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Abstract given time. For example, a significant amount of research has

Obtaining simultaneous and timely access toltiple re- focused on processor scheduling alone and similarly for network
sources is known to be an NP-complete problem [10]. Coggheduling alone. Disk bandwidth scheduling has been studied
plete resource decoupling is, therefore, often used for managig smaller extent. The problem that has not received sufficient
end-to-end delays in distributed real-time systems where eagBntion is the one of using these different resources, such as the
processor is scheduled independent of the others. This degpdicessor, network and disk bandwidgimultaneouslywithin
pling approach unfortunately fails when multiple resources massingle node. Sophisticated multimedia applications including
be managedvithin a single node. Resources such as disk bamtieo-on-demand and live video-conferencing may access high
width and network bandwidth are available on a single node kglume data from a disk, process the data, and transmit it across
must be managed by their host processor by means of deyieeetwork. All these stages must complete by a deadline. This
drivers, filesystem or protocol services. The host processor ggéource management problem is complicated for two reasons.
ing as acontrolling resourcetherefore, must play multiple rolesfirst, it is known that obtaining simultaneous and timely access
One, it is used by applications on that node. Two, it is useddomultiple resources is known to be an NP-complete problem
control and manage other (time-sharem)ntrolled resource®- [10]. Two, each of these resources may be scheduled by a dif-
cluding disk bandwidth and network bandwidth. These two rolegent scheduling policy so that resulting scheduling mismatches
unfortunately, can often be at odds with one another. have to be resolved.

In this paper, we investigate the problem of co-scheduling con-The most straightforward way of approaching the multiple re-
trolling and controlled resources. We propose the use of a Coggurce co-scheduling problem is to decouple the use of different
erative Scheduling Serve€69, which is a dedicated server thatesources [24]. This resource decoupling solution is effective
manages one specific controlled resource (like disk bandwigdly if resources are independent of one another. For example,
network bandwidth, inter-process communication, etc.) while ggnsider an application which is computation-intensive. Even
ing a controlling resource (like the processor). Two core idegfough its processor guarantee is granted by the processor ad-
underlie our approach. First, a single (aperiodic) server is Crénission control, the application could miss its deadline because
ated on a controlling resource (such as a CPU) to haradliéocal  of page faults. The memory resource guarantee can be managed
requests for a controlled resource (such as disk bandwidth). Thigependently from the processor by binding the application code
implies that conjunctive admission control must be carried outgid data into main memory during initialization [28]. Therefore,
both the controlling and controlled resources. Secondly, timith@ application can just request the processor guarantee and the
constraints at the application level are partitioned into multipfaemory guarantee separately. Unfortunately, in practice, some
stages, each of which will be guaranteed to complete on a partigsmbinations of resources cannot be totally scheduled indepen-
lar resource.RTFSis a real-time filesystem [2] that provides dislently such as the disk bandwidth-processor pair and the network
bandwidthguarantees under light CPU loads. With a cooperatiygndwidth-processor pair. Many resource couplings are in fact
scheduling serverRS-CSS) for this disk-based filesystem, dised up with the processor for the simple reason that it serves
bandwidth guarantees can be obtained untlethheavy CPU two purposes: for computation by applications and for control of
and disk workloads. We describe the design and implemestaer I/0 peripherals.
tion of FS-CSS for providing disk bandwidth guarantees. We \we now provide a brief overview of RT-Mach and its Real-
conclude with a detailed performance evaluatiofr8fCSS.  Time FilesystemRTFS to provide context and background for
1. Introduction the CSS design and implementation.

The essential goal of OS resource management for real-tinie A Brief Overview of RT-Mach
and multimedia system is to provide timely, guaranteed and proRT-Mach [24] is a microkernel operating system which em-
tected access to system resources [24]. However, schedulgptois separately scheduled servers to provide various system
real-time systems normally focus on a single resource at aagvices [7]. It supports an integrated framework that encom-



passes task scheduling, virtual memory management, syndRd+S [2]. RTFSfocuses on how the disk scheduler handles the
nization primitives, real-time inter-process communications, redisk request from applications to guarantee time constraints under
time disk scheduling and real-time network protocol processikhight CPU workloads. However, during CPU overload conditions,
More recently, RT-Mach haglapted a resource-centric approadfiTFScan become unstable because the disk management activi-
based on resource reservations and strict enforcement to prdigdeare not properly scheduled by the kernel.

timely and guaranteed access to resources. This core subsystefie co-scheduling problem between the processor and the disk
that delivers timely access to resources is calleesaurce ker- s discussed in the continuous media file system (CMFS) in [8].
nel [24]. An application using the “resource kernel” can speciMmFsS is designed and implemented to support real-time stor-
multiple resource reservations simultaneously and independgt and retrieval of continuous media data. It uses a buffering
of the scheduling policy in the kernel (rate-monotonic poliggchnique to reduce the level of synchronization between the ap-
deadline-monotonic policy or earliest deadline first policy). Thgcation and the disk server. The response time of dislesses
reservation specification uses the, 7', D, S, L} model for the s improved by a disk layout adjustment in order to support real-
reservation of resourc€ units of time every recurring time intime behavior. CMFS addresses throughput issues but without
tervall before a deadlin®. S and L are the starting time anchard guarantees.

the life time of resource allocation respectively. In addition, RT- Rasource decoupling and a system (or intermediate) reser-
Mach tracks an implicitresource parameter, the blocking fimey ation technique is proposed in [24]. This approach tries to
This blocking time represents the maximum (desirably boundgg)oyple resources into separately scheduled entities. The “sys-
time that a reservation instance must wait for lower priority resgliy, reservation” is created for any device scheduler that needs the
vations while executing. This implicit paramet@ris introduced gynchronization between its controlled resource management and
with the priority inheritance algorithm[22, 26] supported in thge controlling processor cycles. With the system reservation, the
RT-Mach kernel to limitthe priority inversion problem. RT-Machisk scheduler gets a guarantee that the required disk service will
uses the resource decoupling technique to provide the admis§ioflispatched immediately after the disk access completes. Even
control mechanism of each resource separately before grantl{pg)ggh this approach can provide disicess guarantees, the ex-
resource reservation to the application. It also enfprces the USRY®  ocessor admission control policy is not clear. There is no
of resources such that the abuse of resources (intended org@thanism to make sure that the system reservation is sufficiently
by one application does not hurt other guaranteed applicatigig for the disk scheduler, or to manage the system reservation

However, as we stated earlier, the resource decoupling technigugn g multiple resources such as network bandwidth and disk
is feasible only if resources can be independently managed. |,4,qwidth.

1.2. An Overview of Real-Time Filesystems on RT-Mach  Our work is also closely related to that of Jeffay et al.[11] and
Real-Time Filesystem ServeRTFS [2] is a real-time file | oe et al.[3]in the scheduling of OS services. The former studied
server running on top of the RT-Mach resource kernel. It Rag problem of scheduling the communication protocol stack pro-
an admission control policy for disk scheduling using the sag@&sing activities inside a monolithic operating system. A fixed
concept of rate-monotonic analysis for processor scheduling gigek-sharing scheme was implemented in the kernel to ensure
posed by Liu and Layland [18]. The application can again requggk guaranteed network bandwidth is available to applications.
adisk bandwidth guarantee using {ft, 7', D} parameters of the[3] considered the problem of scheduling protocol stack process-
resource kernel (' stands for the number of bytes the applicgyy activities in a micro-kernel environment. Their solution is
tion wants to read in a duration of periddbefore a deadliney, have a very efficient packet filter that routes packets to clients
D. RTFShas multiple worker threads whickaeive and pro-\yho process the communication protocol stack within their own
cess file access requests from real-time clients. Each wogR{ress spaces using user-level threads. With this scheme, the
thread is responsible for storing an incoming request into a cf¥s of system resources for system activities is “charged” to user
mon disk request queue. The disk request queue is divided jpfgads. Hence, it forces applications to request and reserve suffi-
two different queues: one for reserved requests and the oghigit processing resources to satisfy even their “system activities”.
for unreserved requests and depleted reghieSise disk sched- o CSSapproach can also be viewed as a generic solution for
uler dispatches reserved requests first using an earliest dea&@ﬁ‘@duling OS activities, and it can be applied in a micro-kernel
first (EDF) scheduling policy and dispatches unreserved requggt$ronment or a monolithic kernel. THeSSimplementation
when no reserved request is left in the que&IFS provides giscussed in this paper is built in a micro-kernel environment but
disk access guaranteesder diskaccess compigion workloads the server concept is also applicable within a monolithic kernel.
but only with a light CPU workload. We now summarize and compare our approach with the
1.3. Comparison with Related Work above approaches. Our Cooperative Scheduling strategy uses
In this paper, we implement a filesystem cooperative schedidredicated server to separate the resource management between
ing server £S-CSS) by modifying the real-time filesystem serveihe disk (or the network) and the processor. Our Filesystem-

Depleted requests are reserved requests that have already consumed@®@perative Scheduling ServES-CS_S) is an enhanced version
their disk bandwidth reservations. of RTFSto provide a guarantee of disk accesgler heavy CPU




anddisk workloads. We use the same scheme in the disk schedintgrpolicy. This priority conflict poses the following dilemma. A

as theRTFSbut add the cooperative scheduling module to maReU service must execute to initiate and complete disk transfers.
sure that the disk scheduler (in say a device driver) gets necedsan the disk perspective, one must ensure that these disk-related
cycles on the CPU in timely fashion. This is accomplished agtivities are not unduly delayed by other higher priority activities
having the processor admission control module takedantomunt on the CPU. From the processor perspective, native CPU appli-
the exact processor needs of #8-CSS. With this approach, cations must not miss their timing constraints due to disk-related
both network bandwidth and disk bandwidth guarantees canawiivities on the CPU.

exist in the system since the processor scheduler can individuallgonjunctive Admission Control: The admission control of
track how much ofthe processor cyclesB®CSSandNT-CSS each controlled resource has to take not only its own resource
(NeTwork-Cooperative Scheduling Server) need accbunt for access into acmunt but also the availability of the controlling
those into the admission control. In addition, a conjunctive agdsource. Hence, to guarantee real-time service, the admission
mission control used inside o@SSmodule considers both theontrol of co-scheduling strategy needs to account for both the
waiting time for the disk head to complete digkcess and theresponse time for the disk driver &@cess data from the diskd
waiting time for the service to be dispatched to make sure bisthresponse time of the processor scheduler to dispatch the driver
components are coordinated to meet the deadline of the appficaeess.

tion. This enables thES-CSS to provide hard real-time service Resource Synchronization: Disk access commands, once
guarantees under heavy CRbddisk workloads. issued to the disk, can proceed in parallel with processor compu-
tations on behalf of applications. Good synchronization between

1.4. Organization of the Paper disk and the processor will allow both resources to make

The rest of this paper is organized as follows. In Section 2, e X )
present the requirements of a good multi-resource co-schedffifgress In parallel as m.u.ch as possible. , ,
strategy. We describe our use of the Cooperative Schedulinficient Resource Utilization: The main goal of real-time
Server CSS, a dedicated server to manage each resource (agwkedulmg |s'to gch|eve high utlllgatlon gnd still guarantee; dead-
bandwidth, network bandwidth, memory, etc.) in conjunctiBHeS for appllcafuons. Therefore, in addition to guaranteemg the
with a processor resource. In Section 3, we detail our imgi&adline of multiple resour@ecesses, the systefrosild provide
mentation of the&€SSapproach for Disk bandwidth managemeﬂpceptably high overall systertilization of all system resources.

on the RT-Mach microkernel-based system running a real-time. The Cooperative Scheduling Server Concept

server (a simple OS personality). Section 4 focuses on the perfhe Cooperative Scheduling ServeS is a dedicated server
formance evaluation of this approach. Finally, we present @i the management of controlled resources. In this paper, we
concluding remarks outlining our research contributions and figcus on the co-scheduling between the disk and the processor
ture work in Section 5. but the same approach can be adapted to network bandwidth and

> Desian | the processor as well. We now present a high-level overview of
- Leslign Issues our CSSapproach.

In order to guarantee all controlled resource accesses againgt y.qicated serveCSS is created on a controlling resource
Slhea:dtlﬁ]ne mlstse”s, da CO'SChedl:jl.mI? bstreg[egé/thneeds tto mkalée -be responsible foall accesses to one particular controlled
al the controlled resource (dis - banawi or network ballz )\ rce. Suppose that the CPU is the controlling resource, and
width server) gets the proper sharmg of Fhe co.ntrolllr)g reSOUlgRy bandwidthis the controlled resource. This “filesys@aS,
namely processor cycles, on atimely basis. This section discu SRS theFS-CSS, reserves a sufficient amount of capacity on

important design issue; for such a po-scheduling strategy. T 2''CPU as needed to fulfil the obligations it makes for access-
we propose th€ooperative Scheduling Ser&SS concept to , r& disk bandwidth. When an application requests guaranteed

synchronize the controlled resource scheduler and the controllj timely access to disk bandwidth, an explicit demand on the

resource scheduler and provide a conjunctive admission corbt{ bandwidth and an implicit demand on the CPU are imposed.
for both resources. FS-CSS, therefore, performs admission control on both the CPU

2.1. Important Issues for Co-Scheduling Design and the disk bandwidth to ensure that both demands can be sat-
We now list some important considerations that influence tbiged. We refer to this asonjunctive admission controlFrom
design of a co-scheduling strategy. the CSSpoint of view, it needs to correctly evaluate the imposed

Scheduling Mismatch due to heterogeneity of resourcedemands on the CPU and the disk for an incoming request. In
scheduling policies: The lack of explicit co-scheduling amongddition, since it must satisfy the timing needs of multiple appli-
resources can lead to a scheduling mismatch. For instance, igakiens, its own parameters (period and aggregate capacity) must
case of disk bandwidth guarantees, the controlled resource idthdetermined.
disk bandwidth. Its controlling resource is the processor. TheThe design of th€SSis tightly tied to the pattern of usage of
processor scheduler can assign the CPU thread priority accortliegontrolled resource (such as disk bandwidth). In general, an
to the rate-monotonic scheduling policy. The disk scheduler egplication needs to consume both CPU capacity and disk band-
assign the disk access priority according to the earliest deadkitth within a certain deadline. Hence, an executing application



may alternate between requests for disk accesses and CPUThCSStherefore considers the response time of the disk driver
cessing. To illustrate our concepts, without loss of generalityread the data from the disk as “blocking time”. The proces-
we adopt a simple but reasonable programming model whers@nscheduler takes this blocking time as an implicit parameter
application performs some CPU processing, initiates disk transs the admission control test to ignore all available CPU when
fers and continues with CPU processing after the disk transfeéhesdisk is busy. This guarantees that the the disk scheduler has
complete. We impose timing constraints (deadlines) on eaclsudficient CPU available to run when the disk is not busy.
these three stages, the sum of which will equal the overall timingvhen theCSSreceives a grant of its processor request, it
constraint of the application. receives a priority in the processor scheduler based on the server
The assignment of deadlines to these “pipeline stages” isp@iod (deadline). We refer to this priority &SSpriority. This
unlike the “end-to-end scheduling” problem where end-to-epgSpriority will be used for all application threads that request
timing constraints can be satisfied by partitioning deadlines acigisk guarantees during the disk access. Therefore, whatever the
stages of the end-to-end path. The primary differences in gpiplication priority, the disk scheduler would use @®Spriority
case are two-fold. One, the timing constraints on each of muiget appropriately high priority scheduling on the processor
stages are much tighter. Two, the disk transfers correspondingtien it needs disk servicesCSSthus eliminates any priority
multiple applications are handled by o@&Sserver, an aspecimismatches between application and disk accessifpe®r In
that does not have a direct counterpart in end-to-end schedubitger words, the processor scheduler views all applications that
The implication of this latter observation is that t6&Sserver need the disk access as having the same priority, and has full
parameters have to be carefully chosen and analyzed. We sbalirol over all application threads that access the disk.
discuss this issue in more detail in Section 3.3 and Section 4.3. To yse theCSS model, we have to make sure that the

2.3. The Detailed Design o€SS CPU consumption of th€SSis periodic and satisfied with the

A dedicated Cooperative Scheduling SeneSg provides {Cs,Ts, Dy} requirement given'to the processor scheduler. The
applications timing guarantee usifg, T, D} parameters WhereCSSu§es a token cpntrol qlgorlth.m to confine its processor con-
C stands for the amount of resource the application needs fi!&Ption to be periodic with periodl, and not larger than the
recurring period of” before a deadlin®. The unit ofC' depends amount of the processor it has reserved. We will show in Section
on the type of each resource. For examglejs the number 3 how to compute the amount of processor needed bg 8@
of bytes (and hence the disk bandwidth consumption time) inOne last consideration needed is regarding the bounded re-
the case of disk bandwidth, and the processor computation fi@nse time for the communication between an application and
needed in the case of the processor. theCSS An application request must not be received at@isS

In co-scheduling the disk and the CPU, when the disk head198slate. Similarly, the time for th€SSto send the disk data
completed its reading, the disk scheduler may not get a bourffgk to the application must also be bounded. We refer to the
response time from the processor scheduler. This can cause dH@a@0f communication from the application to the server as the
plication to miss its deadline. Our Cooperative Scheduling Se#/pcation timeand that from the server to the application as the
will request a guarantee from the processor scheduler to make'8tiign time The deadline for both invocation and return times
that it is properly scheduled when the disk head is idle and reB#st necessarily be correlated to the deadline of the server to
to read more data. THeSSconcept allows the server to reque§PMplete the service. For example, if we let the deadline of the
processor sharing with a small server period (deadline) to iggpcation time and the return time to be small, the server will
high priority in rate-monotonic scheduling (deadline-monotofhiave more slack time to complete the service and vice versa.
scheduling) by the processor scheduler. T&Scomputes how  The execution pattern we consider is as shown in Figure 1.
much of the processor is needed in each server period to fuffithe pattern showrt,’4 represents not only the invocation time
all guaranteed services it grants to applications. It maps all obit also any computation needed before accessing the disk at the
processor requirements to{&’s, Ts, D } model. C; stands for application level. Similarly('’z models not only the return time
the processor computation needed in each server péribefore but also any computation needed after accessing the disk at the
the server deadlin®,. Selecting an optimal}, is quite difficult. application level. C'r is the time needed by théSSto access
A small 7, is desirable for a wide range of timing guarantegisk data on behalf of the application. 3fis the overall slack
because th€SScan guarantee only those requests that have fy@e available thely = D — (C4 + Cp + Cr). There are many
riods and deadlines greater than the server pé&fiocHowever, possible ways to share slaskamongS,, Sp andSg whereSy,

a small T, increases overhead and can significantly reduce txeand.Sg are the slack times for processor computatiot'af
granularity of the processor share that @@Scan request fromCs andCr respectively. Fixed slack-sharing among these three
the processor scheduler. stages is a simple scheme to share the resource. We will discuss

Even though the server can compute the amount of the tack-sharing in detail again in Section 3.
cessor needed to service applications, the time when the CPU is summary, ourCSS can not only provide hard real-time
available for the disk scheduler is critical since the disk schedgearantees but also allow the system to obtain high resource uti-
cannot use the available CPU when the disk drive is still bugation. It must be noted that the Cooperative Scheduling module



{Cs, Ty, Dy} format where; is the processor computation time

Time-execution pattern Co-scheduling slack sharing . . .
o needed every server peri@d with server deadliné;.
el o gl Cos, I Gose | oS The CSSis also responsible for requesting processor guaran-

. tees forC'4 andC'p. After successfully requesting the guarantee
_‘ of its own resource and all the processing needs' of C'r and
b itself, the CSSreturns a grant to the application. If admission
T T control fails, intelligent adaptation of the application-level per-
formance and hence its resource needs may become necessary.

Figure 1. The slack-sharing method for general processor consumption
pattern of threads

3. A CSSfor Disk Bandwidth Guarantees

also allows a controlled resource scheduler to use any scheduling  Aicaion ows
policy. Therefore, if a new scheduling policy that can guaran- Schedler
tee real-time service and improve the disk utilization becomes
available, theCSSallows the update of the scheduling policy and
thereby benefit from the increased disk performance.

2.4. The Programming Model with CSS

EDF Disk
Scheduler
Worker threads

\\
N Disk

Figure 3. The CSSdesign for disk bandwidth management
1. Resource Request

{RT.D,C,Cq}

This section shows how to adapt t8@&Sapproach to obtain

guaranteed and timely access to disk bandwidth. Figultas3
trates the architecture B5-CSS, a modified real-time filesystem
to achieve effective disk bandwidth and processor co-scheduling.
In our system, the disk scheduler uses the EDF scheduling policy
y e s 4. The cortralling resource and the processor scheduler uses the deadline-monotonic schedul-

admission control admission control ing policy. The main goal ofS-CSS is to give coordinated
service guarantees for both disk bandwidth and processor usage.
Since most of the processor reservations createdF®CSS

We now describe the programming model to be used by ap fve deadlines less than their periods, to get higher system uti-

cations with the Cooperative Scheduling Server. TSSuses ization, the kernel processor scheduler inside RT-Mach i.s set to
cooperative scheduling to synchronize the controlled and cd gdeadllne-monotonlcschedullng and the processarvation
trolling schedulers which may have different scheduling policigg. eduling policy to have' an enforpement of processor usgge [24].
It applies a conjunctive admission control to make sure that thﬁNe now present a bnef.overwew 675-CSS. Th? applica-

the controlled resource (the disk) and the controlling resource fiB Feauests a disk bandwidth guarantee by specifgirgg the
processor) needed are available. Tt@Sallows an applicationUmber (bytes) of data it wants to access every recurring pe-
to specify its resource requirement in &, 7, D, C'a, C } for- riod T before a deadliné together with the CPU computation
mat. C' stands for the amount of resource the application need@%ded before and aftgr accessing the disk. ABESS com-
every period" before adeadlin®. C'4 andC'p are the processoerteSCR' the ;Iapk ava|labl§* and share§ amongC's, C'p and
computation time needed at the application level before and &ftgr The admission controlin the disk scheduler ensures that the

accessing the controlled resourBeaccording to the executior@V SPeed and bandwidth of the disk drive are sufficient for all
pattern shown in Figure 1. guaranteed disk access services. Three processor reservations,

The architecture o€SSis shown in Figure 2. First th€ESS BFrps, AFrps andSERpps, are created to make sure that

computes ', and then shares slack time among the CPU neelJi/€ S €nough CPU sharing for the invocat(Gn of the disk

for C 4, Cp, andCg. CSSdoes the admission control to detergquest, the retgrn timép of the dISK request and the service
mine if the access of the controlled resource can be compl&t@§ C'r Of the disk scheduler respectively. .
before a deadlin®’ wherel is the adjusted deadline of the con- In the following subsection, we detail the system architecture
trolled scheduler to complete the application request after shalffleFS-CSS, the slack-sharing method, the&-CSS capacity

slack to bothC’y and C's (See Figure l)' Th€Ss computes 2Q-RAM (QoS-based Resource Allocation Model) [23] is an analytical model

the processor time-share nee'ded in order to satisfy t'iming GRAYallows applications to operate at different levels of quality of service (Qo0S)
straints of all guaranteed services and maps the requirementtae on the resources available, and can be used here.

The
controlling
(processor)
resource
manager

3. Reserve the needed
controlling resource

The
controlled
resource
manager

Figure 2. The Cooperative Scheduling Server ( CSS architecture




computatior, the admission control for the controlled resoureeB L; be the number of blocks reserved hy

(disk) and the admission control of the controlling resource (th& be the block size (bytes) iBS-CSS.

processor). The parameters of all reservatiéhBrrs, AFres - 1Tin, andT,.. be the overhead to invoke the request and return
andSERggs, are also derived. the data between the application and H& CSS respectively.

3.1. Disk BW Reservation Specification Notation Then, we have

Let the set ofn reservations requiring disk bandwidth guar- C;
antees be denoted asg, m», ..., 7,. Each reservation; needs BL; = | K]
to readC; bytes of data every; units of time. In addition, the ;.. = 2Ty.ex + 2700 + (Tys + Tio) * BL;
dataC; bytes must be available at or before deadlinen each Si = Di—(Ca, +Cp, + Tino + Tret + Caisre,)

periodic interval separated By. Let r; have higher priority than

Ti41,---,Tn. Thismeans thaby < D, <... < D, inthe case |n the implementation ofS-CSS, fixed slack-sharing is used

of the deadline-monotonic scheduling policy. The reservatiorye to the simplicity of the algorithm. Le®! be the deadline of

is also needed to provide€s, and C's, which are the proces+he disk server to service the disk access of reservatiarfter

sor cycles needed at the application level before and after digkk sharing the! = D; — C4, — Cp, — Sa, — Sp,.

access. The disk bandwidth request is therefore in the form ofrom Theorem 1 to be presented in the next section, the best

{Cy, Ti, Di, C4,, Cp, }- choice ofD is to make it an integral multiple of the server period

3.2 Disk Scheduler with Periodic Token Control Ts. . Let X be thg (approximate) proportion of available slack
A real-time file serverRTFS running on top of the RT-Mach@sSigned to the disk scheduler. Then,

microkernel manages the reserved real-time file systBMES Cuaisi, + (X % S)

has multiple worker threads, whichaeive and process file system Saisk, = | - T

requests from real-time clients. A worker thread is assigned to :

an incoming request until the request is completed. Each dislkOf the remaining slack, in order to balance the processor

request is fragmented into blocks (8KB per block in the currenilization needed between the pre-processing activity and the

implementation). When a worker thread gets a request, it stgyest-processing activity stages, we set the slack sharing for the

the request into a common request queue and blocks for a sigredbrocessing activitiys 4, and the slack sharing for the post-

(condition variable shown in Figure 3) from the scheduler. Tpcessing activity s, to be porportionalto the needed processor

disk scheduler signals the worker thread, which is responsdgmputation time of both activities. Then

for the next dispatched block access using the earliest deadline

| % Ts — Cassh,

scheduling policy. A token control scheme is added to confine Sa,+58, = Si— Saisk,
the processor computation BT FSto be periodic and satisfy the Sa,  _ Cai+Tinw
{C,, T, D, } parameter. A certain amount of token is replenished Sg Cp, + Tret

z

inevery server period,. The disk scheduler will allowthe access _ . _
of the next block if and only if there is a token available. FiguPdcking the right value forX is not an easy matter. Different

3 shows the architecture BTFSafter modification. values forX have different effects on the admission control as-
] o pects of the processor scheduler. In our experiment, we picked
3.3. Fixed Slack-Sharing inFS-CSS X = 75%. We tried to gef{ as high as possible to reduce the

_ Before sharing slack between the processor scheduler ang{B estimation oF S-CSS Capacity Computation which will be
disk scheduler, th&S-CSS has to compute the time needed {@uscribed later. However, a high&r causes shorter deadlines

get a disk accessS!; bytes under no CPU competition to find thg), C'4, and C's, which can lead to rejects from the processor
available slack for the request. Let admission control policy.

- Caisk, bethe (least) time needed to get access toytes without i .

CPU competition. 3.4.FS-CSS Capacity Computation

- Tseer @andT,.,; be the maximum seek time and rotational time Using a recurrence relation [12, 29S-CSS computes the

of the disk head respectively. number of data blocks the disk scheduler needs to access in every
- Tys andT;, be the disk scheduling overhead and the /O tingpstem period’, to fulfil all guaranteed services. In this section,
for the disk to read (or write) one file system block respectivelhe computation is shown together with the proof.

- 5; be the slack available for reservation _ THEOREM 1.  For n disk bandwidth reservations
-S4, andSp, be the slack time fo€’s; andC'p, respectively.  r, 7, . 7, the number of block8Sthe disk scheduler has
- Saisk, be the slack time for the disk bandwidth server. to read in every server peridd to fulfill all threads’ deadlines

/ /3 1 H 1
3This computation finds the number of data blocksF8eCSS needs to read D; WhereDl is the deadline of an reservationfrom the disk

in every server periofs to guarantee aFS-CSS services. Thenit can computeSETVET PErspective is given by
how much of the processor cycles needed to provide disk service and the blocking
time needed to wait the disk scheduler to access the data from the disk. BS = Max(BS1,BS2,...,BS,)



where B.S; is the number of blocks the scheduler has to read toAfter FS-CSSchecks the admission control of the disk access,

guarantee the reservation it has to make sure that the processor cycles neededfqrC's,
, , and itself are available. All processor reservations are needed to

D=1 (BLj * (%1) use{C, T, D, S, L} specification with implicit parametes. C
BS; =1 D! 1+ T stands for the processor computation time needed in every period

T before deadlind). S and L are the starting time and the life
PROOF. ; is schedulable if the number of blocks read by thighe of resource allocations respectively.is the blocking time
server during its deadlin®; is greater than the total number ghe application has to wait for any lower priority thread (or the
blocks needed for all higher priority threads and itself. Consifisk head in the filesystem case). There are two separate proces-
ering the worst case, the number of cycles each higher priogily reservations created for every new incoming disk reservation
thread exists in duration b} is counted by using the Cei””grequest,BFRES andAFggs. One global reservation created by
function as follows: the disk schedule§ E R, is updated for every new incoming
D} D} disk reservation request.
BS; + LFSJ > BLi+ ZBLJ * {Fj] BFgrps: This is the reservation for the application to invoke
I< ) the disk request to th€SSand the computation needed at the
(BLi + ) ;i BLj * [%] application levelbefore disk access. This reservation has the
) — 1] same period as the application period. The computation time is
iy ! iy reserved in the sum a@f 4 and the needed invocation time from
(BLi % [FH] + i BLj * [ 7] the application to the server. The deadline of the reservation
D * 15 is computed by adding the computation time with the slack time
; D ' got from slack-sharing. Inthe implementation, one assumption of
>oj=1 BLj [ 7] T having no blocking time during executiiig, is made. Therefore,
= D! ’ the parametefC, T, D, S, L}*andB for BFg g5, are as follows:

BS;

v

BS;

v

BS;

Note From the floor function above, the shortest of the setofc — ¢, 4+ 77, 7= 7, D = Ca. + Tiny + Sa,, B; =0

D; values that can serve the safd§; is whenD is an integral . )
multiple of 7. AFrgg: This is the reservation for thES-CSS to return

The ceiling function above is for adjustirs; to be an integralthe disk request to the application and the computation needed at

number of blocks needed to be read. To guarantee all reservalf¥n@pplication levebfter disk access. Similar & Frps, the
in the system, the number of blocks the server has to readpﬁé?mEte'{C'_T' D, S, L} and implicit parameteB for AFgEs,
server period is are as follows:

BS = max(BS1, BS2,...,BS,) C=Cg, +Tret,T=T;,D=Cpg, + Tret + Sp,, B; =0

3.5. Conjunctive Admission Control SERggs: This is the global processor reservation for the
"FS-CSS has two levels of admission control, one for diglemputation needed inside the disk scheduler. The disk sched-

bandwidth access guarantee and the other for processor guaraHéd1as to reserve all processor computation needed for reading
The admission control of disk accessder the EDF scheduling®> blocks of data every system peridd. The computation

policy for n disk bandwidth reservations under the assumptiorfi§fe needed in each server period is equal to the disk scheduler
no CPU competition is as follows: overhead to read (or write) one file system block tim&s The

I/0 time of disk device to read (or write) one file block timBs’

is considered as blocking time. This is because, during this time,
the disk scheduler has to wait for the device to finish reading (or
writing) the data block before scheduling the next block access.
whereT..., is the file system overhead including the commithe deadline of the reservation is equal to the server period. All
nication time between an application a@&Stogether with the parameters needed 6> Rrgs are as follows:

disk head setup time:

n

Z[Tsetup + BLZ * (Tfs + Eo)

BUpas] <1
T + <

i=1

C=BS«Ts, T=T,,D="T,, B=BS T,
Tsetup = Env + 2Tseek + 2T7‘ot + Tret !

B B, Bs B The processor admission control will determine if the new
BUpmar = max(?, T T ..,T—”) reservation request oBFrrgs and AFrgs, and the updated
1 42 43 n reservation request o £ Rrrs are feasible with the current
B is the priority inversion duration encountered by reservatigfbcessor utilization using admission control based on traditional
7i given by deadline-monotonic scheduling.
B; = (T¢s + Tio) + Ti — D; 4S andL can be set to be void without any effect on the reservation.



4. Performance Evaluation their deadlines. The result shows that all disk-access threads miss
In this section, we evaluafeS-CSS using a series of expertheir deadlines and their completion times are very varied. This
iments to study the efficiency of the co-scheduling between diskecause the disk scheduler dispatches unreserved disk accesses

bandwidth and processor for timeliness guarantees. We ranwiifhout considering any thread deadlirfeAnother reason is that
ferent disk bandwidth reservations under both heavy processeprocessor competing threads grab the processor needed by the
and disk competition workload to test the effectiveness of ttiek scheduler.

conjunctive admission control. Finally, we measured the averagén the second phase of this experiment, FBES and FS
processor usage in the server compared with the processoregaest disk bandwidth reservations. Figure 5 shows the com-

have reserved. pletion time of all four disk-access threads with their deadlines.
Table 1. The thread parameters used in the Experiment of Section 4. The result shows all three threads with disk bandwidth reserva-
tions meet their deadlines. ESwhich is a disk access thread
Th | No.| Reserve | C(ms/KB | T(m9 | D(m . ! ™~ . . ;
PG | 2 CPU ( > B éog éos withoutdisk bandwidth reservation, misses deadlines 136 times
CPU, | 2 CPU 6 100 100 out of 350 times. Compared with the variation of the completion
time of the unreserved disk access thread, the completion times
CPU, | 2 CPU 50 325 325 ) .
. of the reserved disk access thread are much more stable. This is
FS 1 Disk BW 18 KB 200 200 . .
because after the disk scheduler signals a worker thread to read a
FS 1 No Reserve| 80 KB 280 280 T .
- data block from disk, it allows the worker thread to continuously
FS 1 Disk BW 100 KB 320 320 d dat less there i thread with high orit :
FS, 1 Disk BW 270 KB 501 501 read data unless there is a new thread with higher priority coming

in. In other words, the disk scheduler is properly scheduled by the

] ] ] processor scheduler and hence gets a predictable response time.

4.1. The Effectiveness of Disk Bandwidth Guarantees * |n the third phase of this experiment, an aperiodic thread is
A sample set of scenarios is described below. Qualltatlvg wned to continuously consuiéavailable CPU without pro-

sin;lilar results were Ob,tai”id with serveral Iother workloads s o reservations. This thread consumes all available CPU. The
well. We testecRTFSusing theFS-CSS model on a Pentium Il o of this experiment is to show the effect of unreserved pro-

300 .MHZ workstation. The disk we used is a.6 GB drive_Withc@ssor thread on disk access threads. Figure 6 shows that the
maximum head seek latency of Band a maximum rotational

existence of an aperiodic CPU-consuming thread has an effect on
latency of 14ms

only FS, the disk access threadthoutdisk bandwidth reserva-
In our experiments, we pick the period of th8-CSS to be .; YFS

50 ms Larger the value of’,, higher is the granularity of the

FS-CSS processor capacity. However, the hard real-time dedeR. The Effectiveness of Processor Guarantees

lines supported bS-CSS are in multiples off;. This results e now re-emphasize the sustained effectiveness of the pro-
in an “internal fragmentation” loss equal {&, whereD’ is the C€SSOr guarantees in the system while using@B&model. .In '
deadline of the application. Due to the relative slowness of i@ Previous experiment, we have run several threads with disk
disks, we expect that applications requiring real-time disk Randwidth guarantqes simultanouesly with several threads with
cesses will have deadlines equal to or greater tham290We Processor computation guarantees (6POPU, and CPU as

then accept a practical internal fragmentation loss of up to 28¢¢€d in Table 1). As seen in Figures 4 through 6, the sys-
and setT, = 50 ms Naturally, 7, should be changedccord- €M can guarantee the deadlines of the disk bandwidth reserved

ingly if either the shortest application deadline or the acceptalfieeads. At the same time, all reserved-CPU thredsis meet

fragmentation loss changes. their deadlines in all experiments. The processor usage obtained
We first measured the following parametef;,, = 2.3ms, by these three CPU threads in the worst-case configuration used
Tyt = 4.2ms, Ty, = 500us, K = 8KB andT}, = 2.3ms. in Figure 6 is plotted in Figure 7 and corresponds exactly to the

Four periodic disk-access threads are spawned in several (@fHested reservatiofsThis reflects the effectiveness of both
figurations, with and without disk bandwidth reservations. In B0C€SSOr and disk bandwidth guarantees obtained witt 8%
experiments, we have a number of processor competing thrégsoach.
with processor reservations to consume any available processor
cycles. We run the experiment in a window time-span of 100 sec-
onds measuring the completion time compared with the deadline
requested by applications. All the threads in these experiments
are configured as shown in Table 1. 5The disk performance for unreservedservice can be improved by using SCAN

Note. The C4, andCp parameters of all FS threads are set &@orithm or other scheduling policies.
be 1msin our experiment_ SHowever, we have found that when the applications run for a relatively long

In the first phase of this experiment all disk-access threads“ﬁ}ee a very small number of deadlines eventually do get missed. We suspect
! that Some assumptions are being occasionally violated. Two likely candidates are

spawnedvithoutdisk bandwidth reservation. Figure 4 shows thSn-contiguous layout of disk blocks read by an application on the disk side, and
completion times of all four disk-access threads compared with-consideration of system overhead on the processor reservation side.




Table 2. Cpu over-estimation in Periodic Conversion

Reserved| U,¢s Uyseq | Over-estimation (percent
BFrps | 0.0281| 0.0276 1.78
AFgrps | 0.0462| 0.0460 0.43
SERgrgrs | 0.0900| 0.0250 72.22
Overall | 0.1643| 0.0986 39.99

4.3. Accuracy of theFS-CSS Processor Capacity
The FS-CSS reserves some capacity on the controlling CPU

resource as computed in Section 3.4. We conducted an experi-
ment to determine whether this capacity was being under-used.
The same set of threads as in the previous experiment was re-
run to measure the average processor usa§&SetSsS. Table 2
compares all processor reservations created with the average pro-
cessor usage ¢fS-CSS. As can be seen, our capacity computa-
tion is rather high relative to what is actually being consumed by
FS-CSS. This results in wasted processor allocatioRr8CSS.

The source of this over-estimation lies in the conservative com-
putation of the worst-case data block formula (using a ceiling
function) given in Section 3.4. This processor over-estimation
can be reduced in two ways.

1. Optimize the data block formula by reducing the effect of
the ceiling function.

2. From theFS-CSS processor capacity formula, the higher
the deadlineD! of the reservatiorr;, the less is the number of
average blocks the server has to read. Therefore, if the slack
time to the disk scheduler increases, the number of blocks needed
decreases. This reduces the processor reservatioRgg .
Consequently, the processor over-estimation is shrunk. Two ap-
proaches to increase; are:

Increase the level of acceptable latency at the application
level. The disk access (middle) stage of the programming model
can be pipelined such that the application can use buffering to
allow an additional period of disk access latency. This approach
increases the slack available and, therefore, increases the slack
time available to the disk scheduler. This is analogous to the
pipelining stages in an end-to-end path of distributed real-time
systems. The cost is increased data latency at the application
level but with better schedulability.

Increase the percent of slack-sharing for the disk sched-
uler server from BlFrrps and AFrgs. In the experiment de-
scribed earlier, fixed slack-sharing has been used. The percent
of slack-sharing to the disk server can be increased to reduce
the problem of processor over-estimation. However, when the
percent of slack-sharing to the disk server is increased, the slack
available toBFrrs and AFrps are decreased. This leads to
shorter deadlines faB Frgs andA Frgs. From the experiment,
the deadlines oBFrps and AFrps after slack adjustment are
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and/or network bandwidth. We have proposed the use of a Co-
oot Tsoms s operative Scheduling ServeE,SS which serves as a dedicated
eemmTm resource management server that can use a controlling resource
and a controlled resource. A conjunctive scheme that requires

60000 T

50000 *. *. *

40000 successful admission on both resources is therefore used. We
have applied this scheme successfully to obtain guarantees in the
30000 use of both disk bandwidthnd processor cycles. Our experi-

ments show the effectiveness of the disk bandwidth guarantees
under both heavy processor and competing disk workloads. The
programming model we assume led us to a fixed slack-sharing
scheme. However, the processor capacity needed by this filesys-
tem CSS(namedFS-CSS) is found to be rather pessimistic and

’ T conservative. This aspect can be effectively addressed by the
use of a biased slack-sharing scheme that favors the bottleneck
resource or the introduction of pipelining with additional end-to-
end latency at the application level.

satisfied simultaneously. Future work on the topic can proceed along several fronts. The
which favors the disk resource is a better approach than fipedformance-sensitive parameters in @8Smodel need to be
slack-sharing for increasing the slack to the scheduler servestutlied at greater depth. The choice of the server péridch-
simultaneously reduces the problem of rejects from the deadlaests not only the effectiveness of t8B8Sin meeting application-
monotonic admission control tB Frrss andAFress. This level deadlines, but also the granularity of the processor capacity

20000

The Processor Computation Time (us)

10000

Figure 7. The processor usage of the reserved CPU threads with the disk
ccess threads and an unreserved thread ~ CONtiNUOUSIYonsuming all
available CPU. Both CPU and disk bandwidth reservations are being

biased slack-sharing scheme is as follows: usage. In addition, our admission control of disk access is very
Let there ben disk bandwidth reservations in the system agnservative. We use the maximum seek and rotational time of
T, T2, ..., Tn WhereD; < D, < ... < D,. S;, Sa,, Sg, thedisk head, whilein practice, the actual seek and rotational de-
are the slack available iIRFRrgs, BFrrps and AFgrgs of 7; lays would be much smaller and variant. Optimized disk layout
respectively, then schemes and exploitation of the statistical behavior of the disk
can enhance the overall performance of@&Smodel. Finally,
SB, = Ca, + (dunit * (2i — 1)) an implementation oNT-CSS (the network server usinGSS

Su, = O, + (dumic + (20)) .mo.del) is.needed to co-schedule multiple controlled resources
: : unt inside a single node for simultaneous application usage of net-

In our case, we picked,,;: = 5ms. This approach reducesvork bandwidth, disk bandwidth and processor capacity. The
the processor competition amoBd'rrsS andA Frrss because randomness of incoming network packets can also have an ad-
every time one more pair a8 Frrps and AFrgs is added into verse effect on theT-CSSmodel. This effect can be reduced by
the system, all slacks oBFrrss andAFresS are increased(a) minimizing the processing time of packet classifiers inside the
and adjusted in order of the deadlines of the applications tpeytocol stack, (b) adding a buffer in the kernel so the protocol
are responsible for. Therefore, the processor utilization, whithck merely adds incoming packets into the buffer, and (c) by
is seen by any threads that have deadlines falling betweenhthéng theNT-CSS periodically read the buffer and dispatching
deadlines ofBFrEsS, AFrrsS and file-access threads, for alb the application based on the processor reservatidiTe€SS.
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