
Using Exact Feasibility Tests for Allocating Real-Time Tasks in Multiprocessor
Systems�

Sergio Sáez, Joan Vila and Alfons Crespo
Universidad Polit´ecnica de Valencia, DISCA
Camino de Vera 14, 46071 Valencia, Spain

Phone: +34 6 387 9577 Fax: +34 6 387 7579
fssaez,jvila,alfons g@disca.upv.es

Abstract

This paper introduces improvements in partitioning
schemes for multiprocessor real-time systems which allow
higher processor utilization and enhanced schedulability by
using exact feasibility tests to evaluate the schedulability
limit of a processor. The paper analyzes how to combine
these tests with existing bin-packing algorithms for proces-
sor allocation and provides new variants which are exhaus-
tively evaluated using two assumptions: variable and fixed
number of processors. The problem of evaluating this al-
gorithms is complex, since metrics are usually based on
comparing the performance of a given algorithm to an op-
timal one, but determining optimals is often NP-hard on
multiprocessors. This problem has been overcome by defin-
ing lower or upper bounds on the performance of an opti-
mal algorithm and then defining metrics with respect this
bounds. The evaluation has shown that the algorithms ex-
hibit extremely good behaviors and they can be considered
very close to the maximum achievable utilization. It is also
shown that dynamic priority policies produces significantly
better results than fixed priorities policies when task sets
require high processor utilizations.

1. Introduction

Real-time systems are one of the fields of comput-
ing where major benefits are expected from the increasing
availability of multiprocessor technology. However, taking
full advantage of multiprocessor’s capabilities for real-time
computing has shown to be difficult. This is mainly due to
the fact that scheduling algorithms for multiprocessors are
significantly more complex than for uniprocessors. The-

�This work was supported by the Spanish Government Research Office
(CICYT) under grant TAP97-1164-C03-03 and by Generalitat Valenciana
under grant GV-C-CN-05-058-96

oretical results in this area show that almost all real-time
multiprocessing scheduling is NP-hard [5, 9]. For that rea-
son, looking for optimals to solve the general case makes no
sense and research rather focuses on solving some restricted
cases or finding a good trade-off between performance and
computational cost. In the last case, performance metrics
and evaluation of algorithms play an important role.

There are two main approaches for scheduling real-time
tasks on a multiprocessor system: global scheduling and
partitioning of tasks. In theglobalscheme there is only one
(multiprocessor) scheduler for all processors which assigns
each occurrence of a task to a (possibly different) processor
for execution. Some multiprocessor schedulers even allow
tasks to be preempted and moved to a different processor
before they complete. This is calledmigrationand it is as-
sumed to have very low cost on shared memory multipro-
cessors. In contrast, in thepartitioning scheme tasks are
pre-allocated to processors by atask assignment algorithm
and all occurrences of a task are executed on the same pro-
cessor. In this approach, every processor has its ownlo-
cal schedulerthat determines the schedule for each proces-
sor using a monoprocessor scheduling policy. This paper
concentrates on the analysis of heuristics for partitioning
schemes. A similar analysis of global schemes has been
previously presented in [8].

The goal of a partitioning scheme is to make an assign-
ment of tasks to processors such that all tasks meet their
deadlines. The partitioning scheme is mainly used with
static workloads, that is, when the system consists of a set
of tasks which are known in advance. That makes possible
to make task assignment off-line. This approach has sev-
eral advantages over the global scheme. On one hand, it has
less run-time overhead since allocation is only done once
per task (not on each occurrence of a task) and it can be
made off-line. On the other hand, it is less complex since it
is only required to provide a partitioning of the tasks; not a
complete schedule.

In partitioning schemes there is a clear distinction be-
tween the task assignment algorithmand the run-time
scheduling algorithm. However, both algorithms are not
completely independent, since the limit on the number of
tasks that can be assigned to a given processor (processor
utilization) is determined by the scheduling algorithm. Ev-
ery time a new task has to be assigned to a processor a
schedulability testhas to be used to check if its timing re-
quirements can be guaranteed on that processor. This test
is completely dependent of the scheduling algorithm that
is being used. Examples of such tests are the utilization
test [6] and the completion time test [4] for fixed priority
scheduling algorithms, and the test by Baruahet al. [1] or
its optimization by Ripollet al. [7] for dynamic priority
scheduling algorithms.

The algorithms for task assignment considered in this
paper are variants of well-known heuristics for solving the
bin-packing problem. In this problem, each bin has a max-
imum capacity and boxes placed in the bins require some
of this capacity. When the problem is translated into real-
time scheduling terms, real-time tasks are regarded as a set
of boxes while processors as a set of bins. The goal is either
maximizing the number of tasks which can be scheduled
with a given fixed number of processors, or minimizing the
number of processors required to schedule a given set of
tasks.

Much work on partitioning schemes deals with the prob-
lem of minimizing the number of processors to achieve a
feasible schedule for a given set of tasks. There are some
theoretical results [3, 2] that evaluate worst case bounds for
limNopt!1 N=Nopt whereNopt is the number of proces-
sors required by an optimal algorithm. However, these re-
sults are of limited value in real-time computing systems
since they are only available as asymptotic bounds with very
large number of processors (Nopt !1).

This paper addresses two different analysis of bin-
packing heuristics: fixed and variable number of proces-
sors. In the first analysis the main goal is to estimate the
utilization bounds that can be achieved with different bin-
packing algorithms using a fixed number of processors. In
the second analysis the goal is to compare the number of
processors required to schedule a task set, but considering
a finite number of processors instead of asymptotic limits.
That implies avoiding the concept ofNopt and defining new
metrics to evaluate the algorithms.

Two common assumptions in previous analysis were the
use of the Rate Monotonic (RM) algorithm as the underly-
ing scheduling policy [2] and the test by Liu and Layland [6]
(or some optimizations) to evaluate the maximum workload
that can be assigned to each processor. These assumptions
imply underestimating the schedulability limit of a proces-
sor because the above test is only a sufficient condition and
leaves some unused processor time.

This paper extends previous results by considering dead-
line algorithms in their static and dynamic versions:Dead-
line Monotonic(DM) and theEarliest Deadline First(EDF)
and tighter schedulability conditions to evaluate the schedu-
lability limit of a processor. Results show that the use of
these assumptions considerably improves the performance
of the bin-packing algorithms and the overall system.

The remainder of this paper is structured as follows. Sec-
tion 2 shows how to extend bin-packing algorithms for par-
titioning schemes using DM and EDF algorithms and exact
feasibility test. Section 3 introduces new metrics for eval-
uating multiprocessor scheduling algorithms based on esti-
mating bounds on optimals rather than in finding optimals
which are often NP-hard. Section 4 presents several evalua-
tions of bin-packing algorithms assuming variable and fixed
number of processors. It also provides estimations on lower
bounds on the minimum number of processors required to
schedule a given set of tasks.

2. Using exact feasibility tests for allocating
tasks to processors

The first goal we address in this paper is to maximize the
number of tasks which can be scheduled with a fixed num-
ber of processors using different bin-packing algorithms for
task assignment and deadline algorithms as scheduling pol-
icy. As it has been introduced above, the bin-packing prob-
lem is defined as a set of bins (processors) with a maximum
capacity and a set of boxes (tasks) with some capacity re-
quirements, here referred asvolume, that must be fit into
the bins.

If we denote a task setT as a set of tuples(Ci; Pi;Di),
whereCi is the worst case execution time of taski, andPi
is its period andDi is its deadline, thevolumeof a task can
be defined as its utilization factor, i.e.,vi = Ci=Pi.

Previous works in partitioning schemes addressed the
bin-packing problem assuming sets of periodic tasks with
deadlines equal to periods and the Rate Monotonic algo-
rithm as the scheduling policy. The test used to check if
there is enough room for a new task on a given processor
is the sufficient condition by Liu and Layland that could be
regarded as avolume test, since it only places requirements
on the volume (utilization) of a box (task) to fit it into a bin
(processor).

The main goal of this section is how to relax theDi = Pi
restriction. The proposed solution is based on requiring an
additional requirement to the volume test (utilization test).
This requirement makes the bin-packing problem consider-
ably harder and yields a new class of algorithms called re-
stricted bin-packing algorithms. The additional requirement
can be introduced as ashape test: a box is not only required
to have a smaller volume than the available one, but also
to fit in a hole of a given geometry. The shape of a box is

not as easy to define as its volume and requires complex al-
gorithms to determine the shape compatibility of a box and
a hole. In the real-time scheduling problem checking the
compatibility of a task to a hole implies using schedulabil-
ity tests which depend on the scheduling policy used at each
processor. The tests used in this paper are exact feasibility
tests: thecompletion time test[4] for fixed priority schedul-
ing algorithms, andinitial critical instant test (ICI test) [7]
for dynamic priority scheduling algorithms.

Summarizing, when the task assignment algorithm tries
to fit a new task into a processor, it begins by checking if the
available processor utilization is greater than the task uti-
lization factor (volume test). If this is true, then it executes
the exact feasibility test on the set of previously allocated
tasks plus the new one (shape test). If this also holds, then
the task can be allocated to that processor. Due to the com-
plexity of these tests, the new approach to solve the schedul-
ing problem is only suitable for small scale multiprocessor
systems. However, this is not great restriction, since real-
time control systems use this kind of platforms.

An additional problem introduced by the shape require-
ment is the problem of ordering the boxes before the allo-
cation process begins. One of the most useful orders is by
decreasing capacity requirements. However, this concept
is not well defined when shapes are considered: how can
it be stated that a box has less capacity requirements than
another, if they are different shapes?. A possible criteria
proposed in this paper is to consider ashape factordefined
asDi=Pi. This factor indicates how restrictive a task shape
is, since the lower the task shape factor is, the harder it is
to schedule. Previous works on the analysis of partition-
ing schemes assume all shape factors are equal to1. Some
other criteria to compare this capacity are proposed below,
and later validated through extensive simulations. A com-
parison among all possible algorithms is performed. Also
several new metrics are defined in order to evaluate these
new algorithms.

3. Metrics and bounds for multiprocessor
scheduling algorithms

The problem of evaluating multiprocessor scheduling al-
gorithms is complex, since metrics are usually based on
comparing the performance of a given algorithm to an opti-
mal one, but determining optimals is often NP-hard on mul-
tiprocessors. This paper overcomes this problem by defin-
ing lower bounds or upper bounds on the performance of
an optimal algorithm and then defining metrics with respect
this bounds. This section starts revising the concept of op-
timal multiprocessor scheduling algorithm and then it pro-
poses a definition of optimal multiprocessor which leads to
the definitions of two bounds: a lower bound for the min-
imum number of processors required to scheduled a given

task set and an upper bound on the utilization which can be
obtained with a fixed number of processors.

Given a set of tasks, a schedule is said to befeasibleif the
execution of each task can be completed before its deadline
(using some algorithm). If such a schedule exists, the set of
tasks is said to befeasible. A feasible schedule is defined
to beminimalif there is no feasible schedule utilizing fewer
processors. According to this, anoptimal multiprocessor
scheduling algorithmis an algorithm that for any set of tasks
finds a minimal schedule.

An interesting and attractive metric related with the
above concept of optimal is the ratioN=Nopt, whereN is
the number of processors required to schedule a task set by
a given algorithm, andNopt is the number of processors
required by an optimal task assignment algorithm. Unfor-
tunately, since finding an optimal task assignment with a
partitioning scheme is NP-hard [5], so is findingNopt.

The approach in this paper, is to develop a set of practi-
cal lower bounds that can act as a good approximation for
Nopt, but unlike this, they can be easily calculated and serve
to define new metrics for evaluations. In this sense, two new
bounds are introduced:Nu, defined as the lower bound as
required by the total utilization of a task set, andNOM , de-
fined as the number of processors needed by an “optimal
multiprocessor”. It will be shown that:

Nu � NOM � Nopt

The number of processors required by the total utiliza-
tion of a task set, denoted asNu, can be calculated as:

Nu =

&X
Ti2T

Ci
Pi

'

To show thatNu is a lower bound forNopt is straight-
forward from its definition. Moreover, it will be shown that
it is not too accurate with some kind of load templates that
are characterized in this paper. To introduce a more accurate
lower bound, the concept of optimal multiprocessor will be
introduced next.

An optimal multiprocessor(withN processors), denoted
asOMN , is defined as a monoprocessor that isN -times
faster than one of the processors of the corresponding ho-
mogeneous multiprocessor. This means that the computa-
tions executed by the optimal multiprocessor in a unit of
time, requireN units of time in any of the processors of the
multiprocessor.

The optimal multiprocessor has an interesting property:
if a task set is schedulable on a multiprocessor, it is also
schedulable on the corresponding optimal multiprocessor.
The converse, as expected, does not hold. This property can
be easily proved by showing that theOMN can emulate any
feasible schedule of aN -processor, i.e., any feasible sched-
ule of theN -processor can be mapped into a corresponding

feasible schedule on theOMN . A technique for making
this mapping simply consists of dividing a time unitq of the
multiprocessor inN time unitsq1; q2; � � � ; qN of theOMN

and scheduling inqi the same load that processorPi of the
N -processor. This is obviously possible from the definition
of OMN . An example of this technique is depicted in fig-
ure 1. To prove that the converse is not true consider a task
set with a unique task withCi = 1 andDi = 1, where this
values are expressed in time units of theOMN . This task
would require a computing time ofN on the correspond-
ingN -processor that would violate the deadline constraint,
since they cannot be executed in parallel.

0 5

A

B

C

D

C

D

C

D

A

B

C

D

C

D

A

B

C

D

C

D

A

B

C

D

C

D

A

B

C

D

C

D

C

D

A

B

C

D

10

BBBB

A

B B B B

A

DD DDDD

C C C

D D D

5

A

B

A

B

A

B

A

B

A

B

A

B

100

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

MULTIPROCESSOR
OPTIMAL

PROCESSOR 2

PROCESSOR 1

Figure 1. OM2 optimality example

Using this definition of an optimal multiprocessor, a new
lower boundNOM is presented. In order to calculateNOM ,
it is needed a feasibility test that specifies when a feasible
schedule of a set of tasksT exists overOMN . SinceOM
is simply a monoprocessor, well-known feasibility tests can
be used.

As it has been showed above, any schedule performed
over a real multiprocessor has a direct map overOM . So, if
a feasibility test shows that no feasible schedule forT exists
overOMN , then no scheduler algorithm can find a feasible
schedule for a realN -processor. According to this, ifNOM

is defined as the minimumN for which a feasibility test
reportsT as schedulable overOMN , thenNOM is a lower
bound on the number of processors needed by an optimal
scheduler, i.e., it is a lower bound ofNopt.

Next we introduce an upper bound on the utilization
which can be obtained with a fixed number of processors
N . In order to introduce this bound, consider a particular
task setT where tasks are totally ordered in a sequence ac-
cording to some arbitrary criteria. LetTA be a prefix of
T such that it consists of the initial subsequence of tasks
of T that can be successfully scheduled by some algorithm
A. Let Topt the subsequence of tasks which can been suc-
cessfully scheduled by an optimal scheduler. It holds that

TA � Topt, for any algorithmA. This is easy to prove by
self-contradiction. Assume that some algorithmAwould be
able to schedule more thanjToptj tasks usingN processors.
That would mean that the optimal scheduler would need
more thanN processors to schedule theTA set; and this
is a contradiction with the definition of optimal scheduler,
sinceNopt is the minimum number of processors where a
feasible task set can be scheduled. Once this is proved,Uopt
for N processors and a given task setT can be defined as:

UN
opt(T) =

P
Ti2Topt

Ci

Pi

N

that is, the average processor utilization obtained by an op-
timal scheduled for theTopt task set. This new metric is
an upper bound ofUN

A (T) for any generic algorithmA.
In other words,UN

opt(T) is an upper bound on the perfor-
mance of any assignment algorithm, and therefore, it can
be used to estimate how good an assignment algorithm is
(e.g. using a metric such asUN

A (T)=UN
opt(T)). Obviously,

UN
opt(T) is as harder to obtain asNopt. For this reason, the

upper boundUN
OM (T); based on the above definition of op-

timal multiprocessor, will be used instead in order to define
useful metrics. The relation between bounds for processor
utilization is:

UN
OM (T) � UN

opt(T) � UN
A (T)

The above metricsNOM andUN
OM (T) will be used in

the next section to evaluate the restricted bin-packing algo-
rithms proposed in this paper.

4. Experimental evaluation

This section presents several experimental results about
partitioning schemes for multiprocessor scheduling. The
first experiment provides estimations on lower bounds (Nu

andNOM) on the minimum number of processors required
to schedule a given set of tasks. Next, it introduces an eval-
uation in order to decide which is the combination of bin-
packing algorithms and ordering criteria which provides
higher processor utilizations. Then, it evaluates the good-
ness of the best bin-packing algorithms comparing the num-
ber of processor they require to schedule a given set of tasks
versusNOM . Finally, it presents an experiment with a fixed
number of processor to evaluate the probability of getting a
processor utilization of 90% using the best bin-packing al-
gorithms, and comparing their results with an optimal mul-
tiprocessor OM. Previously, the next subsection introduces
how to characterize the workload for the experiments and
how to generate it.

4.1. Synthetic workload generation

The task model that is used in this paper describes a real-
time taskTi using the tuple(Ci; Di; Pi), as previously de-
scribed. In order to generate synthetic task sets to eval-
uate the performance of proposed algorithms, an equiva-
lent task description will be used. This new description
depicted in figure 2, defines a taskTi as the tuple(Ci;
�Di; �Pi), whereCi means the same as before, and for-
mer characteristics are calculated as:Di = Ci +�Di and
Pi = Ci +�Di +�Pi.

C

D

P

C D P

Figure 2. Real-time task alternative descrip-
tion models

This new task description model allows to generate syn-
thetic workloads using a simple algorithm that generates the
tasks according to the expressions:

� Ci = 1 + Unif(MaxC � 1)

� Di = Ci + Unif(MaxD)

� Pi = Di + Unif(MaxP)

whereMaxC, MaxD andMaxP are the maximum
values ofCi;�Diand�Pirespectively, andUnif(x) re-
turns an integer random number in the[0; x] interval fol-
lowing auniform distribution.

4.2. Lower bounds on the minimum number of pro-
cessors

The first experiment evaluate values ofNu andNOM as
a function ofMaxD andMaxP; and comparesNOM accu-
racy versusNu. Figure 3 shows the values ofNu andNOM

while 4 represents the ratioNOM=Nu. These pictures have
been obtained using task sets of 32 tasks, and the follow-
ing generation pattern:MaxC fixed to20 andMaxD and
maxP varying in the interval[10; 80].

The figures show thatNu is significantly lower than
NOM and theNOM=Nu ratio is higher with tasks whose
utilization factor is low (�P ") and when they have restric-
tive deadlines (�D #). This means that, in the above con-
ditions, the number of processors required by a real multi-
processor is significantly higher than the processor required
by an optimal multiprocessor or by the utilization.

Lower bounds (32 tasks)

Nom

10
20

30
40

50
60

70
80

20
30

40
50

60
70

80

4

8

12

16

20

MaxD
MaxP

Num Processors

Nu

Figure 3. Nu and NOM values

Lower bounds comparison

32 tasks

10
20

30
40

50
60

70
80

10
20

30
40

50
60

70
80

1.2

1.4

1.6

1.8

2

MaxD
MaxP

Nom/Nu

Figure 4. NOM=Nu ratio

4.3. Selection of the best bin-packing algorithm
for partitioning schemes

The aim of this experiment is to determine the best com-
bination of bin-packing algorithm and task ordering (order
in which tasks are processed). The evaluation process an-
alyzes the number of processors they require to schedule
a given set of tasks versusNOM . This task is not easy to
solve from the analytical point of view, so this section pro-
poses an exhaustive evaluation of all possible combinations
for two cases: static priorities and dynamic priorities.

The considered bin-packing algorithms are:first fit, next
fit, best fitand worst fit, that will referred as FF, NF, BF
and WF from now on. On the other hand, possible task
orderings are based on task characteristics. The consid-
ered ones are: deadline,Di, period,Pi, utilization factor,
UFi = Ci=Pi, weight factor,WFi = Ci=Di, shape fac-
tor, SFi = Di=Pi, and two combinations of these ones:
WSi = (CiPi)=D

2

i , andWUi = C2

i =(DiPi). The or-
derings defined by these factors can be considered as in-
creasing or decreasing, resulting in a total set of order-
ingsO = fID; IP; IUF; IWF; ISF; IWS; IWU; DD;
DP; DUF; DWF; DSF; DWS; DWUg, where the initial
stands forIncreasing orDecreasing order, and the rest spec-
ifies the ordering factor. A complete partitioning scheme
will be referred asPP-AA:OO, wherePP is the schedul-
ing policy,AA is the bin-packing algorithm andOO the se-
lected order fromO, e.g.,DM-FF:ID means thefirst fit bin-
packing algorithm, where the task set has been ordered by
increasing deadlines and the scheduling policy isdeadline
monotonic.

The set of bin-packing algorithms and considered order-
ings results in a 56 possible combinations for each schedul-
ing policy: DM and EDF. In order to evaluate all these
partitioning schemes, extensive simulations have been per-
formed, and their results are shown next.

Task generation algorithm and evaluation process
The task set used to evaluate the proposed algorithms

has been generated using the synthetic workload generation
process described above. The evaluation process is simple:

1. A set of generation parameters are established and the
task set emptied,

2. a new task is generated and added to the current task
set,

3. the algorithm to be evaluated tries to schedule the new
task set with the user defined restrictions (number of
processors, ...),

4. if the task set is successfully scheduled

then a new task is added and the process repeated
from point 2.

else the algorithm metrics are calculated, the task set
emptied, and another algorithm is evaluated us-
ing current generation parameters;

5. this process is repeated with all considered algorithms
for several hundred times using the same generation
parameters, but changing the random number genera-
tor seeds.

6. when all the experiments with a given generation pa-
rameters are done, these are changed until all previ-
ously set parameters are visited.

Using this simple method, the 112 proposed partitioning
schemes have been evaluated, fixingMaxC parameter to
20 and varying theMaxD andMaxP parameters in the
interval [10; 80] using steps of 10 units in both cases. The
number of used processors have also been varied from 4 to
16 using steps of 4. For every possible parameter combina-
tion, 500 task sets have been generated.

The metric used to evaluate the algorithms isUN
A (T).

The resulting values of this metric for all parameter con-
figurations have been averaged in a single value, for each
algorithm. This value provides an average processor uti-
lization for each proposed algorithm. If this average value
is used as metric to compare these partitioning schemes,
the result shows the best algorithms are:DM-FF:DWU and
EDF-FF:DWF. The interpretation of these results deserves
some observations: on one hand, results could be affected
to some extent by the evaluation process and the generation
pattern and, on the other, the fact they are the best in the
average case does not ensure they will perform best in some
particular case.

In order to improve the behavior of the basic partitioning
schemes, a simple method to construct complex algorithms
is next suggested.

Sequential forward search constructions
The basic idea to construct more reliable schemes is very

simple, and relies on the heuristic called sequential forward
search. The method consists of constructing a stack of al-
gorithms, which behaves as a unique algorithm. The steps
that should be performed to construct such a stack are the
following:

1. get the scheme that obtains the maximum average
value as the first component of the stack.

2. add in every step the algorithm that allows thestackto
obtain higher values of the used metric.

This method can be applied as many times as required for
obtaining a good performance, stopping when the increase
of performance is insignificant.

Using this method, two complex partitioning schemes
have been constructed, one for each scheduling policy:DM-
SFSandEDF-SFS. These schemes are composed by a stack

of eight algorithms each. An experimental evaluation shows
their performance achieves almost 99.8 % of the perfor-
mance all the possible combinations together, that is, these
8 algorithms covers the 99.8 % results of the set of 56 pos-
sible schemes, for each policy. Therefore, the performance
of these new schemes is close to the limit performance that
can be obtained using restricted bin-packing algorithms so
they are ideal candidates for evaluation. These schemes al-
low to increase performance and reliability at a reasonable
cost-performance ratio.

The DM-SFSand EDF-SFSschemes will be used for
the rest of this experimental evaluation as representatives
of fixed and variable priority assignment schemes.

4.4. Experiments with a variable number of proces-
sors

The study about the number of processors required to
schedule a given task set is a metric to compare theDM-SFS
andEDF-SFSschemes and to give an idea to the system
designer about the power or number of processors required
in the hypothetical case this would be a design factor.

This evaluation is performed using the metricN=Nopt

introduced above, but usingNOM as a lower bound ofNopt,
i.e., the used metric is:N=NOM . In this expression,N is
the number of processors a given algorithm needs to allo-
cate a task set, andNOM is the number of processors the
optimal multiprocessor needs for the same task set.

Behavior of partitioning schemes

DM-SFS
EDF-SFS

10
20

30
40

50
60

70
80

MaxP

10
20

30
40

50
60

70
80

MaxD

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

N/Nom

Figure 5. N=NOM (32 tasks)

An extensive simulation has been performed, using the
synthetic generation procedure described above, but with a
fixed number of tasks. The task sets have a fixedMaxC
parameter of 20 and their cardinality is 32. TheMaxD
andMaxP parameters vary in the interval[10; 80] using
steps of 10 units in both cases. For every possible param-
eter combination 500 task sets have been generated. The
results of this experiment are shown in figure 5. It can be
observed that the proposed schemes behave reasonably well

compared to OM, i.e., theN=NOM factor is close to 1, with
an obvious advantage for dynamic priorities schemeEDF-
SFS. The only exceptional cases occur when the task sets
are composed of tasks with restrictive deadlines (MaxD #),
i.e., tasks with weight factors rounding 0.66. This is due to
fact that theoptimal multiprocessorcan parallelize the code,
reducing task weight and making tasks easier to schedule,
while any other algorithm should try to schedule the tasks
as they really are. Since this problem also affects the opti-
mal assignment scheme, it could be assumed the real factor
N=Nopt will be lower than the one showed in these cases.

The presented results are similar to those previously pre-
sented by Burchardet al. [2], but eliminating theDi = Pi
restriction and allowing to use dynamic priority policies.

4.5. Experiments with a fixed number of processors

The evaluation of a system with a fixed number requires
different metrics to the ones used in previous experiments.
The metric proposed for this case is the expressionUN

A (T)
introduced in section 3, indicating how much work can be
fitted into the system processor before they report the load
as not schedulable.

The simulation parameters and evaluation process are the
same that are used in the evaluation process for selecting
the best bin-packing algorithm (section 4.3), but without
averaging all the result values in a single one. The figure
6 depicts the experiment results, when eight processors are
used. Every point showsUN

DM�SFS(T), U
N
EDF�SFS(T)

andUN
OM (T) values, where task setT has been generated

with theMaxD andMaxP that characterize every point.

Utilization with 8 processors

DM-SFS
EDF-SFS

OM

10
20

30
40

50
60

70
80

MaxP 10
20

30
40

50
60

70
80

MaxD

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

util/processor

Figure 6. Utilization with 8 processors

It can be observed that the utilizations achieved with
EDF-SFSare a little bit higher from those obtained with
DM-SFS. But the most important result is that both re-
sults are close enough to the maximum achievable utiliza-
tion, depicted by theOM curve. Taking into account that
the optimal assignment scheme should be between theOM

and theEDF-SFScurves, the results can be considered
good enough to avoid looking for more complex and time-
consuming algorithms.

From this results, it can be also estimated the probabil-
ity of obtaining higher processor utilizations. An example
is showed in figure 7. It shows the estimated probability
to obtain a feasible assignment when the task sets produce
processor utilizations greater than 90%.

Probability U>=90% (8 processors)

DM-SFS
EDF-SFS

OM

10
20

30
40

50
60

70
80

MaxP

10
20

30
40

50
60

70
80

MaxD

0

0.2

0.4

0.6

0.8

1

Probability

Figure 7. Probability to obtain more than 90%
utilization (8 proc)

This result has been obtained from a system with eight
processors, and it shows that when a task setT satisfies the
relations: P

�DiP
�Pi

< 1 &
X Ci

Pi
� 0:9

the task set is virtually impossible to schedule using parti-
tioning schemes, and much of them are infeasible for 8 pro-
cessor systems (reported asnot schedulableby the optimal
multiprocessor). It can be also observed that the problem of
finding a feasible assignment using fixed priorities is much
harder than using dynamic ones.

5. Conclusions

This paper has introduced new partitioning schemes for
multiprocessor real-time systems based on bin-packing al-
gorithms, using both scheduling policies: fixed and dy-
namic priorities. The new schemes, calledDM-SFSand
EDF-SFS, relax the restrictionDi = Pi allowing higher
processor utilization and enhanced schedulability. The
problem of evaluating this algorithms is complex, since
metrics are usually based on comparing the performance of
a given algorithm to an optimal one, but determining op-
timals is often NP-hard on multiprocessors. This problem
has been overcome by defining lower or upper bounds on

the performance of an optimal algorithm and then defining
metrics with respect this bounds. The evaluation has shown
that the algorithms exhibit extremely good behaviors; it can
be considered close enough to the maximum achievable uti-
lization. The obtained results also show a clear advantage of
dynamic priority policies over fixed priorities policies when
task sets require high processor utilizations.

As future work, it can be pointed out the refinement of
the model by introducing new requirements on the feasibil-
ity condition as are shared resources.

References

[1] S. Baruah, L. Rosier, and R. Howell. Algorithms and com-
plexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor.Real-Time Systems, pages
301–324, Dec. 1990.

[2] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies
for assigning real-time tasks to multiprocessor systems.IEEE
Transactions on Computers, 44(12):1429–1442, Dec. 1995.

[3] S. Davari and S. Dhall. An on line algorithm for real time
tasks allocation. InProceedings of the IEEE Real-Time Sys-
tems Symposium, pages 194–200, 1986.

[4] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic
scheduling algorithm: Exact characterization and average be-
havior. InProceedings of the IEEE Real-Time Systems Sym-
posium, pages 166–171, 1989.

[5] J.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks.Performance
Evaluation, 2:237–250, 1982.

[6] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.J. ACM, 20(1):46–
61, Jan. 1973.

[7] I. Ripoll, A. Crespo, and A. Mok. Improvements in feasibil-
ity testing for real-time tasks.Real-Time Systems, 11:19–39,
1996.

[8] S. Sáez, J. Vila, and A. Crespo. Dynamic scheduling solutions
for real-time multiprocessor systems.Control Engineering
Practice, 5(7):1007–1013, Jul. 1997.

[9] J. Stankovic, M. Spuri, M. D. Natale, and G.Buttazzo. Impli-
cations of classical scheduling results for real-time systems.
IEEE Computer, pages 16–25, Jun. 1995.

