Using Exact Feasibility Tests for Allocating Real-Time Tasks in Multiprocessor
Systems

Sergio @ez, Joan Vila and Alfons Crespo
Universidad Poliecnica de Valencia, DISCA
Camino de Vera 14, 46071 Valencia, Spain
Phone: +34 6 387 9577 Fax: +34 6 387 7579
{ssaez,jvila,alfons }@disca.upv.es

Abstract oretical results in this area show that almost all real-time
multiprocessing scheduling is NP-hard [5, 9]. For that rea-
This paper introduces improvements in partitioning son, looking for optimals to solve the general case makes no
schemes for multiprocessor real-time systems which allowsense and research rather focuses on solving some restricted
higher processor utilization and enhanced schedulability by cases or finding a good trade-off between performance and
using exact feasibility tests to evaluate the schedulability computational cost. In the last case, performance metrics
limit of a processor. The paper analyzes how to combine and evaluation of algorithms play an important role.
these tests with existing bin-packing algorithms for proces-
sor allocation and provides new variants which are exhaus-
tively evaluated using two assumptions: variable and fixed

“‘”T‘Eer of proceslsors. _The prob_lem of evaIuTlmng th|(sj al- (multiprocessor) scheduler for all processors which assigns
gorit ms 1S r(]:omp fex, since r‘r;etnc;s arelusgarll Yy Dased ONg4ch occurrence of atask to a (possibly different) processor
comparing the performance of a given algorithm 1o an op- ¢ execution. Some multiprocessor schedulers even allow

t|ma! one, but determlnlng optimals is often NP-hard ON tasks to be preempted and moved to a different processor
multiprocessors. This problem has been overcome by def'nbefore they complete. This is callevigrationand it is as-
ing lower or upper bounds on the performance of an opti-

mal algorithm and thgn defining metrics with respect this cessors. In contrast, in theartitioning scheme tasks are
bounds. The evaluation has shown that the algorithms ex-

- .) pre-allocated to processors byask assignment algorithm
hibit extremely good t_)ehawors _and they can k_)e con_5|deredand all occurrences of a task are executed on the same pro-
very close to the maximum achievable utilization. It is also

o . L cessor. In this approach, every processor has its lown
shown that dynamlc.pnorlty_ pql_|C|es pfo.duces significantly ..o schedulethat determines the schedule for each proces-
bettgr re;ults than fixed .p_rlor.|t|e5 policies when task sets sor using a monoprocessor scheduling policy. This paper
require high processor utilizations. concentrates on the analysis of heuristics for partitioning
schemes. A similar analysis of global schemes has been
previously presented in [8].

There are two main approaches for scheduling real-time
tasks on a multiprocessor system: global scheduling and
partitioning of tasks. In thglobalscheme there is only one

sumed to have very low cost on shared memory multipro-

1. Introduction The goal of a partitioning scheme is to make an assign-

ment of tasks to processors such that all tasks meet their

Real-time systems are one of the fields of comput- deadlines. The partitioning scheme is mainly used with
ing where major benefits are expected from the increasingstatic workloads, that is, when the system consists of a set
availability of multiprocessor technology. However, taking of tasks which are known in advance. That makes possible
full advantage of multiprocessor’s capabilities for real-time to make task assignment off-line. This approach has sev-
computing has shown to be difficult. This is mainly due to eral advantages over the global scheme. On one hand, it has
the fact that scheduling algorithms for multiprocessors areless run-time overhead since allocation is only done once
significantly more complex than for uniprocessors. The- per task (not on each occurrence of a task) and it can be

*This work was supported by the Spanish Government Research Office.n’]ade Off-lm.e' On the O.ther hand.’ .It IS. less Complex since it
(CICYT) under grant TAP97-1164-C03-03 and by Generalitat Valenciana 1S ONly required to provide a partitioning of the tasks; not a
under grant GV-C-CN-05-058-96 complete schedule.

In partitioning schemes there is a clear distinction be- This paper extends previous results by considering dead-
tween thetask assignment algorithrand the run-time line algorithms in their static and dynamic versioead-
scheduling algorithm However, both algorithms are not line MonotonigqDM) and theEarliest Deadline Firs{EDF)
completely independent, since the limit on the number of and tighter schedulability conditions to evaluate the schedu-
tasks that can be assigned to a given processor (processdability limit of a processor. Results show that the use of
utilization) is determined by the scheduling algorithm. Ev- these assumptions considerably improves the performance
ery time a new task has to be assigned to a processor @f the bin-packing algorithms and the overall system.
schedulability teshas to be used to check if its timing re- The remainder of this paper is structured as follows. Sec-
quirements can be guaranteed on that processor. This tegion 2 shows how to extend bin-packing algorithms for par-
is completely dependent of the scheduling algorithm that titioning schemes using DM and EDF algorithms and exact
is being used. Examples of such tests are the utilizationfeasibility test. Section 3 introduces new metrics for eval-
test [6] and the completion time test [4] for fixed priority uating multiprocessor scheduling algorithms based on esti-

scheduling algorithms, and the test by Barealal. [1] or mating bounds on optimals rather than in finding optimals
its optimization by Ripollet al. [7] for dynamic priority which are often NP-hard. Section 4 presents several evalua-
scheduling algorithms. tions of bin-packing algorithms assuming variable and fixed

The algorithms for task assignment considered in this number of processors. It also provides estimations on lower
paper are variants of well-known heuristics for solving the bounds on the minimum number of processors required to
bin-packing problem. In this problem, each bin has a max- schedule a given set of tasks.
imum capacity and boxes placed in the bins require some
of this capacity. When the problem is translated into real- 2, Using exact feasibility tests for allocating
time schedu]mg terms, real-time tasks_are regarded_ asa set tasks to processors
of boxes while processors as a set of bins. The goal is either
maximizing the number of tasks which can be scheduled
with a given fixed number of processors, or minimizing the
number of processors required to schedule a given set 0{;
tasks.

The first goal we address in this paper is to maximize the
umber of tasks which can be scheduled with a fixed num-
er of processors using different bin-packing algorithms for
o) task assignment and deadline algorithms as scheduling pol-

Much work on partitioning schemes deals with the prob- joy As it has been introduced above, the bin-packing prob-
lem of minimizing the number of processors to achieve a | is defined as a set of bins (processors) with a maximum

feasiblg schedule for a given set of tasks. There are Som‘%apacity and a set of boxes (tasks) with some capacity re-
theoretical results [3, 2] that evaluate worst case bounds forquirements, here referred amlume that must be fit into

limy,,, 00 N/Nopt WhereN,,; is the number of proces- ine pins.

sors required by an optimal algorithm. However, these re- |t \ve denote a task sét as a set of tuplegCy, P, D;),
sglts are of limited val_ue in real-time cqmputmg sy_stems where(; is the worst case execution time of taskand P;
since they are only available as asymptotic bounds with veryiq jts period and); is its deadline, theolumeof a task can
large number of processom(,; — o). be defined as its utilization factor, i.e; = C;/P;.

This paper addresses two different analysis of bin- Previous works in partitioning schemes addressed the
packing heuristics: fixed and variable number of proces- hin-packing problem assuming sets of periodic tasks with
sors. In the first analysis the main goal is to estimate thedeadlines equal to periods and the Rate Monotonic algo-
utilization bounds that can be achieved with different bin- rithm as the scheduling policy. The test used to check if
packing algorithms using a fixed number of processors. Inthere is enough room for a new task on a given processor
the second analysis the goal is to compare the number ofs the sufficient condition by Liu and Layland that could be
processors required to schedule a task set, but consideringegarded as wolume testsince it only places requirements
a finite number of processors instead of asymptotic limits. on the volume (utilization) of a box (task) to fit it into a bin
Thatimplies avoiding the concept 8f,,: and definingnew (processor).
metrics to evaluate the algorithms. The main goal of this section is how to relax the = P,

Two common assumptions in previous analysis were therestriction. The proposed solution is based on requiring an
use of the Rate Monotonic (RM) algorithm as the underly- additional requirement to the volume test (utilization test).
ing scheduling policy [2] and the test by Liu and Layland [6] This requirement makes the bin-packing problem consider-
(or some optimizations) to evaluate the maximum workload ably harder and yields a new class of algorithms called re-
that can be assigned to each processor. These assumptiossricted bin-packing algorithms. The additional requirement
imply underestimating the schedulability limit of a proces- can be introduced asshape testa box is not only required
sor because the above test is only a sufficient condition ando have a smaller volume than the available one, but also
leaves some unused processor time. to fit in a hole of a given geometry. The shape of a box is

not as easy to define as its volume and requires complex altask set and an upper bound on the utilization which can be
gorithms to determine the shape compatibility of a box and obtained with a fixed number of processors.

a hole. In the real-time scheduling problem checking the Given a set of tasks, a schedule is said tédaesibleif the
compatibility of a task to a hole implies using schedulabil- execution of each task can be completed before its deadline
ity tests which depend on the scheduling policy used at each(using some algorithm). If such a schedule exists, the set of
processor. The tests used in this paper are exact feasibilitytasks is said to béeasible A feasible schedule is defined

tests: thecompletion time teq#] for fixed priority schedul- to beminimalif there is no feasible schedule utilizing fewer
ing algorithms, andhitial critical instant test (ICI test) [7] processors. According to this, aoptimal multiprocessor
for dynamic priority scheduling algorithms. scheduling algorithnis an algorithm that for any set of tasks

Summarizing, when the task assignment algorithm tries finds a minimal schedule.
to fit a new task into a processor, it begins by checkingifthe An interesting and attractive metric related with the
available processor utilization is greater than the task uti- above concept of optimal is the ratlé/N,,:, whereN is
lization factor (volume test). If this is true, then it executes the number of processors required to schedule a task set by
the exact feasibility test on the set of previously allocated a given algorithm, andV,,; is the number of processors
tasks plus the new one (shape test). If this also holds, therrequired by an optimal task assignment algorithm. Unfor-
the task can be allocated to that processor. Due to the comtunately, since finding an optimal task assignment with a
plexity of these tests, the new approach to solve the schedulpartitioning scheme is NP-hard [5], S0 is findifg,:.
ing problem is only suitable for small scale multiprocessor The approach in this paper, is to develop a set of practi-
systems. However, this is not great restriction, since real-cal lower bounds that can act as a good approximation for
time control systems use this kind of platforms. Nope, but unlike this, they can be easily calculated and serve

An additional problem introduced by the shape require- to define new metrics for evaluations. In this sense, two new
ment is the problem of ordering the boxes before the allo- bounds are introducedV,,, defined as the lower bound as
cation process begins. One of the most useful orders is byrequired by the total utilization of a task set, aNg ,, de-
decreasing capacity requirements. However, this concepfined as the number of processors needed by an “optimal
is not well defined when shapes are considered: how cammultiprocessor”. It will be shown that:
it be stated that a box has less capacity requirements than
another, if they are different shapes?. A possible criteria Ny < Nom < Nopt
proposed in this paper is to considestzape factodefined
asD;/P;. This factor indicates how restrictive a task shape
is, since the lower the task shape factor is, the harder it is

The number of processors required by the total utiliza-
tion of a task set, denoted a§,, can be calculated as:

to schedule. Previous works on the analysis of partition- c
H 7
ing schemes assume all shape factors are equal$ome N, = { § _-‘
other criteria to compare this capacity are proposed below, T,eT P;

and later validated through extensive simulations. A com-
parison among all possible algorithms is performed. Also
several new metrics are defined in order to evaluate thes
new algorithms.

To show thatV, is a lower bound forV,,, is straight-
40rward from its definition. Moreover, it will be shown that
it is not too accurate with some kind of load templates that
are characterized in this paper. To introduce a more accurate
3. Metrics and bounds for multiprocessor !2¥¥§;5§§§ ?];tth concept of optimal multiprocessor will be
scheduling algorithms An optimal multiprocessofwith IV processors), denoted
asOM?Y, is defined as a monoprocessor thafligtimes
The problem of evaluating multiprocessor scheduling al- faster than one of the processors of the corresponding ho-
gorithms is complex, since metrics are usually based onmogeneous multiprocessor. This means that the computa-
comparing the performance of a given algorithm to an opti- tions executed by the optimal multiprocessor in a unit of
mal one, but determining optimals is often NP-hard on mul- time, requireN units of time in any of the processors of the
tiprocessors. This paper overcomes this problem by defin-multiprocessor.
ing lower bounds or upper bounds on the performance of The optimal multiprocessor has an interesting property:
an optimal algorithm and then defining metrics with respect if a task set is schedulable on a multiprocessor, it is also
this bounds. This section starts revising the concept of op-schedulable on the corresponding optimal multiprocessor.
timal multiprocessor scheduling algorithm and then it pro- The converse, as expected, does not hold. This property can
poses a definition of optimal multiprocessor which leads to be easily proved by showing that the\/ Y can emulate any
the definitions of two bounds: a lower bound for the min- feasible schedule of &-processor, i.e., any feasible sched-
imum number of processors required to scheduled a givenule of the/N-processor can be mapped into a corresponding

feasible schedule on theA/™¥. A technique for making 74 C 7., for any algorithmA. This is easy to prove by
this mapping simply consists of dividing a time ugibf the self-contradiction. Assume that some algoritdnvould be
multiprocessor inV time unitsgy, ¢z, - - -, gv of theOM N able to schedule more théf,,;| tasks usingV processors.
and scheduling ig; the same load that procesdgrof the That would mean that the optimal scheduler would need
N-processor. This is obviously possible from the definition more thanNV processors to schedule tfig set; and this

of OM™. An example of this technique is depicted in fig- is a contradiction with the definition of optimal scheduler,
ure 1. To prove that the converse is not true consider a tasksince N, is the minimum number of processors where a
set with a unique task with’s = 1 andD7 = 1, where this feasible task set can be scheduled. Once this is prdXgg,
values are expressed in time units of thé/™V. This task for N processors and a given task $étan be defined as:
would require a computing time a¥ on the correspond-

ing N-processor that would violate the deadline constraint, ™ Ci
since they cannot be executed in parallel. Uni(T) = %
o 5 1o
N EJA PROCESSOR 1 that is, the average processor utilization obtained by an op-
timal scheduled for th task set. This new metric is
° an upper bound OUAVggz)ﬁfor any generic algorithm.
c [€ T B T e T PROCESSOR 2 In other Words,U;Zt(T) is an upper bound on the perfor-

mance of any assignment algorithm, and therefore, it can

o PP oERlpEe be used to estimate how good an assignment algorithm is
(e.g. using a metric such &8\ (7)/U2,(T)). Obviously,
. B o UX,(T) is as harder to obtain &s,,,. For this reason, the
R jJ D_T OPTIMAL upper bound/j,, (T), based on the above definition of op-
T T MULTIPROCESSOR timal multiprocessor, will be used instead in order to define
s L LI L useful metrics. The relation between bounds for processor
c [l 1] T [utilization is:

oL nnd nond oo

: Yy Ubm(T) > Ugpe(T) > UX(T)
Figure 1. OM? optimality example

The above metricVoa andUJ, (T) will be used in
the next section to evaluate the restricted bin-packing algo-
rithms proposed in this paper.

Using this definition of an optimal multiprocessor, a new
lower boundNo , is presented. In order to calculdt®) ,,,
it is needed a feasibility test that specifies when a feasible
schedule of a set of tasks exists overOM Y. SinceOM
is simply a monoprocessor, well-known feasibility tests can
be used.

As it has been showed above, any schedule performed
over a real multiprocessor has a direct map @¥&f. So, if This section presents several experimental results about
a feasibility test shows that no feasible schedul&/faxists partitioning schemes for multiprocessor scheduling. The
overOM™, then no scheduler algorithm can find a feasible first experiment provides estimations on lower bounds (
schedule for a redV-processor. According to this, ¥, andNojs) on the minimum number of processors required
is defined as the minimun¥ for which a feasibility test to schedule a given set of tasks. Next, it introduces an eval-
reportsT as schedulable ové? M/, thenNo,, is a lower uation in order to decide which is the combination of bin-
bound on the number of processors needed by an optimapacking algorithms and ordering criteria which provides
scheduler, i.e., it is a lower bound 0, ;. higher processor utilizations. Then, it evaluates the good-

Next we introduce an upper bound on the utilization ness of the best bin-packing algorithms comparing the num-
which can be obtained with a fixed number of processorsber of processor they require to schedule a given set of tasks
N. In order to introduce this bound, consider a particular versusNo,,. Finally, it presents an experiment with a fixed
task set/” where tasks are totally ordered in a sequence ac-number of processor to evaluate the probability of getting a
cording to some arbitrary criteria. L&ty be a prefix of processor utilization of 90% using the best bin-packing al-
T such that it consists of the initial subsequence of tasksgorithms, and comparing their results with an optimal mul-
of 7 that can be successfully scheduled by some algorithmtiprocessor OM. Previously, the next subsection introduces
A. Let7,,: the subsequence of tasks which can been suc-how to characterize the workload for the experiments and
cessfully scheduled by an optimal scheduler. It holds thathow to generate it.

4. Experimental evaluation

4.1. Synthetic workload generation

The task model that is used in this paper describes a real-
time taskT; using the tupl€C;, D;, P;), as previously de-
scribed. In order to generate synthetic task sets to eval-
uate the performance of proposed algorithms, an equiva-
lent task description will be used. This new description
depicted in figure 2, defines a tadk as the tuple(C;,
AD;, AF;), whereC; means the same as before, and for-
mer characteristics are calculated &5:= C; + AD; and
P, =C; + AD; + AP,

— — !
v y y y

| Ac AD AP

Kfomimimimmms Y

| c

Ko e

3 D

T I Y

Figure 2. Real-time task alternative descrip-
tion models

This new task description model allows to generate syn-
thetic workloads using a simple algorithm that generates the
tasks according to the expressions:

e C;=1+Unif(MazC —1)
e D;=C;+Unif(MaxD)
o P,=D;+Unif(MazP)

where MazC, MaxD and MaxP are the maximum
values ofC;, AD;and A P;respectively, and/ni f(z) re-
turns an integer random number in tfie x| interval fol-
lowing auniform distribution

4.2. Lower bounds on the minimum number of pro-
cessors

The first experiment evaluate valuesidf and No s as
afunction ofM ax D andM ax P, and compared/p 5, accu-
racy versusV,,. Figure 3 shows the values df, and N,
while 4 represents the rati¥o,, /N,,. These pictures have
been obtained using task sets of 32 tasks, and the follow-
ing generation patterm/azC fixed to20 and M az D and
maa P varying in the interva[10, 80].

The figures show thatv, is significantly lower than
Noy and theNpy, /N, ratio is higher with tasks whose
utilization factor is low A P 1) and when they have restric-
tive deadlinesA D |). This means that, in the above con-
ditions, the number of processors required by a real multi-
processor is significantly higher than the processor required
by an optimal multiprocessor or by the utilization.

Lower bounds (32 tasks)

Nom —-—
Nu —+-

Num Processors

20

16

12

Figure 3. N, and Ny, values

Lower bounds comparison

32 tasks <—

Nom/Nu

2

18

1.6

14

12

10

Figure 4. Nop /N, ratio

4.3. Selection of the best bin-packing algorithm else the algorithm metrics are calculated, the task set
for partitioning schemes emptied, and another algorithm is evaluated us-
ing current generation parameters;

The aim of this experiment is to determine the best com-
bination of bin-packing algorithm and task ordering (order
in which tasks are processed). The evaluation process an-
alyzes the number of processors they require to schedule
a given set of tasks versuép,,. This task is not easy to
solve from the analytical point of view, so this section pro- 6. when all the experiments with a given generation pa-
poses an exhaustive evaluation of all possible combinations rameters are done, these are changed until all previ-
for two cases: static priorities and dynamic priorities. ously set parameters are visited.

The considered bin-packing algorithms afiest fit, next
fit, best fitand worst fit that will referred as FF, NF, BF Using this simple method, the 112 proposed partitioning
and WF from now on. On the other hand, possible task Schemes have been evaluated, fixifgzC' parameter to
orderings are based on task characteristics. The consid20 and varying the\/azD and Maxz P parameters in the
ered ones are: deadlin®;, period, P;, utilization factor, ~ interval[10,80] using steps of 10 units in both cases. The
UF; = C;/P;, weight factor, WF; = C;/D;, shape fac- numb_er of used processors have al_so been varied from_4 to
tor, SF; = D;/P;, and two combinations of these ones: 1_6 using steps of 4. For every possible parameter combina-
WS; = (C;P;)/D2, andWU; = C?/(D;P;). The or- tion, 500 task sets have been generated.
derings defined by these factors can be considered as in- The metric used to evaluate the algorithms/i§ (7).
Creasing or decreasing' resu'ting in a total set of Order_The resulting values of this metric for all parameter con-
ings©® = {ID, IP, IUF, IWF, ISF, IWS, IWU, DD, figurations have been averaged in a single value, for each
DP,DUF, DWF, DSF,DW S, DWU}, where theinitial a@lgorithm. This value provides an average processor uti-
stands fot ncreasing obecreasing order, and the rest spec- lization for each proposed algorithm. If this average value

ifies the ordering factor. A complete partitioning scheme iS used as metric to compare these partitioning schemes,
will be referred asPP-AA:0Q wherePP is the schedul- the result shows the best algorithms dbd4-FF:DWU and

ing policy, AAis the bin-packing algorithm an@O the se- EDF-FF:DWF. The interpretation of these results deserves
lected order fron©, e.g.,DM-FF:ID means thdirst fit bin- some observations: on one hand, results could be affected

packing algorithm, where the task set has been ordered byl© Some extent by the evaluation process and the generation
increasing deadlines and the scheduling policgiéadline ~ Pattern and, on the other, the fact they are the best in the
monotonic average case does not ensure they will perform best in some
The set of bin-packing algorithms and considered order- Particular case. . . o
ings results in a 56 possible combinations for each schedul- I order to improve the behavior of the basic partitioning
ing policy: DM and EDF. In order to evaluate all these schemes, a simple method to construct complex algorithms
partitioning schemes, extensive simulations have been perlS next SUQQGSted- _
formed, and their results are shown next. Sequential forward search constructions
Task generation algorithm and evaluation process The basic idea to construct more reliable schemes is very
The task set used to evaluate the proposed algorithm$imple, and relies on the heuristic called sequential forward
has been generated using the synthetic workload generatiof€arch. The method consists of constructing a stack of al-

process described above. The evaluation process is simplegorithms, which behaves as a unique algorithm. The steps
that should be performed to construct such a stack are the

1. A set of generation parameters are established and théollowing:
task set emptied,

5. this process is repeated with all considered algorithms
for several hundred times using the same generation
parameters, but changing the random number genera-
tor seeds.

1. get the scheme that obtains the maximum average
2. a new task is generated and added to the current task value as the first component of the stack.

set, 2. add in every step the algorithm that allows sfckto

3. the algorithm to be evaluated tries to schedule the new ~ obtain higher values of the used metric.
task set with the user defined restrictions (number of

This method can be applied as many times as required for
processors, ...),

obtaining a good performance, stopping when the increase
4. if the task set is successfully scheduled of performance is insignificant.
Using this method, two complex partitioning schemes
then a new task is added and the process repeatedhave been constructed, one for each scheduling pdlitj:
from point 2. SFSandEDF-SFSThese schemes are composed by a stack

of eight algorithms each. An experimental evaluation shows compared to OM, i.e., th& /N, factor is close to 1, with
their performance achieves almost 99.8 % of the perfor- an obvious advantage for dynamic priorities schezbd--
mance all the possible combinations together, that is, theseSFS The only exceptional cases occur when the task sets
8 algorithms covers the 99.8 % results of the set of 56 pos-are composed of tasks with restrictive deadlindsi¢ D),
sible schemes, for each policy. Therefore, the performance.e., tasks with weight factors rounding 0.66. This is due to
of these new schemes is close to the limit performance thatfact that theoptimal multiprocessocan parallelize the code,
can be obtained using restricted bin-packing algorithms soreducing task weight and making tasks easier to schedule,
they are ideal candidates for evaluation. These schemes alwhile any other algorithm should try to schedule the tasks
low to increase performance and reliability at a reasonableas they really are. Since this problem also affects the opti-
cost-performance ratio. mal assignment scheme, it could be assumed the real factor
The DM-SFSand EDF-SFSschemes will be used for N/N,,: will be lower than the one showed in these cases.
the rest of this experimental evaluation as representatives The presented results are similar to those previously pre-
of fixed and variable priority assignment schemes. sented by Burchardt al. [2], but eliminating theD; = P;
restriction and allowing to use dynamic priority policies.
4.4. Experiments with a variable number of proces-
sors 4.5. Experiments with a fixed number of processors

The study about the number of processors required to The evaluation of a system with a fixed number requires
schedule a given task set is a metric to compar®WeSFS different metrics to the ones used in previous experiments.
and EDF-SFSschemes and to give an idea to the system The metric proposed for this case is the expresEigi{T)
designer about the power or number of processors requiredntroduced in section 3, indicating how much work can be

in the hypothetical case this would be a design factor. fitted into the system processor before they report the load
This evaluation is performed using the metig N, as not schedulable.
introduced above, but usingop »s as a lower bound @V, ¢, The simulation parameters and evaluation process are the

i.e., the used metric iSN/Noys. In this expression)V is same that are used in the evaluation process for selecting
the number of processors a given algorithm needs to allo-the best bin-packing algorithm (section 4.3), but without
cate a task set, anlp,, is the number of processors the averaging all the result values in a single one. The figure

optimal multiprocessor needs for the same task set. 6 depicts the experiment results, when eight processors are
used. Every point showSH,,_srs(T), Unpr_sps(T)
Betavior of partoning schermes andUJ),,(T) values, where task s&t has been generated
DuSES —— with the M azD and M az P that characterize every point.

Utilization with 8 processors

Figure 5. N/Noas (32 tasks)

An extensive simulation has been performed, using the

synthetic generation procedure described above, but with a Figure 6. Utilization with 8 processors
fixed number of tasks. The task sets have a fixéd:C
parameter of 20 and their cardinality is 32. ThéaxD It can be observed that the utilizations achieved with

and Maxz P parameters vary in the intervgl0, 80] using EDF-SFSare a little bit higher from those obtained with
steps of 10 units in both cases. For every possible param-DM-SFS But the most important result is that both re-
eter combination 500 task sets have been generated. Theults are close enough to the maximum achievable utiliza-
results of this experiment are shown in figure 5. It can be tion, depicted by th@®©M curve. Taking into account that
observed that the proposed schemes behave reasonably welhe optimal assignment scheme should be betwee®ie

and theEDF-SFScurves, the results can be considered the performance of an optimal algorithm and then defining
good enough to avoid looking for more complex and time- metrics with respect this bounds. The evaluation has shown
consuming algorithms. that the algorithms exhibit extremely good behaviors; it can

From this results, it can be also estimated the probabil- be considered close enough to the maximum achievable uti-
ity of obtaining higher processor utilizations. An example lization. The obtained results also show a clear advantage of
is showed in figure 7. It shows the estimated probability dynamic priority policies over fixed priorities policies when
to obtain a feasible assignment when the task sets productask sets require high processor utilizations.

processor utilizations greater than 90%. As future work, it can be pointed out the refinement of
the model by introducing new requirements on the feasibil-
Probabilty Us=00% (8 processors) ity condition as are shared resources.

Probability g EDF-SFS -~

References

[1] S. Baruah, L. Rosier, and R. Howell. Algorithms and com-
plexity concerning the preemptive scheduling of periodic,
real-time tasks on one processd®eal-Time Systempages
301-324, Dec. 1990.

[2] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies
for assigning real-time tasks to multiprocessor systéEiSE
Transactions on Computerd4(12):1429-1442, Dec. 1995.

30~%0 [3] S. Davari and S. Dhall. An on line algorithm for real time
tasks allocation. IfProceedings of the IEEE Real-Time Sys-
tems Symposiumpages 194-200, 1986.

Figure 7. Probability to obtain more than 90% [4] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic

utilization (8 proc) scheduling algorithm: Exact characterization and average be-

havior. InProceedings of the IEEE Real-Time Systems Sym-

posium pages 166-171, 1989.

J.-T. Leung and J. Whitehead. On the complexity of fixed-

priority scheduling of periodic real-time taskBerformance

Evaluation 2:237-250, 1982.

This result has been obtained from a system with eight 5]
processors, and it shows that when a taskssatisfies the

relations: [6] C. Liu and J. Layland. Scheduling algorithms for multipro-
S AD; o gramming in a hard real-time environmedtACM 20(1):46—
S<1& Y = >09 61, Jan. 1973.
2 AP Py [7] 1. Ripoll, A. Crespo, and A. Mok. Improvements in feasibil-
. ity testing for real-time tasksReal-Time System&1:19-39,
the task set is virtually impossible to schedule using parti- 1996.
tioning schemes, and much of them are infeasible for 8 pro- [g] 5. s4ez, J. Vila, and A. Crespo. Dynamic scheduling solutions
cessor systems (reportedrast schedulabl®y the optimal for real-time multiprocessor systemsControl Engineering

multiprocessor). It can be also observed that the problem of Practice 5(7):1007-1013, Jul. 1997.

finding a feasible assignment using fixed priorities is much [9] J. Stankovic, M. Spuri, M. D. Natale, and G.Buttazzo. Impli-

harder than using dynamic ones. cations of classical scheduling results for real-time systems.
IEEE Computerpages 16-25, Jun. 1995.

5. Conclusions

This paper has introduced new partitioning schemes for
multiprocessor real-time systems based on bin-packing al-
gorithms, using both scheduling policies: fixed and dy-
namic priorities. The new schemes, callBi-SFSand
EDF-SFS relax the restrictionD; = P; allowing higher
processor utilization and enhanced schedulability. The
problem of evaluating this algorithms is complex, since
metrics are usually based on comparing the performance of
a given algorithm to an optimal one, but determining op-
timals is often NP-hard on multiprocessors. This problem
has been overcome by defining lower or upper bounds on

