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Abstract 
Time-critical applications require known worst-case exe- 
cution times to ensure that system timing constraints are 
met. Traditional cache memory arrangements, howevel; 
significantly impede the determination of tight upper 
bounds on these worst-case execution times (WCET). The 
difficulty comes in adequately predicting the cache miss 
ratio for a task in a preemptable multi-tasking environ- 
ment. Caches thus increase the complexity of calculating 
WCET. To resolve this, caches have simply been excluded 

from WCET calculations. Each task must then be provided 
greater time in which to execute leading to lower through- 
put and peformance. In this paper we present a cache 
management scheme that allows WCET calculations to 
more easily reflect the timing effects of caching. This is 
done through the appropriate selection of preemption 
points within a task’s execution. The scheme focuses on 
the WCET component that is due to preemption overhead. 
An added benejit is a reduction in execution time of up to 
10% for some tasks over traditional cache management. 

1: Introduction 

Cache memory is essential to real-time systems in pro- 
viding the high throughput and performance needed by 
time-critical applications. The critical nature of the appli- 
cations, however, demands worst-case execution times 
(WCET) to ensure that all timing requirements are met. It 
is therefore important that such systems be able to use 
cache memory while having calculable WCETs that 
account for the caching effects. 

WCETs are essential for determining the schedulability 
of a task set. Therefore, they must be guaranteed to ensure 
system reliability. These guarantees are frequently made 
by allocating much more time than ever actually used. 
This results in lower system utilization due to idle 
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processor cycles. Some systems use these cycles for non- 
critical tasks. Alternatively greater attention can be given 
to the analysis of the system and the task set to obtain 
tighter bounds on the WCETs. Imprecise task results may 
be permissible when even shorter execution times are 
needed [ 11.  To obtain tighter execution bounds, however, 
a task must be examined to determine its longest path of 
execution. Also under examination must be the system 
resources required by the task and the time consumed by 
them. Here we look at the effects of the cache memory on 
these calculations and how the calculations can be made 
more tractable through the scheme that we present. 

The difficulty that caches add to the calculation of 
WCET comes in determining the portion of memory refer- 
ences that are cache hits. The absolute upper bound on 
execution time when considering the cache is obtained 
using a hit ratio of zero, but this essentially negates the 
use of the cache. To get closer to the lowest upper bound, 
the system and the task set must be analyzed. One of the 
factors that contributes to the difficulty of this analysis is 
the variations in program flow within each task. Each 
execution path may have a very distinct memory access 
behavior resulting in very different cache hit rates. Re-  
emptable multi-tasking environments also can add greatly 
to the variability in cache hit rates and thus to the variabil- 
ity of program execution times. Such environments result 
in significant reductions in tasks’ cached state by the time 
the tasks resume execution. This is a consequence of task- 
state replacement by intervening processes. The degree of 
task-state reduction may be very difficult to determine due 
to variations in task execution and sequencing. All this 
can make the problem of determining cache hit rates 
intractable. 

One of the first solutions that arose to resolve this prob- 
lem was to simply exclude the cache from the timing cal- 
culations or even the actual system. As mentioned previ- 
ously, this degrades performance with regard to through- 
put but does provide for more tractable timing calculations 
and thus better guarantees on WCETs. Kirk and Strosnider 
[2, 3,41 approached the problem by partitioning the cache 
into segments that are then allocated to a set of tasks to 
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meet the system requirements. Hardware modifications to 
the cache design are necessary in their technique to main- 
tain the ownership and activity of these segments. A draw- 
back of their technique is that each task is limited in the 
amount of cache space it can use. This is mostly compen- 
sated for by their segment allocation scheme. A more soft- 
ware-oriented approach was taken by Niehaus, Nahum, 
and Stankovic [ 5 ] .  Their work focuses on calculating 
WCETs, taking into account the effects of instruction 
caching. The tasks are divided up at large subtask bound- 
aries to provide scheduling points at which task switching 
can take place. A similar approach was taken by Arnold et 
al. [6]. Here again large subtask are examined by careful 
program flow analysis. A method referred to as static 
cache simulation is used to determine when a particular 
assembly instruction is going to be hit or miss. Of the six 
applications that they ran using their method, none under- 
estimated the WCET. For five of the applications, the esti- 
mated WCETs were within 12% of the actual. The sixth 
application was overestimated by 99%. Liu and Lee [7] 
also address WCET for uninterrupted cached programs. 
Instruction caching is accounted for at a basic block gran- 
ularity. Their work focuses more on the complexity of 
determining the worst-case control flow path. To reduce 
the complexity cost they present various approaches that 
stop short of exact analysis. An exact analysis is also pro- 
vided. They were able to estimate the WCET for a binary 
search programto within 10% of the actual. Basumalick 
and Nilsen [8] have provided a short overview of addi- 
tional techniques to predicting cache hit rates in real-time 
systems. 

This paper focuses on the component of WCET calcu- 
lations due to task switching. Preemptions often result in 
cache state changes between periods of program execu- 
tion. This makes it difficult to determine the degree to 
which the cache reload overhead affects execution time. 
We propose a scheme that both reduces the observed 
cache reload overhead and permits determination of the 
execution time cost of preemptions. This allows one to 
more accurately calculate WCET in a preemptable envi- 
ronment. This scheme is also known to reduce task exe- 
cution time by up to 10% through selection of preemption 
points that result in low cache reload times. 

In the remainder of the paper we present our cache 
management scheme. Its aim is to provide for more pre- 
dictable WCETs and reduce task execution time in a pre- 
emptable multi-tasking environment. We begin by pre- 
senting our scheme and its proposed implementation in 
Section 2. Section 3 provides an explanation of how the 
scheme was evaluated. The results and their interpretation 
follow in Section 4. In Section 5 we conclude the paper 
with an overview and future directions of this work. 

2: Guided preemption via cached state 

In an environment where tasks vie for processor cycles 
and preempt one another in obtaining those cycles, a 
task’s cached working-set can be significantly reduced by 
the time the task regains control of the processor. This 
results in a cache-reload overhead when the task resumes. 
The extent of the cache state reduction and what state is 
lost can be difficult to determine. This is affected by fac- 
tors such as point of preemption occurrence, preemption 
frequency, and task sequencing. These factors are often 
loosely defined and vary from one execution of a task to 
the next. The state loss that occurs is actually a replace- 
ment of the preempted task’s cached working-set by inter- 
vening tasks. The traditional cache is one that is a shared 
resource and one in which the currently executing task has 
free range over the use of the cache lines. The following 
scheme was devised with the above ideas in mind. 

The technique that is proposed limits preemptions to 
prespecified points within a task’s execution. Firstly, this 
allows for more accurate worst-case calculations of the 
cost of preemptions since the possible points of preemp- 
tions are well defined. Secondly it allows for the reduction 
of preemption costs through appropriate preemption point 
selections. The second point clearly benefits any system 
not just one requiring guarantees on WCETs. 

2.1: Technique basis 

The basis of our technique lies in  calculating the cost of 
a preemption. When a task is preempted there is the cost 
of context switching as well as the additional cost of 
restoring to the cache any active task state that has been 
lost when the task resumes. It is this additional cost that is 
the focus of our scheme. The context switching time is 
often a direct function of the degree of processor state that 
is saved and restored. 

At the time a task is preempted, there exists some por- 
tion of the task’s cached state that would have been 
accessed in the future prior to replacement by a cache 
miss. The cache lines that fit this description will be 
referred to as live or active cache lines and those that don’t 
as dead or non-active cache lines. The definitions for these 
terms are as follows: 

Definition 1 : A Live or Active Cache Line refers to one 
that contains a block of data that will be referenced in the 
future prior to its replacement. In other words, it is a cache 
line in which the next reference is a hit had the task been 
allowed to run to completion. 

Definition 2: A Dead or Non-Active Cache Line refers 
to one that contains a block of data that will be replaced 
prior to any future reference or that will not be referenced 
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during the remainder of a task’s execution. In other words, 
it is a cache line in which the next reference is a miss or 
for which there are no future references had the task been 
permitted to run to completion. 

If the active cache lines are replaced due to the execu- 
tion of other tasks, the data they contain must be fetched 
from main memory when referenced by the resuming task. 
This adds to the execution time of the task over what 
would have been necessary had the task not been pre- 
empted. This added execution time is equal to the actual 
number of active cache lines replaced times the cache 
miss penalty (ie. the additional time necessary to fetch the 
data from main memory). Since the determination of the 
number of active cache lines is a much more tractable 
problem than the determination of the number of active 
cache lines replaced, the remainder of this paper will use 
an upper bound on the cache reload overhead equal to the 
number of active cache lines times the cache miss penalty. 
How the number of active cache lines might be calculated 
or estimated is described in Section 2.2. 

Once the number of active cache lines are determined 
at each instant within a task’s execution, the points of pre- 
emption can be chosen to decrease preemption costs. 
These points will be referred to as preferred preemption 
points and are defined as follows and illustrated in 
Figure 1. 

Dejnition 3:  A Preferred Preemption Point for a given 
interval of task execution t i  to t j  is the instant within that 
interval having the minimum number of live cache lines 
for the interval. 

Only one preemption point is needed per task switching 
if it is known when in each task’s execution a higher prior- 
ity task will be ready to run. On the other hand, preemp- 
tion points are necessary at frequent intervals and possibly 

:,‘Time in which Preemption is Desired 
I Worst Case Preemption Point 
0 Prefered Preemption Point 3000 

.... ~ .... ..... 

Increasing Cycle Time 

throughout a task’s execution in systems that exhibit a 
high degree of variability and where higher priority tasks 
may need to gain control of the processor quickly. In 
either case, by knowing the maximum number of preemp- 
tions for each individual task and the maximum cost of 
those preemptions, a upper bound on the added time due 
to the effects of preemptions on caching can be deter- 
mined. This can be expressed as given below for the 
highly variable case. The equation does not account for 
other system effects of preemptions, such as a possible 
increase in paging and possible contention for system 
resources (eg. secondary storage devices). The overhead 
due to preferred preemptions above that without preemp- 
tions is then 

where 

EP = Time due to preferred preemption points above 

p u  = Number of live lines at preferred preemption 

n = Number of prespecified preferred preemption 

t ,  = Cache miss penalty 
t ,  = Context switch time 
P 

If the number of live lines per preemption point is 
known and the exact points of preemptions are known, 
E ,  becomes 

that necessary without preemptions 

point i 

points 

= Maximum number of preemptions 

Ep = Pt, + t ,  C pu 
R 

where 

R = Actual points at which preemptions occur 

2.2: Determining number of active cache lines 

In the previous section it was shown that the knowl- 
edge of the number of active cache lines during a task’s 
execution permits better worst-case execution calcula- 
tions. To make use of this, however, there must be some 
method of determining or predicting the number of active 
cache lines. This section presents a possible method of 
addressing this issue. The method assumes a data cache 
but can be similarly performed for a instruction cache. Figure 1 : Preferred preemption points 

Since the active cache line behavior is linked to the 
activity of program variables, it is natural to look here for 
a solution. As a starting point it will be assumed that the 
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task control flow paths are available in order of decreasing 
execution time for a non-preempting system with cache 
memory. From here the activity of the program variables 
are determined and correlated or translated to active cache 
lines. To determine this activity, the life times of the pro- 
gram variables need to be ascertained. This is similar to 
performing live variable analysis for register allocation 
but here cache lines are the resource allocated. Dynami- 
cally addressed variables may require profiling or pro- 
grammer assistance to determine their life times. The life 
times of a variable are the times for which the variable is 
resident and active within the cache. For non-fully asso- 
ciative caches the secondary effects of mapping conflicts 
may need to be considered but some preliminary simula- 
tion results show that this effect should be small. The 
analysis of variable activity and their mapping to cache 
lines is performed on a per control path basis. The end 
result is the cache line activity along each path. 

The above analysis is first applied to the worst-case 
execution path and the preferred preemption points are 
determined along this path based on cache line activity. 
The WCET with preferred preemption points is then cal- 
culated. The next worst-case execution path is then exam- 
ined. At this point to reduce calculation costs, the cost due 
to all preemptions along this new path is first calculated 
using a cache line activity equal to the number of cache 
lines. If the execution time with this upper bound on pre- 
emption costs does not exceed the first worst-case execu- 
tion path with preferred preemption points, further analy- 
sis of this path and others are unnecessary. If it does, then 
the same analysis is necessary on this path as on the 
worst-case execution path. If this path then exceeds the 
worst-case execution path, it becomes the case of compar- 
ison for the remaining paths. The analysis then proceeds 
to the next worst-case execution path and the above steps 
are repeated comparing this path to the worst-case execu- 
tion path of comparison. It is likely that since execution 
paths share segments of code, portions of the analysis 
done for one path can be shared with that of other paths 
having overlapping segments. This leads to further reduc- 
tion in calculation costs. To reduce the memory cost nec- 
essary for such compilations, it may be possible to use a 
smaller cache for the actual calculations and scale the 
results. 

The steps necessary in determining the WCETs so that 
they account for the effects of caching are best incorpo- 
rated into the compiler. This enables them to be transpar- 
ent to the user. Further work is in progress in this area 
with respect to detail and implementation, but it is felt that 
a reasonable approach to the problem has been found. 

2.3: Preferred preemption point selection 

For best results preferred preemption points should be 
determined as indicated in the previous section. More 
relaxed techniques can be used to determine the selection 
of preferred preemption points for tasks where lower guar- 
antees on deadlines are allowed or where tighter upper 
bounds on WCETs are unnecessary. This also applies to 
task that can afford to have longer execution times. 

Perhaps one of the easiest techniques of selecting pre- 
emption points under these conditions is by the insertion 
of traps within the source code by the programer to check 
for ready to run tasks of higher priority. Since the pro- 
gramer will often have at least an intuitive feeling as to 
where in the code there are likely to be significant changes 
in the working set and consequently reductions in number 
of live caches lines, performance improvements will 
result. A slightly more complicated technique, along sim- 
ilar lines, is to select subroutine boundaries as the preemp- 
tion points. Often at such boundaries the working-set is 
noted to go through significant changes. With either 
method if tighter bounds on WCETs are desired, further 
analysis would be necessary to determine the cost of the 
preemption points chosen. The frequency of these points 
would also need to be checked to determine if they met 
the needs of the system. 

One technique, that provides perhaps the greatest per- 
formance improvements but which is probably the most 
computationally intensive, is to determine preferred pre- 
emption points for each control path through a task. This 
would be done almost identically to how preemption 
points were selected in the previous section, with the 
exception that no comparison of execution times would be 
necessary between paths unless tighter WCETs were 
desired. 

The technique chosen depends on the system require- 
ments. Take for instance a task which must use imprecise 
results because it can not meet its deadline but whose 
results are crucial to the system. Such a task would require 
a thorough analysis to find preferred preemption points 
along all program control flow paths. Systems are likely to 
use multiple techniques to obtain the greatest benefits. 

2.4: Scheduling with preemption points 

Once the preemption points are chosen the scheduling 
algorithm of choice must be adjusted to incorporate them. 
Task sets previously unschedulable may now through their 
reduced execution time meet the timing requirements. 
What follows is a modification to the rate monotone 
scheduling algorithm [9] that accounts for predetermined 
preemptions points. 
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The rate monotone scheduling algorithm has been Step 4: Schedule tasks using the rate monotone 
scheduling algorithm but allow preemptions 
only at prespecified preemption points with the 
time cost for such points accounted for. 

Step 1 can be determined using the work of Lehoczky, 

modified to first allow tasks to preempt each other only at 
prespecified preemption points and secondly to provide 
the maximum time distance between preemptions such 
that all tasks will still meet their deadlines. The steps to 
the algorithm are as follows: 

Step 1: 

Step 2: 

a: 

b: 

Step 3: 

Ensure the schedulability of tasks under the 
unmodified rate monotone scheduling algo- 
rithm without accounting for the cost of pre- 
emptions. 
Determine the maximum allowable preemption 
spacing for each task: 
Form groups of tasks consisting of each task 
and the tasks of higher priority. 
Beginning with the smallest group perform the 
following for each group. Apply the rate 
monotone schedule to the task group, but allow 
the lowest priority task to begin first at the crit- 
ical instant (ie. a point when all tasks are ready 
to run). Determine the maximum time this task 
may execute such that all higher priority tasks 
in the group meet their deadlines. Already 
determine maximum preemption intervals 
should be used to define the preemption points 
of the higher priority tasks. Preemptions are 
allowed only at these points for this step of the 
proceedure. 
Find preferred preemption points for each task 
such that their maximum allowable preemption 
interval is not exceeded. 

Sha, and Ding [lo] for task set schedulability under the 
rate monotonic scheduling algorithm. The justification for 
Step 2 is as follows. It is possible for a lower priority task 
to begin execution one time unit before its higher priority 
tasks become ready to run. The higher priority tasks 
would then need to wait until this lower priority task 
reached a preemption point before they could begin execu- 
tion. This preemption point must come in a sufficient 
amount of time such that all the higher priority tasks meet 
their deadlines. By allowing the lowest priority task to 
begin execution first when all higher priority tasks are 
ready to run, this situation is reproduced and the maxi- 
mum time of execution without preemption can be deter- 
mined. Step 2 was found to be very similar to work done 
in [ 111 for the schedulability of a task set using the rate- 
monotonic algorithm under the priority ceiling protocol. 
The blocking that occurs with preferred preemption points 
has a scheduling effect similar to the blocking that occurs 
with priority inheritance or semaphores. A theorem is 
provided in [ 111 for determining task schedulability under 
blocking. 

An illustrative example of the modified rate monotone 
algorithm given here is depicted in Figures 2 through 5. In 
Figure2, it is seen that all tasks within the task set meet 
their deadlines under the unmodified rate monotone 
scheduling algorithm. The execution times given are 

Ti = Task Period 
Ci = Execution Time 
Di = Task Deadline = Ti 

T1 = 8, C1 = 2 Tl>TZ>T3>T4 (Priority Ordering) 
T2 = 20. C2 = 9 
T3=60:C3= 12 
T4 = 120, C4 = 9 

Step 1: 

T' Pmnty 1 

T2 Prmntyz 

T3 Pnonty3 

T4 P " y 4  

8 16 20 40 60 80 100 120 

Figure 2: Unmodified rate monotone schedule w/o preemption costs 
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T1 = 8, C1 = 2 
T2 = 20, C2 = 9 

Tl>TZ>T3>T4 

Step 2b: G2 = {TI, T2) - 

PP2=6 PP2=7f 

Deadline missed 

PP2 = Maximum Preemption lntewal for Task T2 = 6 

Figure 3: Step 2 of modified rate monotone 
scheduling algorithm for task T2 

WCETs that account for caching but not for preemptions. 
This figure corresponds to Step 1. It can be seen that there 
are 15 preemptions and three remaining time units. The 
total cost of preemptions can not exceed three time units if 
the tasks are to meet their deadlines. By using preferred 
preemption points the chances of meeting the deadlines 
are increased. 

Step 2 results in the following groups Gl={Tl}, 
G2={ T1 ,T2), G3={ T1 ,T2,T3 }, G4={ Tl,T2,T3,T4}. The 
maximum preemption interval for task T1 is always equal 
to its execution time. Figures 3 and 4 show the determina- 
tion of the maximum preemption intervals for task T2 and 
T4 respectively. The maximum preemption interval for 
T3 can be done similarly. For task T2, it is seen from 
Figure 3 that if the preemption interval exceeds 6 time 
units, T1 misses its deadline. Therefore the maximum 
preemption interval for task T2 is 6. For task T4 in 
Figure 4, a preemption interval exceeding 5 time units 
causes T2 to miss its deadline. It should be noted that 
when T4 reaches one of its preemption points the ready to 
run task of highest priority above T4 replaces T4 as the 
executing process. This coincides with the unmodified 
rate monotone scheduling algorithm with the exception 
that tasks now preempt only at preemption points. In 
determining the maximum preemption intervals for lower 
priority tasks, the preemption points for higher priority 
tasks are set at a spacing equal to their respective maxi- 
mum preemption intervals. 

At this point the maximum preemption intervals have 
been determined for all four tasks and the preferred pre- 
emption points can be selected. For this illustration, the 
preferred preemption points will be set to the maximum 
preemption intervals. Task T1 is always non-preemptable. 
Task T2 has a preemption point at 6 time units into its exe- 
cution. Task T3 has preemption points at 5 and 10 time 

Step 2b: G4={11, T2, T3, T4) 

T1 Priority 1 

T2 Priority 2 

T3 PnOrifv 3 

pp4=5 8 16 20 40 60 

T1 = 8, C1 = 2 Tl>TZ>T3>T4 
T2=20 C2=9 PP2=6 T2 Priority 2 T3 = 60: C3= 12 PP3= 5 

T3 Priority 3 T4=120,C4=9 PP4=5 

T4 Pnority 4 

T1 Priority 1 

pp4=6 8 /y16  2q 
Deadline missed 

Maximum Preemption Interval for T4 = 5 

Figure 4: Step 2 of modified rate monotone 
scheduling algorithm for task T4 

units into its execution. Task T4 has a preemption point at 
5 units into its execution. Figure 5 shows the tasks as they 
would be scheduled under Step 4 with the exception that 
preemption overhead is not taken into consideration in this 
figure. It should be noted that in this case the number of 
preemptions has been reduced to 11. In addition, the pre- 
emption cost will be less than the original schedule under 
the unmodified algorithm due to the appropriate selection 
of preemption points that reduce preemption costs. 

Further work is in progress to refine this modification 
to the rate monotone scheduling algorithm. Other 
scheduling algorithms are also under examination to deter- 
mine the modifications necessary for them. 

3: Experimental evaluation 

In order to verify that preferred preemption points exist 
and to confirm the effects that these preferred preemption 
points have on program execution and cache miss rate, a 
cache simulation was run with five programs from the 
PERFECT Benchmark Suite [12]. Program analysis as 
discussed in Sections 2.2 and 2.3 could have been used 
instead had it been in place at that time. The trace driven 
cache simulation is also intended to provide a point of 
comparison for the results of program analysis in future 
work. The simulation model was written in C++. The pro- 
cessor was modeled to stall on cache misses. Each miss 
resulted in a 10-cycle latency for accessing data from 
main memory. Cache hits had a 1-cycle cache access 
latency. A cache write-allocate scheme was used for 
accesses. The cache write-back scheme was setup such 
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T1=8,C1=2 Tl>T2> J32T4 (Priority Ordering) 
T2 = 20, C2 = 9 
T3 = 60, C3 = 12 
T4=  120, C4= 9 

Step 4: (w/o Preemption Costs) 

T1 Priority I 

T2 Priority2 

T3 priority3 

T4 priority4 

a 16 20 40 60 80 100 120 

Figure 5: Modified rate monotone schedule w/o preemption costs 

that it did not affect the execution time. The traces used in 
the simulation contained data references only and thus the 
simulation was restricted to that of a data cache. The 
cache size was set to 128K Bytes with 32-byte cache lines 
and direct mapping. 

First simulations were done without preemptions to 
view the live cache line behavior of the task. Whether a 
cache line was active or not at any particular instant in 
time was not known until its replacement. For each cache 
line, a record was maintained of the time of the last load to 
the line and the last access. At the time of a cache line 
replacement, a period of activity for the cache line was 
recorded. The line was considered non-active or dead 
from the point of last access up until the point at which a 
new block was loaded. Therefore, in order to know the 
live line count during each cycle of execution, it was nec- 
essary to run the simulation through to completion. It was 
found, however, that a individual period of cache line 
activity was almost if not always determined within 
200,000 cycles or less. This provided the plots of live 
cache lines versus cycles given in the next section. 

Separate simulations were used to set the actual pre- 
emption points and observe the performance improve- 
ments. These simulations were run to determine the 
effects of preempting at preferred preemption points ver- 
sus immediate and worst-case preemption points. The 
cache was purged at each preemption point chosen during 
the simulation. For a large task set, this is a reasonable 
approach since most of the cache lines have been replaced 
by intervening tasks. For each simulation run, a set inter- 
val was chosen to preempt the task. The other simulation 
variable was the amount of time allowed before the run- 
ning task must relinquish the processor at the end of its 
interval of execution. It is during this time after the end of 
the interval that the preferred and worst-case preemption 

points are sought. Live cache lines are calculated for this 
period requiring the simulation to run until the end of the 
next interval where the cache is purged. At this point the 
active times of all cache lines within the search period can 
be determined. Purging the cache at the end of the next 
interval is reasonable because it is to be purged soon after 
that interval completes anyway. At this point the simula- 
tion is returned to the state at the end of the last interval, 
and simulation resumes, preempting the running task at 
the determined point. For each task preemption interval 
and search length, preferred preemption points were cho- 
sen and worst-case preemption points were chosen. In 
addition for each preemption interval, preemptions were 
made immediately at interval boundaries. This method of 
determining preferred preemption points was used purely 
as a way of determining the performance improvements 
that could be seen with our technique. Additionally, the 
execution paths taken were not necessarily worst-case but 
it is believed that this is unnecessary for seeing the perfor- 
mance gains achievable. 

The PERFECT Benchmarks used were ADM, BDNA, 
TRACK, ARC2D, and DYFESM. These memory traces 
were obtained using an Alliant simulator on a Alliant 
FW80 [ 131. The traces from ADM, BDNA and TRACK 
were approximately 110 million continuous data refer- 
ences. ARC2D and DYFESM traces were composed of 
40 sample traces each. These samples comprised a total of 
approximately 9 million data references for each applica- 
tion. In the cache simulations with ARC2D and 
DYFESM, the cache was flushed before the start of each 
sample. The Alliant simulator was set to emulate execu- 
tion on an Alliant FW8 single processor. TRACK is prob- 
ably most representative as an application of a real-time 
process. TRACK contains 33770 lines of signal process- 
ing code that is used for tracking objects. ADM is an 
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application for air pollution analysis and contains 6142 
lines of code. BDNA is a nucleic acid simulation with 
3962 lines of code. ARC2D is computational fluid dynam- 
ics with 3605 lines of code and DYFESM is structural 
dynamics with 7599 lines of code. $ 3000 

5 2500 
c 8 2000 

1500 

1000 

500 

4: Results 

- 

- 

- 

- 

- 

- 

The simulation runs of ADM, BDNA, and TRACK 
without preemptions are shown in Figures4, 5, and 6. 
The horizontal axis is the time line in millions of proces- 
sor cycles. As can be seen from these plots, TRACK 
exhibits less frequent live cache line variance than does 
ADM or BDNA. This suggests that the effects of pre- 
ferred preemption points will have less of a impact on the 
performance of TRACK than ADM and BDNA. This is 
supported by the results of simulations with preemptions 
to be shown below. 

ADM, BDNA, and TRACK were run with preemption 
frequencies of 1/2500, 1/5000, and 1/10000 (in l/pro- 
cessor-cycles). It was with this frequency that the actual 
preemption points where sought. Each search extended for 
a period of program execution equal to lo%, 50%, and 
90% of the preemption interval. The preferred and worst- 
case preemption points were chosen from this search 
period. A worst-case preemption point exhibits the largest 
number of live cache lines within the search period. Sim- 
ulations were also run with preemptions occurring imme- 
diately at the start of the search period. These preemptions 
are referred to as immediate preemptions. Table 1 shows 
percent decrease in execution time over worst case and 

TRACK 

Table 1: Percent reduction in execution time via 
preferred preemption points relative to immedi- 
ate (Ime) & worst-case (Max) execution 

I 

Ime 0.5% 1.7% 2.6%0.4% 1 . 1 %  1.9%10.3% 1.0% 1.7% 
Max 0.9% 2.7% 3.8% 0.7% 2.0% 2.9%10.5% 1.6% 2.5% 
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Figure 4: Simulation of ADM w/o preemptions 
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Figure 5: Simulation of BDNA w/o preemptions 
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Figure 6: Simulation of TRACK w/o preemptions 
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immediate preemption achieved via preferred preemption 
points. The miss ratio for worst-case preemption points, 
immediate preemption, and preferred preemption points 
are given in Table 2. Figure 7 presents the percent reduc- 
tion in execution time for preferred preemption points rel- 
ative to using worst-case preemptions points when a 
search length of 50% of the preemption interval is used. It 
also gives performance numbers for ARC2D and 
DYFESM not shown in Table 1 .  

These results show greater performance gains with pre- 
ferred preemption points at higher preemption frequen- 
cies. This is expected due to the larger accumulated cost 
of poor preemption point selection that occurs at higher 
preemption frequencies. This, however, does not always 
hold true. For tasks that have a greater stability in their 
live cache line activity with occasional fluctuations, the 
performance improvement will be seen to be greater at the 
frequency of these fluctuations. It should also be noted 
that systems with greater cache miss penalties will enjoy 
even greater performance benefits from preferred preemp- 
tion point usage. No matter what the performance 
improvement, however, predetermined preferred preemp- 
tions points provide a means of calculating tighter bounds 
on WCETs thus allowing for greater system throughput. It 
should also be noted here that even without predetermined 
preemption points, having the cost of the worst-case pre- 
emption point for the entire program execution permits 
tighter execution time bounds when there exists a bound 
on the number of preemptions. 

TRACK 

Table 2: Miss ratio 

lmel .I1 .09 .07 
PPPl .I1 I .IO I .IO I .09 I .08 I .08 I .07 1.07 I .06 
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1 e-05 0.0001 
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* % Improvement in Execution Time with Preferred Pre- 
emption Points over Worst-case Preemption Points 

Figure 7: Comparison at search length of 50% 
preemption period 

5: Conclusion and future work 

Caches are instrumental in providing high system per- 
formance. At the same time they add greatly to the diffi- 
culty of obtaining tight bounds on worst-case execution 
times. WCETs are essential in real-time systems in order 
to guarantee that system timing constraints are met. Past 
real-time systems designs have not included the effects of 
caching in their timing calculations. This circumvents the 
added difficulty of calculating WCETs due to caching but 
unfortunately leads to under utilization of processor power 
and memory hierarchy. Since real-time systems are often 
designed for time critical applications requiring quick 
response times, it is important that caches be considered in 
WCETs so that these times can be reduced. 

The unpredictable nature of cache memory accesses 
lies in the variability of the cache state in a multi-tasking 
preemptable environment. Whether a cache access is a hit 
or a miss at a particular point of program execution can 
change as a result of task sequencing, preemption fre- 
quency, and point of preemption occurrence. A task’s 
working set can be partially or even completely replaced 
when preempted by the time it resumes execution, thus 
requiring it to restore part or all of the working set from 
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main memory. It is this cache-reload time that is difficult 
to determine. The significance of the changes in cache 
state due to preemptions can be minimized through the use 
preferred preemption points which we have outlined in 
this paper. Preferred preemption points are those points 
within a task’s execution that exhibit large variances in the 
working set. Since the working set is in the process of 
changing at such times, the cached working set need not 
be restored in its entirety when the task resumes. By 
determining an upper bound on the number of active 
cache lines at these chosen preemption points, we can pre- 
dict the time cost of these preemptions. 

The use of preferred preemption points, in comparison 
to worst-case preemptions points, resulted in improve- 
ments in execution time as high as 12%. It was also found, 
however, that with preemption frequencies lower than 
1/100,000 processor-cycles, the percent improvement with 
preferred preemption points over worst-case preemption 
points is minimal. Even so, WCETs with preemptions can 
still be predicted taking into account the cache memory, 
thus reducing the WCET used for a task. 

Currently the direction of this work focuses on devel- 
oping methods of selecting preferred preemptions points 
both dynamically and statically, as well as looking at 
adjusting various scheduling algorithms to account for this 
technique. There are also plans to examine this technique 
more closely with regards to instruction caching. As the 
work proceeds other approaches to this problem will be 
sought. These approaches may make use of multi-level 
caches, code reorganization, and other preexisting archi- 
tecture performance improvement techniques. The objec- 
tive is to make a more predictable system while maintain- 
ing the same performance level or even achieving greater 
performance. 
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Abstract 

Single chip VLSI processors use on-chip cache 
memories to satis@ the memory bandwidth demands o f  CPU. 
By tolerating cache defects without a noticeable performance 
degradation, the yield o f  VLSI processors can be enhanced 
considerably. 

In this paper we investigate how much o f  the lost hit 
ratio due to faulty block disabling in direct-mapped caches 
can be recovered by the incoporation o f  a very small filly 
associative spare cache. The recovery percentage that can be 
achieved as a function o f  the p r i m q  cache’s parameters 
(cache size, block size), the number o f  faulty blocks and the 
size of  the spare cache is derived by trace driven simulation. 
The results show that when the number o f  the faulty blocks is 
small the use o f  a spare cache with only one block offers a hit 
ratio recovery of  more than 70%, which increases further with 
cache size. A spare cache with two blocks is justified only in 
the case o f  a large number o f  faulty blocks. 

1 .  Introduction 

Single-chip VLSI processors use on-chip cache memory 
to provide adequate memory bandwidth and reduced memory 
latency for the CPU [4 - IO]. The area devoted to some on- 
chip caches is already a large fraction of the chip area and is 
expected to be larger in the near future. For example, in the 
MIPS-X processor [6] more than half of the chip area is 
devoted to an on-chip instruction cache. 

Since in the near future a large fraction of the chip area 
will be devoted to on-chip caches, we expect that in a large 
fraction of VLSI processor chips the manufacturing defects 
will be present in the cache memory portion of the chip. 
Application of yield improvement models [ 1 I] suggests that, 
by tolerating cache defects without a substantial performance 

degradation the yield of VLSI processors can be enhanced 
considerably. 

A technique for tolerating defects is the use of 
redundancy [25]. The use of redundancy to tolerate defects in 
cache memories was discussed in [I ,  21. Redundancy can 
have the form of spare cache blocks where if a block is 
defective it can, after the production testing, be switched out 
and substituted by a spare block using electrical or laser fuses. 
Instead of spare cache blocks, spare word lines and/or bit 
lines may exist that are selected instead of faulty ones. The 
overhead of these techniques includes the chip area for the 
spare blocks or word linedbit lines and logic needed to 
implement the reconfiguration. Another form of redundancy 
is the use of extra bits per word to store an error correcting 
code [26]. Sohi [I]  investigated the application of a Single 
Error Correcting and Double Error Detecting (SEC-DED) 
Hamming code in an on-chip cache memory and found out 
that it degrades the overall memory access time significantly. 
Therefore the classical application of a SEC-DED code in the 
on-chip cache for yield enhancement does not seem to be an 
attractive option for high-performance VLSI processors. In 
[27] it was shown that the defects in the tag store of a cache 
memory may cause significantly more serious consequences 
on the integrity and performance of the system than similar 
defects in the data store of the cache. To this reason a new 
way of the SEC-DED code exploitation well suited to cache 
tag memories was proposed. During fault free operation this 
technique does not add any delay on the critical path of the 
cache, while in the case of a single error the delay is so small 
that the cache access time is increased by at most one CPU 
cycle. Unfortunately, this technique is effective only in the 
case that the defects cause single errors per word as for 
example in the case of a bit line defect. 

Another technique to tolerate defects in cache memories 
is the disabling of the faulty cache blocks that was 
investigated in [ I ,  21. It has been shown in [ l ,  21 that the 
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