (WCET). The
difficulty comes in adequately predicting the cache miss
ratio for a task in a preemptable multi-tasking environ-
ment. Caches thus increase the complexity of calculating
WCET. To resolve this, caches have simply been excluded

from WCET calculations. Each task must then be provided
greater time in which to execute leading to lower through-
put and peformance. In this paper we present a cache
management scheme that allows WCET calculations to
more easily reflect the timing effects of caching. This is
done through the appropriate selection of preemption
points within a task’s execution. The scheme focuses on
the WCET component that is due to preemption overhead.
An added benejit is a reduction in execution time of up to
10% for some tasks over traditional cache management.

1: Introduction

Cache memory is essential to real-time systems in pro-
viding the high throughput and performance needed by
time-critical applications. The critical nature of the appli-
cations, however, demands worst-case execution times
(WCET) to ensure that all timing requirements are met. It
is therefore important that such systems be able to use
cache memory while having calculable WCETs that
account for the caching effects.

WCETs are essential for determining the schedulability
of a task set. Therefore, they must be guaranteed to ensure
system reliability. These guarantees are frequently made
by allocating much more time than ever actually used.
This results in lower system utilization due to idle

This research was supported in part by a grant from the National
Aeronautics and Space Administration under contract NASA
NAG-1-613.

processor cycles. Some systems use these cycles for non-
critical tasks. Alternatively greater attention can be given
to the analysis of the system and the task set to obtain
tighter bounds on the WCETs. Imprecise task results may
be permissible when even shorter execution times are
needed [11. To obtain tighter execution bounds, however,
a task must be examined to determine its longest path of
execution. Also under examination must be the system
resources required by the task and the time consumed by
them. Here we look at the effects of the cache memory on
these calculations and how the calculations can be made
more tractable through the scheme that we present.

The difficulty that caches add to the calculation of
WCET comes in determining the portion of memory refer-
ences that are cache hits. The absolute upper bound on
execution time when considering the cache is obtained
using a hit ratio of zero, but this essentially negates the
use of the cache. To get closer to the lowest upper bound,
the system and the task set must be analyzed. One of the
factors that contributes to the difficulty of this analysis is
the variations in program flow within each task. Each
execution path may have a very distinct memory access
behavior resulting in very different cache hit rates. Re-
emptable multi-tasking environments also can add greatly
to the variability in cache hit rates and thus to the variabil-
ity of program execution times. Such environments result
in significant reductions in tasks’ cached state by the time
the tasks resume execution. This is a consequence of task-
state replacement by intervening processes. The degree of
task-state reduction may be very difficult to determine due
to variations in task execution and sequencing. All this
can make the problem of determining cache hit rates
intractable.

One of the first solutions that arose to resolve this prob-
lem was to simply exclude the cache from the timing cal-
culations or even the actual system. As mentioned previ-
ously, this degrades performance with regard to through-
put but does provide for more tractable timing calculations
and thus better guarantees on WCETs. Kirk and Strosnider
[2, 3,41 approached the problem by partitioning the cache
into segments that are then allocated to a set of tasks to

3 16
0-8186-7059-2/95 $04.00 0 1995 IEEE

meet the system requirements. Hardware modifications to
the cache design are necessary in their technique to main-
tain the ownership and activity of these segments. A draw-
back of their technique is that each task is limited in the
amount of cache space it can use. This is mostly compen-
sated for by their segment allocation scheme. A more soft-
ware-oriented approach was taken by Niehaus, Nahum,
and Stankovic [5] . Their work focuses on calculating
WCETs, taking into account the effects of instruction
caching. The tasks are divided up at large subtask bound-
aries to provide scheduling points at which task switching
can take place. A similar approach was taken by Arnold et
al. [6]. Here again large subtask are examined by careful
program flow analysis. A method referred to as static
cache simulation is used to determine when a particular
assembly instruction is going to be hit or miss. Of the six
applications that they ran using their method, none under-
estimated the WCET. For five of the applications, the esti-
mated WCETs were within 12% of the actual. The sixth
application was overestimated by 99%. Liu and Lee [7]
also address WCET for uninterrupted cached programs.
Instruction caching is accounted for at a basic block gran-
ularity. Their work focuses more on the complexity of
determining the worst-case control flow path. To reduce
the complexity cost they present various approaches that
stop short of exact analysis. An exact analysis is also pro-
vided. They were able to estimate the WCET for a binary
search programto within 10% of the actual. Basumalick
and Nilsen [8] have provided a short overview of addi-
tional techniques to predicting cache hit rates in real-time
systems.

This paper focuses on the component of WCET calcu-
lations due to task switching. Preemptions often result in
cache state changes between periods of program execu-
tion. This makes it difficult to determine the degree to
which the cache reload overhead affects execution time.
We propose a scheme that both reduces the observed
cache reload overhead and permits determination of the
execution time cost of preemptions. This allows one to
more accurately calculate WCET in a preemptable envi-
ronment. This scheme is also known to reduce task exe-
cution time by up to 10% through selection of preemption
points that result in low cache reload times.

In the remainder of the paper we present our cache
management scheme. Its aim is to provide for more pre-
dictable WCETs and reduce task execution time in a pre-
emptable multi-tasking environment. We begin by pre-
senting our scheme and its proposed implementation in
Section 2. Section 3 provides an explanation of how the
scheme was evaluated. The results and their interpretation
follow in Section 4. In Section 5 we conclude the paper
with an overview and future directions of this work.

2: Guided preemption via cached state

In an environment where tasks vie for processor cycles
and preempt one another in obtaining those cycles, a
task’s cached working-set can be significantly reduced by
the time the task regains control of the processor. This
results in a cache-reload overhead when the task resumes.
The extent of the cache state reduction and what state is
lost can be difficult to determine. This is affected by fac-
tors such as point of preemption occurrence, preemption
frequency, and task sequencing. These factors are often
loosely defined and vary from one execution of a task to
the next. The state loss that occurs is actually a replace-
ment of the preempted task’s cached working-set by inter-
vening tasks. The traditional cache is one that is a shared
resource and one in which the currently executing task has
free range over the use of the cache lines. The following
scheme was devised with the above ideas in mind.

The technique that is proposed limits preemptions to
prespecified points within a task’s execution. Firstly, this
allows for more accurate worst-case calculations of the
cost of preemptions since the possible points of preemp-
tions are well defined. Secondly it allows for the reduction
of preemption costs through appropriate preemption point
selections. The second point clearly benefits any system
not just one requiring guarantees on WCETs.

2.1: Technique basis

The basis of our technique lies in calculating the cost of
a preemption. When a task is preempted there is the cost
of context switching as well as the additional cost of
restoring to the cache any active task state that has been
lost when the task resumes. It is this additional cost that is
the focus of our scheme. The context switching time is
often a direct function of the degree of processor state that
is saved and restored.

At the time a task is preempted, there exists some por-
tion of the task’s cached state that would have been
accessed in the future prior to replacement by a cache
miss. The cache lines that fit this description will be
referred to as live or active cache lines and those that don’t
as dead or non-active cache lines. The definitions for these
terms are as follows:

Definition 1 : A Live or Active Cache Line refers to one
that contains a block of data that will be referenced in the
future prior to its replacement. In other words, it is a cache
line in which the next reference is a hit had the task been
allowed to run to completion.

Definition 2: A Dead or Non-Active Cache Line refers
to one that contains a block of data that will be replaced
prior to any future reference or that will not be referenced

3 17

during the remainder of a task’s execution. In other words,
it is a cache line in which the next reference is a miss or
for which there are no future references had the task been
permitted to run to completion.

If the active cache lines are replaced due to the execu-
tion of other tasks, the data they contain must be fetched
from main memory when referenced by the resuming task.
This adds to the execution time of the task over what
would have been necessary had the task not been pre-
empted. This added execution time is equal to the actual
number of active cache lines replaced times the cache
miss penalty (ie. the additional time necessary to fetch the
data from main memory). Since the determination of the
number of active cache lines is a much more tractable
problem than the determination of the number of active
cache lines replaced, the remainder of this paper will use
an upper bound on the cache reload overhead equal to the
number of active cache lines times the cache miss penalty.
How the number of active cache lines might be calculated
or estimated is described in Section 2.2.

Once the number of active cache lines are determined
at each instant within a task’s execution, the points of pre-
emption can be chosen to decrease preemption costs.
These points will be referred to as preferred preemption
points and are defined as follows and illustrated in
Figure 1.

Dejnition 3: A Preferred Preemption Point for a given
interval of task execution t i to t j is the instant within that
interval having the minimum number of live cache lines
for the interval.

Only one preemption point is needed per task switching
if it is known when in each task’s execution a higher prior-
ity task will be ready to run. On the other hand, preemp-
tion points are necessary at frequent intervals and possibly

:,‘Time in which Preemption is Desired
I Worst Case Preemption Point
0 Prefered Preemption Point 3000

.... ~

Increasing Cycle Time

throughout a task’s execution in systems that exhibit a
high degree of variability and where higher priority tasks
may need to gain control of the processor quickly. In
either case, by knowing the maximum number of preemp-
tions for each individual task and the maximum cost of
those preemptions, a upper bound on the added time due
to the effects of preemptions on caching can be deter-
mined. This can be expressed as given below for the
highly variable case. The equation does not account for
other system effects of preemptions, such as a possible
increase in paging and possible contention for system
resources (eg. secondary storage devices). The overhead
due to preferred preemptions above that without preemp-
tions is then

where

EP = Time due to preferred preemption points above

p u = Number of live lines at preferred preemption

n = Number of prespecified preferred preemption

t , = Cache miss penalty
t , = Context switch time
P

If the number of live lines per preemption point is
known and the exact points of preemptions are known,
E , becomes

that necessary without preemptions

point i

points

= Maximum number of preemptions

Ep = Pt, + t , C pu
R

where

R = Actual points at which preemptions occur

2.2: Determining number of active cache lines

In the previous section it was shown that the knowl-
edge of the number of active cache lines during a task’s
execution permits better worst-case execution calcula-
tions. To make use of this, however, there must be some
method of determining or predicting the number of active
cache lines. This section presents a possible method of
addressing this issue. The method assumes a data cache
but can be similarly performed for a instruction cache. Figure 1 : Preferred preemption points

Since the active cache line behavior is linked to the
activity of program variables, it is natural to look here for
a solution. As a starting point it will be assumed that the

3 18

task control flow paths are available in order of decreasing
execution time for a non-preempting system with cache
memory. From here the activity of the program variables
are determined and correlated or translated to active cache
lines. To determine this activity, the life times of the pro-
gram variables need to be ascertained. This is similar to
performing live variable analysis for register allocation
but here cache lines are the resource allocated. Dynami-
cally addressed variables may require profiling or pro-
grammer assistance to determine their life times. The life
times of a variable are the times for which the variable is
resident and active within the cache. For non-fully asso-
ciative caches the secondary effects of mapping conflicts
may need to be considered but some preliminary simula-
tion results show that this effect should be small. The
analysis of variable activity and their mapping to cache
lines is performed on a per control path basis. The end
result is the cache line activity along each path.

The above analysis is first applied to the worst-case
execution path and the preferred preemption points are
determined along this path based on cache line activity.
The WCET with preferred preemption points is then cal-
culated. The next worst-case execution path is then exam-
ined. At this point to reduce calculation costs, the cost due
to all preemptions along this new path is first calculated
using a cache line activity equal to the number of cache
lines. If the execution time with this upper bound on pre-
emption costs does not exceed the first worst-case execu-
tion path with preferred preemption points, further analy-
sis of this path and others are unnecessary. If it does, then
the same analysis is necessary on this path as on the
worst-case execution path. If this path then exceeds the
worst-case execution path, it becomes the case of compar-
ison for the remaining paths. The analysis then proceeds
to the next worst-case execution path and the above steps
are repeated comparing this path to the worst-case execu-
tion path of comparison. It is likely that since execution
paths share segments of code, portions of the analysis
done for one path can be shared with that of other paths
having overlapping segments. This leads to further reduc-
tion in calculation costs. To reduce the memory cost nec-
essary for such compilations, it may be possible to use a
smaller cache for the actual calculations and scale the
results.

The steps necessary in determining the WCETs so that
they account for the effects of caching are best incorpo-
rated into the compiler. This enables them to be transpar-
ent to the user. Further work is in progress in this area
with respect to detail and implementation, but it is felt that
a reasonable approach to the problem has been found.

2.3: Preferred preemption point selection

For best results preferred preemption points should be
determined as indicated in the previous section. More
relaxed techniques can be used to determine the selection
of preferred preemption points for tasks where lower guar-
antees on deadlines are allowed or where tighter upper
bounds on WCETs are unnecessary. This also applies to
task that can afford to have longer execution times.

Perhaps one of the easiest techniques of selecting pre-
emption points under these conditions is by the insertion
of traps within the source code by the programer to check
for ready to run tasks of higher priority. Since the pro-
gramer will often have at least an intuitive feeling as to
where in the code there are likely to be significant changes
in the working set and consequently reductions in number
of live caches lines, performance improvements will
result. A slightly more complicated technique, along sim-
ilar lines, is to select subroutine boundaries as the preemp-
tion points. Often at such boundaries the working-set is
noted to go through significant changes. With either
method if tighter bounds on WCETs are desired, further
analysis would be necessary to determine the cost of the
preemption points chosen. The frequency of these points
would also need to be checked to determine if they met
the needs of the system.

One technique, that provides perhaps the greatest per-
formance improvements but which is probably the most
computationally intensive, is to determine preferred pre-
emption points for each control path through a task. This
would be done almost identically to how preemption
points were selected in the previous section, with the
exception that no comparison of execution times would be
necessary between paths unless tighter WCETs were
desired.

The technique chosen depends on the system require-
ments. Take for instance a task which must use imprecise
results because it can not meet its deadline but whose
results are crucial to the system. Such a task would require
a thorough analysis to find preferred preemption points
along all program control flow paths. Systems are likely to
use multiple techniques to obtain the greatest benefits.

2.4: Scheduling with preemption points

Once the preemption points are chosen the scheduling
algorithm of choice must be adjusted to incorporate them.
Task sets previously unschedulable may now through their
reduced execution time meet the timing requirements.
What follows is a modification to the rate monotone
scheduling algorithm [9] that accounts for predetermined
preemptions points.

3 19

The rate monotone scheduling algorithm has been Step 4: Schedule tasks using the rate monotone
scheduling algorithm but allow preemptions
only at prespecified preemption points with the
time cost for such points accounted for.

Step 1 can be determined using the work of Lehoczky,

modified to first allow tasks to preempt each other only at
prespecified preemption points and secondly to provide
the maximum time distance between preemptions such
that all tasks will still meet their deadlines. The steps to
the algorithm are as follows:

Step 1:

Step 2:

a:

b:

Step 3:

Ensure the schedulability of tasks under the
unmodified rate monotone scheduling algo-
rithm without accounting for the cost of pre-
emptions.
Determine the maximum allowable preemption
spacing for each task:
Form groups of tasks consisting of each task
and the tasks of higher priority.
Beginning with the smallest group perform the
following for each group. Apply the rate
monotone schedule to the task group, but allow
the lowest priority task to begin first at the crit-
ical instant (ie. a point when all tasks are ready
to run). Determine the maximum time this task
may execute such that all higher priority tasks
in the group meet their deadlines. Already
determine maximum preemption intervals
should be used to define the preemption points
of the higher priority tasks. Preemptions are
allowed only at these points for this step of the
proceedure.
Find preferred preemption points for each task
such that their maximum allowable preemption
interval is not exceeded.

Sha, and Ding [lo] for task set schedulability under the
rate monotonic scheduling algorithm. The justification for
Step 2 is as follows. It is possible for a lower priority task
to begin execution one time unit before its higher priority
tasks become ready to run. The higher priority tasks
would then need to wait until this lower priority task
reached a preemption point before they could begin execu-
tion. This preemption point must come in a sufficient
amount of time such that all the higher priority tasks meet
their deadlines. By allowing the lowest priority task to
begin execution first when all higher priority tasks are
ready to run, this situation is reproduced and the maxi-
mum time of execution without preemption can be deter-
mined. Step 2 was found to be very similar to work done
in [111 for the schedulability of a task set using the rate-
monotonic algorithm under the priority ceiling protocol.
The blocking that occurs with preferred preemption points
has a scheduling effect similar to the blocking that occurs
with priority inheritance or semaphores. A theorem is
provided in [111 for determining task schedulability under
blocking.

An illustrative example of the modified rate monotone
algorithm given here is depicted in Figures 2 through 5. In
Figure2, it is seen that all tasks within the task set meet
their deadlines under the unmodified rate monotone
scheduling algorithm. The execution times given are

Ti = Task Period
Ci = Execution Time
Di = Task Deadline = Ti

T1 = 8, C1 = 2 Tl>TZ>T3>T4 (Priority Ordering)
T2 = 20. C2 = 9
T3=60:C3= 12
T4 = 120, C4 = 9

Step 1:

T' Pmnty 1

T2 Prmntyz

T3 Pnonty3

T4 P " y 4

8 16 20 40 60 80 100 120

Figure 2: Unmodified rate monotone schedule w/o preemption costs

320

T1 = 8, C1 = 2
T2 = 20, C2 = 9

Tl>TZ>T3>T4

Step 2b: G2 = {TI, T2) -

PP2=6 PP2=7f

Deadline missed

PP2 = Maximum Preemption lntewal for Task T2 = 6

Figure 3: Step 2 of modified rate monotone
scheduling algorithm for task T2

WCETs that account for caching but not for preemptions.
This figure corresponds to Step 1. It can be seen that there
are 15 preemptions and three remaining time units. The
total cost of preemptions can not exceed three time units if
the tasks are to meet their deadlines. By using preferred
preemption points the chances of meeting the deadlines
are increased.

Step 2 results in the following groups Gl={Tl},
G2={ T1 ,T2), G3={ T1 ,T2,T3 }, G4={ Tl,T2,T3,T4}. The
maximum preemption interval for task T1 is always equal
to its execution time. Figures 3 and 4 show the determina-
tion of the maximum preemption intervals for task T2 and
T4 respectively. The maximum preemption interval for
T3 can be done similarly. For task T2, it is seen from
Figure 3 that if the preemption interval exceeds 6 time
units, T1 misses its deadline. Therefore the maximum
preemption interval for task T2 is 6. For task T4 in
Figure 4, a preemption interval exceeding 5 time units
causes T2 to miss its deadline. It should be noted that
when T4 reaches one of its preemption points the ready to
run task of highest priority above T4 replaces T4 as the
executing process. This coincides with the unmodified
rate monotone scheduling algorithm with the exception
that tasks now preempt only at preemption points. In
determining the maximum preemption intervals for lower
priority tasks, the preemption points for higher priority
tasks are set at a spacing equal to their respective maxi-
mum preemption intervals.

At this point the maximum preemption intervals have
been determined for all four tasks and the preferred pre-
emption points can be selected. For this illustration, the
preferred preemption points will be set to the maximum
preemption intervals. Task T1 is always non-preemptable.
Task T2 has a preemption point at 6 time units into its exe-
cution. Task T3 has preemption points at 5 and 10 time

Step 2b: G4={11, T2, T3, T4)

T1 Priority 1

T2 Priority 2

T3 PnOrifv 3

pp4=5 8 16 20 40 60

T1 = 8, C1 = 2 Tl>TZ>T3>T4
T2=20 C2=9 PP2=6 T2 Priority 2 T3 = 60: C3= 12 PP3= 5

T3 Priority 3 T4=120,C4=9 PP4=5

T4 Pnority 4

T1 Priority 1

pp4=6 8 /y16 2q
Deadline missed

Maximum Preemption Interval for T4 = 5

Figure 4: Step 2 of modified rate monotone
scheduling algorithm for task T4

units into its execution. Task T4 has a preemption point at
5 units into its execution. Figure 5 shows the tasks as they
would be scheduled under Step 4 with the exception that
preemption overhead is not taken into consideration in this
figure. It should be noted that in this case the number of
preemptions has been reduced to 11. In addition, the pre-
emption cost will be less than the original schedule under
the unmodified algorithm due to the appropriate selection
of preemption points that reduce preemption costs.

Further work is in progress to refine this modification
to the rate monotone scheduling algorithm. Other
scheduling algorithms are also under examination to deter-
mine the modifications necessary for them.

3: Experimental evaluation

In order to verify that preferred preemption points exist
and to confirm the effects that these preferred preemption
points have on program execution and cache miss rate, a
cache simulation was run with five programs from the
PERFECT Benchmark Suite [12]. Program analysis as
discussed in Sections 2.2 and 2.3 could have been used
instead had it been in place at that time. The trace driven
cache simulation is also intended to provide a point of
comparison for the results of program analysis in future
work. The simulation model was written in C++. The pro-
cessor was modeled to stall on cache misses. Each miss
resulted in a 10-cycle latency for accessing data from
main memory. Cache hits had a 1-cycle cache access
latency. A cache write-allocate scheme was used for
accesses. The cache write-back scheme was setup such

321

T1=8,C1=2 Tl>T2> J32T4 (Priority Ordering)
T2 = 20, C2 = 9
T3 = 60, C3 = 12
T4= 120, C4= 9

Step 4: (w/o Preemption Costs)

T1 Priority I

T2 Priority2

T3 priority3

T4 priority4

a 16 20 40 60 80 100 120

Figure 5: Modified rate monotone schedule w/o preemption costs

that it did not affect the execution time. The traces used in
the simulation contained data references only and thus the
simulation was restricted to that of a data cache. The
cache size was set to 128K Bytes with 32-byte cache lines
and direct mapping.

First simulations were done without preemptions to
view the live cache line behavior of the task. Whether a
cache line was active or not at any particular instant in
time was not known until its replacement. For each cache
line, a record was maintained of the time of the last load to
the line and the last access. At the time of a cache line
replacement, a period of activity for the cache line was
recorded. The line was considered non-active or dead
from the point of last access up until the point at which a
new block was loaded. Therefore, in order to know the
live line count during each cycle of execution, it was nec-
essary to run the simulation through to completion. It was
found, however, that a individual period of cache line
activity was almost if not always determined within
200,000 cycles or less. This provided the plots of live
cache lines versus cycles given in the next section.

Separate simulations were used to set the actual pre-
emption points and observe the performance improve-
ments. These simulations were run to determine the
effects of preempting at preferred preemption points ver-
sus immediate and worst-case preemption points. The
cache was purged at each preemption point chosen during
the simulation. For a large task set, this is a reasonable
approach since most of the cache lines have been replaced
by intervening tasks. For each simulation run, a set inter-
val was chosen to preempt the task. The other simulation
variable was the amount of time allowed before the run-
ning task must relinquish the processor at the end of its
interval of execution. It is during this time after the end of
the interval that the preferred and worst-case preemption

points are sought. Live cache lines are calculated for this
period requiring the simulation to run until the end of the
next interval where the cache is purged. At this point the
active times of all cache lines within the search period can
be determined. Purging the cache at the end of the next
interval is reasonable because it is to be purged soon after
that interval completes anyway. At this point the simula-
tion is returned to the state at the end of the last interval,
and simulation resumes, preempting the running task at
the determined point. For each task preemption interval
and search length, preferred preemption points were cho-
sen and worst-case preemption points were chosen. In
addition for each preemption interval, preemptions were
made immediately at interval boundaries. This method of
determining preferred preemption points was used purely
as a way of determining the performance improvements
that could be seen with our technique. Additionally, the
execution paths taken were not necessarily worst-case but
it is believed that this is unnecessary for seeing the perfor-
mance gains achievable.

The PERFECT Benchmarks used were ADM, BDNA,
TRACK, ARC2D, and DYFESM. These memory traces
were obtained using an Alliant simulator on a Alliant
FW80 [131. The traces from ADM, BDNA and TRACK
were approximately 110 million continuous data refer-
ences. ARC2D and DYFESM traces were composed of
40 sample traces each. These samples comprised a total of
approximately 9 million data references for each applica-
tion. In the cache simulations with ARC2D and
DYFESM, the cache was flushed before the start of each
sample. The Alliant simulator was set to emulate execu-
tion on an Alliant FW8 single processor. TRACK is prob-
ably most representative as an application of a real-time
process. TRACK contains 33770 lines of signal process-
ing code that is used for tracking objects. ADM is an

322

application for air pollution analysis and contains 6142
lines of code. BDNA is a nucleic acid simulation with
3962 lines of code. ARC2D is computational fluid dynam-
ics with 3605 lines of code and DYFESM is structural
dynamics with 7599 lines of code. $ 3000

5 2500
c 8 2000

1500

1000

500

4: Results

-

-

-

-

-

-

The simulation runs of ADM, BDNA, and TRACK
without preemptions are shown in Figures4, 5, and 6.
The horizontal axis is the time line in millions of proces-
sor cycles. As can be seen from these plots, TRACK
exhibits less frequent live cache line variance than does
ADM or BDNA. This suggests that the effects of pre-
ferred preemption points will have less of a impact on the
performance of TRACK than ADM and BDNA. This is
supported by the results of simulations with preemptions
to be shown below.

ADM, BDNA, and TRACK were run with preemption
frequencies of 1/2500, 1/5000, and 1/10000 (in l/pro-
cessor-cycles). It was with this frequency that the actual
preemption points where sought. Each search extended for
a period of program execution equal to lo%, 50%, and
90% of the preemption interval. The preferred and worst-
case preemption points were chosen from this search
period. A worst-case preemption point exhibits the largest
number of live cache lines within the search period. Sim-
ulations were also run with preemptions occurring imme-
diately at the start of the search period. These preemptions
are referred to as immediate preemptions. Table 1 shows
percent decrease in execution time over worst case and

TRACK

Table 1: Percent reduction in execution time via
preferred preemption points relative to immedi-
ate (Ime) & worst-case (Max) execution

I

Ime 0.5% 1.7% 2.6%0.4% 1 . 1 % 1.9%10.3% 1.0% 1.7%
Max 0.9% 2.7% 3.8% 0.7% 2.0% 2.9%10.5% 1.6% 2.5%

Ime]0.8%14.6%1 8.4%10.6%]2.7%1 6.9%10.4%11.9%14.8% IsDNA tMdl.6%16.4%hO.4%h .0%13.9%1 8.3%10.7%12.8%k~.8~

4000 1 1
3500 1

0 " I
0 50 100 150 200 250 300

Cycles in 1,000,000

Figure 4: Simulation of ADM w/o preemptions

4000 '1
3500 -

$ 3000 -

1 2500 -
c

a, c 8 2000 -

I m * 1500 -

0 " ' ' , ' ' , t u 1 I I I , I
0 50 100 150 200 250 300 350 400

Cycles in 1,000,000

Figure 5: Simulation of BDNA w/o preemptions

2 2500
m c 8 2000
0
a, 1500

1000

500

0

>

0 100 200 300 400 500
max - assuming worst-case preemption point Cycles in 1,000,000

Figure 6: Simulation of TRACK w/o preemptions

323

immediate preemption achieved via preferred preemption
points. The miss ratio for worst-case preemption points,
immediate preemption, and preferred preemption points
are given in Table 2. Figure 7 presents the percent reduc-
tion in execution time for preferred preemption points rel-
ative to using worst-case preemptions points when a
search length of 50% of the preemption interval is used. It
also gives performance numbers for ARC2D and
DYFESM not shown in Table 1 .

These results show greater performance gains with pre-
ferred preemption points at higher preemption frequen-
cies. This is expected due to the larger accumulated cost
of poor preemption point selection that occurs at higher
preemption frequencies. This, however, does not always
hold true. For tasks that have a greater stability in their
live cache line activity with occasional fluctuations, the
performance improvement will be seen to be greater at the
frequency of these fluctuations. It should also be noted
that systems with greater cache miss penalties will enjoy
even greater performance benefits from preferred preemp-
tion point usage. No matter what the performance
improvement, however, predetermined preferred preemp-
tions points provide a means of calculating tighter bounds
on WCETs thus allowing for greater system throughput. It
should also be noted here that even without predetermined
preemption points, having the cost of the worst-case pre-
emption point for the entire program execution permits
tighter execution time bounds when there exists a bound
on the number of preemptions.

TRACK

Table 2: Miss ratio

lmel .I1 .09 .07
PPPl .I1 I .IO I .IO I .09 I .08 I .08 I .07 1.07 I .06

l o l . I P I

f 9
F 8

0

Sampled ARC2D x

Sampled DYFESM -& -

1 e-05 0.0001

Preemption Frequency (in 1IProcessor-Cycles)

* % Improvement in Execution Time with Preferred Pre-
emption Points over Worst-case Preemption Points

Figure 7: Comparison at search length of 50%
preemption period

5: Conclusion and future work

Caches are instrumental in providing high system per-
formance. At the same time they add greatly to the diffi-
culty of obtaining tight bounds on worst-case execution
times. WCETs are essential in real-time systems in order
to guarantee that system timing constraints are met. Past
real-time systems designs have not included the effects of
caching in their timing calculations. This circumvents the
added difficulty of calculating WCETs due to caching but
unfortunately leads to under utilization of processor power
and memory hierarchy. Since real-time systems are often
designed for time critical applications requiring quick
response times, it is important that caches be considered in
WCETs so that these times can be reduced.

The unpredictable nature of cache memory accesses
lies in the variability of the cache state in a multi-tasking
preemptable environment. Whether a cache access is a hit
or a miss at a particular point of program execution can
change as a result of task sequencing, preemption fre-
quency, and point of preemption occurrence. A task’s
working set can be partially or even completely replaced
when preempted by the time it resumes execution, thus
requiring it to restore part or all of the working set from

324

main memory. It is this cache-reload time that is difficult
to determine. The significance of the changes in cache
state due to preemptions can be minimized through the use
preferred preemption points which we have outlined in
this paper. Preferred preemption points are those points
within a task’s execution that exhibit large variances in the
working set. Since the working set is in the process of
changing at such times, the cached working set need not
be restored in its entirety when the task resumes. By
determining an upper bound on the number of active
cache lines at these chosen preemption points, we can pre-
dict the time cost of these preemptions.

The use of preferred preemption points, in comparison
to worst-case preemptions points, resulted in improve-
ments in execution time as high as 12%. It was also found,
however, that with preemption frequencies lower than
1/100,000 processor-cycles, the percent improvement with
preferred preemption points over worst-case preemption
points is minimal. Even so, WCETs with preemptions can
still be predicted taking into account the cache memory,
thus reducing the WCET used for a task.

Currently the direction of this work focuses on devel-
oping methods of selecting preferred preemptions points
both dynamically and statically, as well as looking at
adjusting various scheduling algorithms to account for this
technique. There are also plans to examine this technique
more closely with regards to instruction caching. As the
work proceeds other approaches to this problem will be
sought. These approaches may make use of multi-level
caches, code reorganization, and other preexisting archi-
tecture performance improvement techniques. The objec-
tive is to make a more predictable system while maintain-
ing the same performance level or even achieving greater
performance.

References

[l] Wei-Kuan Shih, Jane W. S. Liu, and Jen-Yao Chung,
“Algorithms for Scheduling Imprecise Computations with
Timing Constraints,” SIAM J. Computing, vol. 20, no. 3,
pp. 537-552, June 1991.

David B. Kirk, “SMART (Strategic Memory Allocation
for Real-Time) Cache Design,” Proceedings of the Real-
Time Systems Symposium, pp. 229-237, IEEE,
December 1989.
David B. Kirk and Jay K. Strosnider, “SMART (Strategic
Memory Allocation for Real-Time) Cache Design Using
the MIPS R3000,” Proceedings of the Real-Time Systems
Symposium, pp. 322-330, IEEE, December 1990.
David B. Kirk, Jay K. Strosnider, and John E. Sasinowski,
“Allocating SMART Cache Segments for Schedulability,”
Proceedings of the Euromicro ’91 Workshop on Real-Time
Systems, pp. 41-50, IEEE, June 1991.
D. Niehaus, E. Nahum, and J.A. Stankovic, “Predictable
Real-Time Caching in the Spring System,” Proceedings of
the IFAC Workshop on Real Time Programming,
pp. 79-83, May 1991.
Robert Arnold, Frank Mueller, David Whally, and Marion
Harmon, “Bounding Worst-case Instruction Cache Per-
formance,” Proceedings of the Real-Time Systems Sympo-
sium, pp. 172-1 81, IEEE, December 1994.
Jyh-Cham Liu and Hung-Ju Lee, “Deterministic Upper-
bounds of the Worst-case Execution Times of Cached
Programs,” Proceedings of the Real-Time Systems Sympo-
sium, pp. 182-191, IEEE, December 1994.
Swagato Basumalick and Kelvin Nilsen, “Incorporating
Caches in Real-Time Systems,” Proceedings of the Work-
shop on Architectures for Real-Time Applications., IEEE,
April 1994.
C.L. Liu and J.W. Layland,, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”
Journal of the Association of Computing Machinery,
vol. 20, no. 1, pp. 46-61, January 1973.
John Lehoczky, Lui Sha, and Ye DIng, “The Rate Mono-
tonic Scheduling Algorithm: Exact Characterization and
Average Case Behavior,” Proceedings of the Real-Time
Systems Symposium, pp. 166-171, IEEE, December 1989.
Lui Sha, Ragunathan Rajkumar, and John Lehoczky, “Pri-
ority Inheritance Protocols: An Approach to Real-Time
Synchronization,” IEEE Transactions on Computer,
vol. 39, no. 9, pp. 1175-1185, IEEE, September 1990.
M. Berry et al., “The Perfect Club Benchmarks: Effective
Performance Evaluation of Supercomputers, ” The Inter-
national Journal of Supercomputer Applications, vol. 3,
no. 3, pp. 5-40, MIT Press, 1989.
John W. C. Fu and Janak H. Patel, “Trace Driven Simula-
tion Using Sampled Traces,” Proceedings of the 27th
Hawaii International Conference on System Sciences,
pp. 211-220, 1994.

325

Performance Recovery in Direct - Mapped Faulty Caches
via the Use of a Very Small Fully Associative Spare Cache

H. T. Vergos & D. Nikolos

Computer Technology Institute, Kolokotroni 3 , Patras, Greece
&

Computer Engineering and Informatics Department,
University of Patras, 26500 Rio, Patras, Greece.

Abstract

Single chip VLSI processors use on-chip cache
memories to satis@ the memory bandwidth demands o f CPU.
By tolerating cache defects without a noticeable performance
degradation, the yield o f VLSI processors can be enhanced
considerably.

In this paper we investigate how much o f the lost hit
ratio due to faulty block disabling in direct-mapped caches
can be recovered by the incoporation o f a very small filly
associative spare cache. The recovery percentage that can be
achieved as a function o f the p r i m q cache’s parameters
(cache size, block size), the number o f faulty blocks and the
size of the spare cache is derived by trace driven simulation.
The results show that when the number o f the faulty blocks is
small the use o f a spare cache with only one block offers a hit
ratio recovery of more than 70%, which increases further with
cache size. A spare cache with two blocks is justified only in
the case o f a large number o f faulty blocks.

1 . Introduction

Single-chip VLSI processors use on-chip cache memory
to provide adequate memory bandwidth and reduced memory
latency for the CPU [4 - IO]. The area devoted to some on-
chip caches is already a large fraction of the chip area and is
expected to be larger in the near future. For example, in the
MIPS-X processor [6] more than half of the chip area is
devoted to an on-chip instruction cache.

Since in the near future a large fraction of the chip area
will be devoted to on-chip caches, we expect that in a large
fraction of VLSI processor chips the manufacturing defects
will be present in the cache memory portion of the chip.
Application of yield improvement models [1 I] suggests that,
by tolerating cache defects without a substantial performance

degradation the yield of VLSI processors can be enhanced
considerably.

A technique for tolerating defects is the use of
redundancy [25]. The use of redundancy to tolerate defects in
cache memories was discussed in [I , 21. Redundancy can
have the form of spare cache blocks where if a block is
defective it can, after the production testing, be switched out
and substituted by a spare block using electrical or laser fuses.
Instead of spare cache blocks, spare word lines and/or bit
lines may exist that are selected instead of faulty ones. The
overhead of these techniques includes the chip area for the
spare blocks or word linedbit lines and logic needed to
implement the reconfiguration. Another form of redundancy
is the use of extra bits per word to store an error correcting
code [26]. Sohi [I] investigated the application of a Single
Error Correcting and Double Error Detecting (SEC-DED)
Hamming code in an on-chip cache memory and found out
that it degrades the overall memory access time significantly.
Therefore the classical application of a SEC-DED code in the
on-chip cache for yield enhancement does not seem to be an
attractive option for high-performance VLSI processors. In
[27] it was shown that the defects in the tag store of a cache
memory may cause significantly more serious consequences
on the integrity and performance of the system than similar
defects in the data store of the cache. To this reason a new
way of the SEC-DED code exploitation well suited to cache
tag memories was proposed. During fault free operation this
technique does not add any delay on the critical path of the
cache, while in the case of a single error the delay is so small
that the cache access time is increased by at most one CPU
cycle. Unfortunately, this technique is effective only in the
case that the defects cause single errors per word as for
example in the case of a bit line defect.

Another technique to tolerate defects in cache memories
is the disabling of the faulty cache blocks that was
investigated in [I , 21. It has been shown in [l , 21 that the

326
0-8186-7059-2/95 $04.00 0 1995 IEEE

