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Abstract
Obtaining simultaneous and timely access to multiple re-

sources is known to be an NP-complete problem [10]. Com-
plete resource decoupling is, therefore, often used for managing
end-to-end delays in distributed real-time systems where each
processor is scheduled independent of the others. This decou-
pling approach unfortunately fails when multiple resources must
be managedwithin a single node. Resources such as disk band-
width and network bandwidth are available on a single node but
must be managed by their host processor by means of device
drivers, filesystem or protocol services. The host processor act-
ing as acontrolling resource, therefore, must play multiple roles.
One, it is used by applications on that node. Two, it is used to
control and manage other (time-shared)controlled resourcesin-
cluding disk bandwidth and network bandwidth. These two roles,
unfortunately, can often be at odds with one another.

In this paper, we investigate the problem of co-scheduling con-
trolling and controlled resources. We propose the use of a Coop-
erative Scheduling Server (CSS), which is a dedicated server that
manages one specific controlled resource (like disk bandwidth,
network bandwidth, inter-process communication, etc.) while us-
ing a controlling resource (like the processor). Two core ideas
underlie our approach. First, a single (aperiodic) server is cre-
ated on a controlling resource (such as a CPU) to handleall local
requests for a controlled resource (such as disk bandwidth). This
implies that conjunctive admission control must be carried out on
both the controlling and controlled resources. Secondly, timing
constraints at the application level are partitioned into multiple
stages, each of which will be guaranteed to complete on a particu-
lar resource.RTFSis a real-time filesystem [2] that provides disk
bandwidthguarantees under lightCPU loads. With a cooperative
scheduling server (FS-CSS) for this disk-based filesystem, disk
bandwidth guarantees can be obtained underboth heavy CPU
and disk workloads. We describe the design and implementa-
tion of FS-CSS for providing disk bandwidth guarantees. We
conclude with a detailed performance evaluation ofFS-CSS.

1. Introduction
The essential goal of OS resource management for real-time

and multimedia system is to provide timely, guaranteed and pro-
tected access to system resources [24]. However, schedulers in
real-time systems normally focus on a single resource at any

given time. For example, a significant amount of research has
focused on processor scheduling alone and similarly for network
scheduling alone. Disk bandwidth scheduling has been studied
to a smaller extent. The problem that has not received sufficient
attention is the one of using these different resources, such as the
processor, network and disk bandwidth,simultaneouslywithin
a single node. Sophisticated multimedia applications including
video-on-demand and live video-conferencing may access high
volume data from a disk, process the data, and transmit it across
the network. All these stages must complete by a deadline. This
resource management problem is complicated for two reasons.
First, it is known that obtaining simultaneous and timely access
to multiple resources is known to be an NP-complete problem
[10]. Two, each of these resources may be scheduled by a dif-
ferent scheduling policy so that resulting scheduling mismatches
have to be resolved.

The most straightforward way of approaching the multiple re-
source co-scheduling problem is to decouple the use of different
resources [24]. This resource decoupling solution is effective
only if resources are independent of one another. For example,
consider an application which is computation-intensive. Even
though its processor guarantee is granted by the processor ad-
mission control, the application could miss its deadline because
of page faults. The memory resource guarantee can be managed
independently from the processor by binding the application code
and data into main memory during initialization [28]. Therefore,
the application can just request the processor guarantee and the
memory guarantee separately. Unfortunately, in practice, some
combinations of resources cannot be totally scheduled indepen-
dently such as the disk bandwidth-processor pair and the network
bandwidth-processor pair. Many resource couplings are in fact
tied up with the processor for the simple reason that it serves
two purposes: for computation by applications and for control of
other I/O peripherals.

We now provide a brief overview of RT-Mach and its Real-
Time Filesystem (RTFS) to provide context and background for
the CSS design and implementation.

1.1. A Brief Overview of RT-Mach
RT-Mach [24] is a microkernel operating system which em-

ploys separately scheduled servers to provide various system
services [7]. It supports an integrated framework that encom-



passes task scheduling, virtual memory management, synchro-
nization primitives, real-time inter-process communications, real-
time disk scheduling and real-time network protocol processing.
More recently, RT-Mach has adopted a resource-centric approach
based on resource reservations and strict enforcement to provide
timely and guaranteed access to resources. This core subsystem
that delivers timely access to resources is called aresource ker-
nel [24]. An application using the “resource kernel” can specify
multiple resource reservations simultaneously and independent
of the scheduling policy in the kernel (rate-monotonic policy,
deadline-monotonic policy or earliest deadline first policy). The
reservation specification uses thefC; T;D; S; Lg model for the
reservation of resourceC units of time every recurring time in-
tervalT before a deadlineD. S andL are the starting time and
the life time of resource allocation respectively. In addition, RT-
Mach tracks an implicit resource parameter, the blocking timeB.
This blocking time represents the maximum (desirably bounded)
time that a reservation instance must wait for lower priority reser-
vations while executing. This implicit parameterB is introduced
with the priority inheritance algorithm[22, 26] supported in the
RT-Mach kernel to limit the priority inversion problem. RT-Mach
uses the resource decoupling technique to provide the admission
control mechanism of each resource separately before granting a
resource reservation to the application. It also enforces the usage
of resources such that the abuse of resources (intended or not)
by one application does not hurt other guaranteed applications.
However, as we stated earlier, the resource decoupling technique
is feasible only if resources can be independently managed.

1.2. An Overview of Real-Time Filesystems on RT-Mach
Real-Time Filesystem Server (RTFS) [2] is a real-time file

server running on top of the RT-Mach resource kernel. It has
an admission control policy for disk scheduling using the same
concept of rate-monotonic analysis for processor scheduling pro-
posed by Liu and Layland [18]. The application can again request
a disk bandwidth guarantee using thefC; T;Dgparameters of the
resource kernel.C stands for the number of bytes the applica-
tion wants to read in a duration of periodT before a deadline
D. RTFShas multiple worker threads which receive and pro-
cess file access requests from real-time clients. Each worker
thread is responsible for storing an incoming request into a com-
mon disk request queue. The disk request queue is divided into
two different queues: one for reserved requests and the other
for unreserved requests and depleted requests1. The disk sched-
uler dispatches reserved requests first using an earliest deadline
first (EDF) scheduling policy and dispatches unreserved requests
when no reserved request is left in the queue.RTFS provides
disk access guaranteesunder diskaccess competition workloads
but only with a light CPU workload.

1.3. Comparison with Related Work
In this paper, we implement a filesystem cooperative schedul-

ing server (FS-CSS) by modifying the real-time filesystem server

1Depleted requests are reserved requests that have already consumed all of
their disk bandwidth reservations.

(RTFS) [2]. RTFSfocuses on how the disk scheduler handles the
disk request from applications to guarantee time constraints under
light CPU workloads. However, during CPU overload conditions,
RTFScan become unstable because the disk management activi-
ties are not properly scheduled by the kernel.

The co-scheduling problem between the processor and the disk
is discussed in the continuous media file system (CMFS) in [8].
CMFS is designed and implemented to support real-time stor-
age and retrieval of continuous media data. It uses a buffering
technique to reduce the level of synchronization between the ap-
plication and the disk server. The response time of diskaccesses
is improved by a disk layout adjustment in order to support real-
time behavior. CMFS addresses throughput issues but without
hard guarantees.

Resource decoupling and a system (or intermediate) reser-
vation technique is proposed in [24]. This approach tries to
decouple resources into separately scheduled entities. The “sys-
tem reservation” is created for any device scheduler that needs the
synchronization between its controlled resource management and
the controlling processor cycles. With the system reservation, the
disk scheduler gets a guarantee that the required disk service will
be dispatched immediately after the disk access completes. Even
though this approach can provide diskaccess guarantees, the ex-
act processor admission control policy is not clear. There is no
mechanism to make sure that the system reservation is sufficiently
sized for the disk scheduler, or to manage the system reservation
among multiple resources such as network bandwidth and disk
bandwidth.

Our work is also closely related to that of Jeffay et al.[11] and
Lee et al.[3] in the scheduling of OS services. The former studied
the problem of scheduling the communication protocol stack pro-
cessing activities inside a monolithic operating system. A fixed
slack-sharing scheme was implemented in the kernel to ensure
that guaranteed network bandwidth is available to applications.
[3] considered the problem of scheduling protocol stack process-
ing activities in a micro-kernel environment. Their solution is
to have a very efficient packet filter that routes packets to clients
who process the communication protocol stack within their own
address spaces using user-level threads. With this scheme, the
use of system resources for system activities is “charged” to user
threads. Hence, it forces applications to request and reserve suffi-
cient processing resources to satisfy even their “system activities”.
Our CSSapproach can also be viewed as a generic solution for
scheduling OS activities, and it can be applied in a micro-kernel
environment or a monolithic kernel. TheCSS implementation
discussed in this paper is built in a micro-kernel environment but
the server concept is also applicable within a monolithic kernel.

We now summarize and compare our approach with the
above approaches. Our Cooperative Scheduling strategy uses
a dedicated server to separate the resource management between
the disk (or the network) and the processor. Our Filesystem-
Cooperative Scheduling Server (FS-CSS) is an enhanced version
of RTFSto provide a guarantee of disk accessunder heavy CPU



anddisk workloads. Weuse thesamescheme in thedisk scheduler
as theRTFSbut add the cooperative scheduling module to make
sure that the disk scheduler (in say a device driver) gets necessary
cycles on the CPU in timely fashion. This is accomplished by
having the processor admission control module take intoaccount
the exact processor needs of theFS-CSS. With this approach,
both network bandwidth and disk bandwidth guarantees can co-
exist in the system since the processor scheduler can individually
track how much of the processor cycles theFS-CSSandNT-CSS
(NeTwork-Cooperative Scheduling Server) need andaccount for
those into the admission control. In addition, a conjunctive ad-
mission control used inside ourCSSmodule considers both the
waiting time for the disk head to complete diskaccess and the
waiting time for the service to be dispatched to make sure both
components are coordinated to meet the deadline of the applica-
tion. This enables theFS-CSS to provide hard real-time service
guarantees under heavy CPUanddisk workloads.

1.4. Organization of the Paper
The rest of this paper is organized as follows. In Section 2, we

present the requirements of a good multi-resource co-scheduling
strategy. We describe our use of the Cooperative Scheduling
Server (CSS), a dedicated server to manage each resource (disk
bandwidth, network bandwidth, memory, etc.) in conjunction
with a processor resource. In Section 3, we detail our imple-
mentation of theCSSapproach for Disk bandwidth management
on the RT-Mach microkernel-based system running a real-time
server (a simple OS personality). Section 4 focuses on the per-
formance evaluation of this approach. Finally, we present our
concluding remarks outlining our research contributions and fu-
ture work in Section 5.

2. Design Issues
In order to guarantee all controlled resource accesses against

deadline misses, a co-scheduling strategy needs to make sure
that the controlled resource (disk bandwidth or network band-
width server) gets the proper sharing of the controlling resource,
namely processor cycles, on a timely basis. This section discusses
important design issues for such a co-scheduling strategy. Then
we propose theCooperative Scheduling Server(CSS) concept to
synchronize the controlled resource scheduler and the controlling
resource scheduler and provide a conjunctive admission control
for both resources.

2.1. Important Issues for Co-Scheduling Design
We now list some important considerations that influence the

design of a co-scheduling strategy.
Scheduling Mismatch due to heterogeneity of resource

scheduling policies: The lack of explicit co-scheduling among
resources can lead to a scheduling mismatch. For instance, in the
case of disk bandwidth guarantees, the controlled resource is the
disk bandwidth. Its controlling resource is the processor. The
processor scheduler can assign the CPU thread priority according
to the rate-monotonic scheduling policy. The disk scheduler can
assign the disk access priority according to the earliest deadline

first policy. This priority conflict poses the following dilemma. A
CPU service must execute to initiate and complete disk transfers.
From the disk perspective, one must ensure that these disk-related
activities are not unduly delayed by other higher priority activities
on the CPU. From the processor perspective, native CPU appli-
cations must not miss their timing constraints due to disk-related
activities on the CPU.

Conjunctive Admission Control: The admission control of
each controlled resource has to take not only its own resource
access into account but also the availability of the controlling
resource. Hence, to guarantee real-time service, the admission
control of co-scheduling strategy needs to account for both the
response time for the disk driver toaccess data from the diskand
the response time of the processor scheduler to dispatch the driver
process.

Resource Synchronization: Disk access commands, once
issued to the disk, can proceed in parallel with processor compu-
tations on behalf of applications. Good synchronization between
the disk and the processor will allow both resources to make
progress in parallel as much as possible.

Efficient Resource Utilization: The main goal of real-time
scheduling is to achieve high utilization and still guarantee dead-
lines for applications. Therefore, in addition to guaranteeing the
deadline of multiple resourceaccesses, the system should provide
acceptably high overall system utilizationof all system resources.

2.2. The Cooperative Scheduling Server Concept
The Cooperative Scheduling Server (CSS) is a dedicated server

for the management of controlled resources. In this paper, we
focus on the co-scheduling between the disk and the processor
but the same approach can be adapted to network bandwidth and
the processor as well. We now present a high-level overview of
ourCSSapproach.

A dedicated server,CSS, is created on a controlling resource
to be responsible forall accesses to one particular controlled
resource. Suppose that the CPU is the controlling resource, and
disk bandwidth is the controlled resource. This “filesystemCSS”,
called theFS-CSS, reserves a sufficient amount of capacity on
the CPU as needed to fulfil the obligations it makes for access-
ing disk bandwidth. When an application requests guaranteed
and timely access to disk bandwidth, an explicit demand on the
disk bandwidth and an implicit demand on the CPU are imposed.
FS-CSS, therefore, performs admission control on both the CPU
and the disk bandwidth to ensure that both demands can be sat-
isfied. We refer to this asconjunctive admission control. From
theCSSpoint of view, it needs to correctly evaluate the imposed
demands on the CPU and the disk for an incoming request. In
addition, since it must satisfy the timing needs of multiple appli-
cations, its own parameters (period and aggregate capacity) must
be determined.

The design of theCSSis tightly tied to the pattern of usage of
the controlled resource (such as disk bandwidth). In general, an
application needs to consume both CPU capacity and disk band-
width within a certain deadline. Hence, an executing application



may alternate between requests for disk accesses and CPU pro-
cessing. To illustrate our concepts, without loss of generality,
we adopt a simple but reasonable programming model where an
application performs some CPU processing, initiates disk trans-
fers and continues with CPU processing after the disk transfer is
complete. We impose timing constraints (deadlines) on each of
these three stages, the sum of which will equal the overall timing
constraint of the application.

The assignment of deadlines to these “pipeline stages” is not
unlike the “end-to-end scheduling” problem where end-to-end
timingconstraints can be satisfied by partitioningdeadlines across
stages of the end-to-end path. The primary differences in our
case are two-fold. One, the timing constraints on each of our
stages are much tighter. Two, the disk transfers corresponding to
multiple applications are handled by oneCSSserver, an aspect
that does not have a direct counterpart in end-to-end scheduling.
The implication of this latter observation is that theCSSserver
parameters have to be carefully chosen and analyzed. We shall
discuss this issue in more detail in Section 3.3 and Section 4.3.

2.3. The Detailed Design ofCSS
A dedicated Cooperative Scheduling Server (CSS) provides

applications timing guarantee usingfC; T;Dg parameters where
C stands for the amount of resource the application needs in a
recurring period ofT before a deadlineD. The unit ofC depends
on the type of each resource. For example,C is the number
of bytes (and hence the disk bandwidth consumption time) in
the case of disk bandwidth, and the processor computation time
needed in the case of the processor.

In co-scheduling the disk and the CPU, when the disk head has
completed its reading, the disk scheduler may not get a bounded
response time from the processor scheduler. This can cause an ap-
plication to miss its deadline. Our Cooperative Scheduling Server
will request a guarantee from the processor scheduler to make sure
that it is properly scheduled when the disk head is idle and ready
to read more data. TheCSSconcept allows the server to request
processor sharing with a small server period (deadline) to get
high priority in rate-monotonic scheduling (deadline-monotonic
scheduling) by the processor scheduler. TheCSScomputes how
much of the processor is needed in each server period to fulfill
all guaranteed services it grants to applications. It maps all of its
processor requirements to afCs; Ts; Dsg model. Cs stands for
the processor computation needed in each server periodTs before
the server deadlineDs. Selecting an optimalTs is quite difficult.
A small Ts is desirable for a wide range of timing guarantees
because theCSScan guarantee only those requests that have pe-
riods and deadlines greater than the server periodTs. However,
a smallTs increases overhead and can significantly reduce the
granularity of the processor share that theCSScan request from
the processor scheduler.

Even though the server can compute the amount of the pro-
cessor needed to service applications, the time when the CPU is
available for the disk scheduler is critical since the disk scheduler
cannot use the available CPU when the disk drive is still busy.

TheCSStherefore considers the response time of the disk driver
to read the data from the disk as “blocking time”. The proces-
sor scheduler takes this blocking time as an implicit parameter
into the admission control test to ignore all available CPU when
the disk is busy. This guarantees that the the disk scheduler has
sufficient CPU available to run when the disk is not busy.

When theCSS receives a grant of its processor request, it
receives a priority in the processor scheduler based on the server
period (deadline). We refer to this priority asCSSpriority. This
CSSpriority will be used for all application threads that request
disk guarantees during the disk access. Therefore, whatever the
application priority, the disk scheduler would use theCSSpriority
to get appropriately high priority scheduling on the processor
when it needs disk services.CSS thus eliminates any priority
mismatches between application and disk access priorities. In
other words, the processor scheduler views all applications that
need the disk access as having the same priority, and has full
control over all application threads that access the disk.

To use theCSS model, we have to make sure that the
CPU consumption of theCSSis periodic and satisfied with the
fCs; Ts; Dsg requirement given to the processor scheduler. The
CSSuses a token control algorithm to confine its processor con-
sumption to be periodic with periodTs and not larger than the
amount of the processor it has reserved. We will show in Section
3 how to compute the amount of processor needed by theCSS.

One last consideration needed is regarding the bounded re-
sponse time for the communication between an application and
theCSS. An application request must not be received at theCSS
too late. Similarly, the time for theCSS to send the disk data
back to the application must also be bounded. We refer to the
time of communication from the application to the server as the
invocation time, and that from the server to the application as the
return time. The deadline for both invocation and return times
must necessarily be correlated to the deadline of the server to
complete the service. For example, if we let the deadline of the
invocation time and the return time to be small, the server will
have more slack time to complete the service and vice versa.

The execution pattern we consider is as shown in Figure 1.
In the pattern shown,CA represents not only the invocation time
but also any computation needed before accessing the disk at the
application level. Similarly,CB models not only the return time
but also any computation needed after accessing the disk at the
application level.CR is the time needed by theCSSto access
disk data on behalf of the application. IfS is the overall slack
time available thenS = D� (CA +CB + CR). There are many
possible ways to share slackS amongSA, SB andSR whereSA,
SB andSR are the slack times for processor computation ofCA,
CB andCR respectively. Fixed slack-sharing among these three
stages is a simple scheme to share the resource. We will discuss
slack-sharing in detail again in Section 3.

In summary, ourCSS can not only provide hard real-time
guarantees but also allow the system to obtain high resource uti-
lization. It must be noted that the Cooperative Scheduling module
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Figure 1. The slack-sharing method for general processor consumption
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also allows a controlled resource scheduler to use any scheduling
policy. Therefore, if a new scheduling policy that can guaran-
tee real-time service and improve the disk utilization becomes
available, theCSSallows the update of the scheduling policy and
thereby benefit from the increased disk performance.

2.4. The Programming Model withCSS

CA         R          CB

Application1. Resource Request
    {R,T,D,CA,CB}

The 
controlled 
resource
manager

The 
controlling
(processor) 

resource
manager

3. Reserve the needed 
    controlling resource

2. The controlled resource 
    admission control

4. The controlling resource 
    admission control

Figure 2. The Cooperative Scheduling Server ( CSS) architecture

We now describe the programming model to be used by appli-
cations with the Cooperative Scheduling Server. TheCSSuses
cooperative scheduling to synchronize the controlled and con-
trolling schedulers which may have different scheduling policies.
It applies a conjunctive admission control to make sure that both
the controlled resource (the disk) and the controlling resource (the
processor) needed are available. TheCSSallows an application
to specify its resource requirement in anfC; T;D;CA; CBg for-
mat.C stands for the amount of resource the application needs in
every periodT before a deadlineD. CA andCB are the processor
computation time needed at the application level before and after
accessing the controlled resourceR according to the execution
pattern shown in Figure 1.

The architecture ofCSSis shown in Figure 2. First theCSS
computesCR and then shares slack time among the CPU needed
for CA, CB, andCR. CSSdoes the admission control to deter-
mine if the access of the controlled resource can be completed
before a deadlineD0 whereD0 is the adjusted deadline of the con-
trolled scheduler to complete the application request after sharing
slack to bothCA andCB (see Figure 1). TheCSScomputes
the processor time-share needed in order to satisfy timing con-
straints of all guaranteed services and maps the requirement to a

fCs; Ts; Dsg format whereCs is the processor computation time
needed every server periodTs with server deadlineDs.

TheCSSis also responsible for requesting processor guaran-
tees forCA andCB. After successfully requesting the guarantee
of its own resource and all the processing needs ofCA, CB and
itself, theCSSreturns a grant to the application. If admission
control fails, intelligent adaptation of the application-level per-
formance and hence its resource needs may become necessary.2

3. A CSSfor Disk Bandwidth Guarantees
Application
     Task

App. 1

App. 2

Worker threads

EDF Disk 
Scheduler

Token control

Disk

DMS
Processor 
Scheduler

Figure 3. The CSSdesign for disk bandwidth management

This section shows how to adapt theCSSapproach to obtain
guaranteed and timely access to disk bandwidth. Figure 3illus-
trates the architecture ofFS-CSS, a modified real-time filesystem
to achieve effective disk bandwidth and processor co-scheduling.
In our system, the disk scheduler uses the EDF scheduling policy
and the processor scheduler uses the deadline-monotonicschedul-
ing policy. The main goal ofFS-CSS is to give coordinated
service guarantees for both disk bandwidth and processor usage.
Since most of the processor reservations created byFS-CSS
have deadlines less than their periods, to get higher system uti-
lization, the kernel processor scheduler inside RT-Mach is set to
use deadline-monotonic scheduling and the processorreservation
scheduling policy to have an enforcement of processor usage [24].

We now present a brief overview ofFS-CSS. The applica-
tion requests a disk bandwidth guarantee by specifyingC as the
number (bytes) of data it wants to access every recurring pe-
riod T before a deadlineD together with the CPU computation
needed before and after accessing the disk. TheFS-CSS com-
putesCR, the slack availableS and sharesS amongCA, CB and
CR. The admission control in the disk scheduler ensures that the
raw speed and bandwidth of the disk drive are sufficient for all
guaranteed disk access services. Three processor reservations,
BFRES , AFRES andSERRES , are created to make sure that
there is enough CPU sharing for the invocationCA of the disk
request, the return timeCB of the disk request and the service
timeCR of the disk scheduler respectively.

In the following subsection, we detail the system architecture
insideFS-CSS, the slack-sharing method, theFS-CSS capacity

2Q-RAM (QoS-based Resource Allocation Model) [23] is an analytical model
that allows applications to operate at different levels of quality of service (QoS)
based on the resources available, and can be used here.



computation3, the admission control for the controlled resource
(disk) and the admission control of the controlling resource (the
processor). The parameters of all reservations,BFRES , AFRES
andSERRES , are also derived.

3.1. Disk BW Reservation Specification Notation
Let the set ofn reservations requiring disk bandwidth guar-

antees be denoted as�1; �2; : : : ; �n. Each reservation�i needs
to readCi bytes of data everyTi units of time. In addition, the
dataCi bytes must be available at or before deadlineDi in each
periodic interval separated byTi. Let �i have higher priority than
�i+1; : : : ; �n. This means thatD1 � D2 � : : : � Dn in the case
of the deadline-monotonic scheduling policy. The reservation�i
is also needed to provideCAi

andCBi
which are the proces-

sor cycles needed at the application level before and after disk
access. The disk bandwidth request is therefore in the form of
fCi; Ti; Di; CAi

; CBi
g.

3.2. Disk Scheduler with Periodic Token Control
A real-time file server (RTFS) running on top of the RT-Mach

microkernel manages the reserved real-time file system.RTFS
has multiple worker threads,which receive and process file system
requests from real-time clients. A worker thread is assigned to
an incoming request until the request is completed. Each disk
request is fragmented into blocks (8KB per block in the current
implementation). When a worker thread gets a request, it stores
the request into a common request queue and blocks for a signal
(condition variable shown in Figure 3) from the scheduler. The
disk scheduler signals the worker thread, which is responsible
for the next dispatched block access using the earliest deadline
scheduling policy. A token control scheme is added to confine
the processor computation ofRTFSto be periodic and satisfy the
fCs; Ts; Dsg parameter. A certain amount of token is replenished
in every server periodTs. The disk scheduler will allow the access
of the next block if and only if there is a token available. Figure
3 shows the architecture ofRTFSafter modification.

3.3. Fixed Slack-Sharing inFS-CSS
Before sharing slack between the processor scheduler and the

disk scheduler, theFS-CSS has to compute the time needed to
get a disk accessCi bytes under no CPU competition to find the
available slack for the request. Let
-Cdiski be the (least) time needed to get access toCi bytes without
CPU competition.
- Tseek andTrot be the maximum seek time and rotational time
of the disk head respectively.
- Tfs andTio be the disk scheduling overhead and the I/O time
for the disk to read (or write) one file system block respectively.
- Si be the slack available for reservation�i.
- SAi

andSBi
be the slack time forCAi

andCBi
respectively.

- Sdiski be the slack time for the disk bandwidth server.

3This computation finds the number of data blocks theFS-CSS needs to read
in every server periodTs to guaranteeallFS-CSSservices. Then it can computes
how much of the processor cycles needed to provide disk service and the blocking
time needed to wait the disk scheduler to access the data from the disk.

- BLi be the number of blocks reserved by�i.
- K be the block size (bytes) inFS-CSS.
- Tinv andTret be the overhead to invoke the request and return
the data between the application and theFS-CSS respectively.
Then, we have

BLi = d
Ci

K
e

Cdiski = 2Tseek + 2Trot + (Tfs + Tio) �BLi

Si = Di � (CAi
+CBi

+ Tinv + Tret + Cdiski)

In the implementation ofFS-CSS, fixed slack-sharing is used
due to the simplicity of the algorithm. LetD0

i be the deadline of
the disk server to service the disk access of reservation�i after
slack sharing thenD0

i = Di � CAi
�CBi

� SAi
� SBi

.
From Theorem 1 to be presented in the next section, the best

choice ofD0

i is to make it an integral multiple of the server period
Ts. Let X be the (approximate) proportion of available slack
assigned to the disk scheduler. Then,

Sdiski = b
Cdiski + (X � Si)

Ts
c � Ts � Cdiski

Of the remaining slack, in order to balance the processor
utilization needed between the pre-processing activity and the
post-processing activity stages, we set the slack sharing for the
pre-processing activitiySAi

and the slack sharing for the post-
processing activitySBi

to be porportional to the needed processor
computation time of both activities. Then

SAi
+ SBi

= Si � Sdiski
SAi

SBi

=
CAi

+ Tinv

CBi
+ Tret

Picking the right value forX is not an easy matter. Different
values forX have different effects on the admission control as-
pects of the processor scheduler. In our experiment, we picked
X = 75%. We tried to getX as high as possible to reduce the
over-estimation ofFS-CSSCapacity Computation which will be
described later. However, a higherX causes shorter deadlines
for CAi

andCBi
which can lead to rejects from the processor

admission control policy.

3.4.FS-CSS Capacity Computation

Using a recurrence relation [12, 29],FS-CSS computes the
number of data blocks the disk scheduler needs to access in every
system periodTs to fulfil all guaranteed services. In this section,
the computation is shown together with the proof.

THEOREM 1. For n disk bandwidth reservations
�1; �2; : : : ; �n, the number of blocksBS the disk scheduler has
to read in every server periodTs to fulfill all threads’ deadlines
D0

i whereD0

i is the deadline of an reservation�i from the disk
server perspective is given by

BS = Max(BS1; BS2; : : : ; BSn)



whereBSi is the number of blocks the scheduler has to read to
guarantee the reservation�i

BSi = d

Pi

j=1 (BLj � d
D

0

i

Tj
e)

D0

i

e � Ts

PROOF. �i is schedulable if the number of blocks read by the
server during its deadlineD0

i is greater than the total number of
blocks needed for all higher priority threads and itself. Consid-
ering the worst case, the number of cycles each higher priority
thread exists in duration ofD0

i is counted by using the ceiling
function as follows:
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Note: From the floor function above, the shortest of the set of
D0

i values that can serve the sameBSi is whenD0

i is an integral
multiple ofTs.

The ceiling function above is for adjustingBSi to be an integral
number of blocks needed to be read. To guarantee all reservations
in the system, the number of blocks the server has to read per
server period is

BS = max(BS1; BS2; : : : ; BSn)

3.5. Conjunctive Admission Control
FS-CSS has two levels of admission control, one for disk

bandwidthaccess guarantee and the other for processor guarantee.
The admission control of disk accessunder the EDF scheduling
policy forn disk bandwidth reservations under the assumption of
no CPU competition is as follows:

nX

i=1

[
Tsetup+ BLi � (Tfs + Tio)

Ti
+BUmax ] � 1

whereTsetup is the file system overhead including the commu-
nication time between an application andCSStogether with the
disk head setup time:

Tsetup = Tinv + 2Tseek + 2Trot + Tret

BUmax = max(
B1

T1
;
B2

T2
;
B3

T3
; : : : ;

Bn

Tn
)

Bi is the priority inversion duration encountered by reservation
�i given by

Bi = (Tfs + Tio) + Ti �Di

After FS-CSSchecks the admission controlof the disk access,
it has to make sure that the processor cycles needed forCAi

,CBi

and itself are available. All processor reservations are needed to
usefC, T ,D, S, Lg specification with implicit parameterB. C
stands for the processor computation time needed in every period
T before deadlineD. S andL are the starting time and the life
time of resource allocations respectively.B is the blocking time
the application has to wait for any lower priority thread (or the
disk head in the filesystem case). There are two separate proces-
sor reservations created for every new incoming disk reservation
request,BFRES andAFRES . One global reservation created by
the disk scheduler,SERRES , is updated for every new incoming
disk reservation request.
BFRES : This is the reservation for the application to invoke

the disk request to theCSSand the computation needed at the
application levelbefore disk access. This reservation has the
same period as the application period. The computation time is
reserved in the sum ofCA and the needed invocation time from
the application to the server. The deadline of the reservation
is computed by adding the computation time with the slack time
got from slack-sharing. In the implementation, one assumption of
having no blocking time during executingCA is made. Therefore,
the parameterfC,T ,D,S,Lg4 andB forBFRESi are as follows:

C = CAi
+ Tinv; T = Ti; D = CAi

+ Tinv + SAi
; Bi = 0

AFRES : This is the reservation for theFS-CSS to return
the disk request to the application and the computation needed at
the application levelafter disk access. Similar toBFRES , the
parameterfC,T ,D,S, Lg and implicit parameterB forAFRESi
are as follows:

C = CBi
+ Tret; T = Ti; D = CBi

+ Tret + SBi
; Bi = 0

SERRES : This is the global processor reservation for the
computation needed inside the disk scheduler. The disk sched-
uler has to reserve all processor computation needed for reading
BS blocks of data every system periodTs. The computation
time needed in each server period is equal to the disk scheduler
overhead to read (or write) one file system block timesBS. The
I/O time of disk device to read (or write) one file block timesBS
is considered as blocking time. This is because, during this time,
the disk scheduler has to wait for the device to finish reading (or
writing) the data block before scheduling the next block access.
The deadline of the reservation is equal to the server period. All
parameters needed forSERRES are as follows:

C = BS � Tfs; T = Ts; D = Ts; B = BS � Tio

The processor admission control will determine if the new
reservation request ofBFRES and AFRES , and the updated
reservation request ofSERRES are feasible with the current
processor utilization using admission control based on traditional
deadline-monotonic scheduling.

4S andL can be set to be void without any effect on the reservation.



4. Performance Evaluation
In this section, we evaluateFS-CSS using a series of exper-

iments to study the efficiency of the co-scheduling between disk
bandwidth and processor for timeliness guarantees. We ran dif-
ferent disk bandwidth reservations under both heavy processor
and disk competition workload to test the effectiveness of the
conjunctive admission control. Finally, we measured the average
processor usage in the server compared with the processor we
have reserved.

Table 1. The thread parameters used in the Experiment of Section 4.

Th No. Reserve C(ms/KB) T (ms) D (ms)
CPU0 2 CPU 2 30 30
CPU1 2 CPU 6 100 100
CPU2 2 CPU 50 325 325
FS1 1 Disk BW 18 KB 200 200
FS2 1 No Reserve 80 KB 280 280
FS3 1 Disk BW 100 KB 320 320
FS4 1 Disk BW 270 KB 521 521

4.1. The Effectiveness of Disk Bandwidth Guarantees
A sample set of scenarios is described below. Qualitatively

similar results were obtained with serveral other workloads as
well. We testedRTFSusing theFS-CSS model on a Pentium II
300 MHz workstation. The disk we used is a 6 GB drive with a
maximum head seek latency of 24msand a maximum rotational
latency of 14ms.

In our experiments, we pick the period of theFS-CSS to be
50 ms. Larger the value ofTs, higher is the granularity of the
FS-CSS processor capacity. However, the hard real-time dead-
lines supported byFS-CSS are in multiples ofTs. This results
in an “internal fragmentation” loss equal toTs

D0
, whereD0 is the

deadline of the application. Due to the relative slowness of the
disks, we expect that applications requiring real-time disk ac-
cesses will have deadlines equal to or greater than 200ms. We
then accept a practical internal fragmentation loss of up to 25%,
and setTs = 50 ms. Naturally,Ts should be changedaccord-
ingly if either the shortest application deadline or the acceptable
fragmentation loss changes.

We first measured the following parameters:Tinv = 2.3ms,
Tret = 4.1ms, Tfs = 500�s,K = 8KB andTio = 2.3ms.

Four periodic disk-access threads are spawned in several con-
figurations, with and without disk bandwidth reservations. In all
experiments, we have a number of processor competing threads
with processor reservations to consume any available processor
cycles. We run the experiment in a window time-span of 100 sec-
onds measuring the completion time compared with the deadline
requested by applications. All the threads in these experiments
are configured as shown in Table 1.

Note. TheCA andCB parameters of all FS threads are set to
be 1msin our experiment.

In the first phase of this experiment, all disk-access threads are
spawnedwithoutdisk bandwidth reservation. Figure 4 shows the
completion times of all four disk-access threads compared with

their deadlines. The result shows that all disk-access threads miss
their deadlines and their completion times are very varied. This
is because the disk scheduler dispatches unreserved disk accesses
without considering any thread deadlines.5 Another reason is that
the processor competing threads grab the processor needed by the
disk scheduler.

In the second phase of this experiment, FS1, FS3 and FS4
request disk bandwidth reservations. Figure 5 shows the com-
pletion time of all four disk-access threads with their deadlines.
The result shows all three threads with disk bandwidth reserva-
tions meet their deadlines. FS2, which is a disk access thread
withoutdisk bandwidth reservation, misses deadlines 136 times
out of 350 times. Compared with the variation of the completion
time of the unreserved disk access thread, the completion times
of the reserved disk access thread are much more stable. This is
because after the disk scheduler signals a worker thread to read a
data block from disk, it allows the worker thread to continuously
read data unless there is a new thread with higher priority coming
in. In other words, the disk scheduler is properly scheduled by the
processor scheduler and hence gets a predictable response time.

In the third phase of this experiment, an aperiodic thread is
spawned to continuously consumeall available CPU without pro-
cessor reservations. This thread consumes all available CPU. The
goal of this experiment is to show the effect of unreserved pro-
cessor thread on disk access threads. Figure 6 shows that the
existence of an aperiodic CPU-consuming thread has an effect on
only FS2, the disk access threadwithoutdisk bandwidth reserva-
tion.

4.2. The Effectiveness of Processor Guarantees
We now re-emphasize the sustained effectiveness of the pro-

cessor guarantees in the system while using theCSSmodel. In
the previous experiment, we have run several threads with disk
bandwidth guarantees simultanouesly with several threads with
processor computation guarantees (CPU0, CPU1 and CPU2 as
listed in Table 1). As seen in Figures 4 through 6, the sys-
tem can guarantee the deadlines of the disk bandwidth reserved
threads. At the same time, all reserved-CPU threadsalso meet
their deadlines in all experiments. The processor usage obtained
by these three CPU threads in the worst-case configuration used
in Figure 6 is plotted in Figure 7 and corresponds exactly to the
requested reservations.6 This reflects the effectiveness of both
processor and disk bandwidth guarantees obtained with theCSS
approach.

5The disk performance for unreservedservice can be improvedby using SCAN
algorithm or other scheduling policies.

6However, we have found that when the applications run for a relatively long
time, a very small number of deadlines eventually do get missed. We suspect
that some assumptions are being occasionally violated. Two likely candidates are
non-contiguous layout of disk blocks read by an application on the disk side, and
non-consideration of system overhead on the processor reservation side.



Table 2. Cpu over-estimation in Periodic Conversion

Reserved Ures Uused Over-estimation (percent)
BFRES 0.0281 0.0276 1.78
AFRES 0.0462 0.0460 0.43
SERRES 0.0900 0.0250 72.22
Overall 0.1643 0.0986 39.99

4.3. Accuracy of theFS-CSS Processor Capacity
TheFS-CSS reserves some capacity on the controlling CPU

resource as computed in Section 3.4. We conducted an experi-
ment to determine whether this capacity was being under-used.
The same set of threads as in the previous experiment was re-
run to measure the average processor usage ofFS-CSS. Table 2
compares all processor reservations created with the average pro-
cessor usage ofFS-CSS. As can be seen, our capacity computa-
tion is rather high relative to what is actually being consumed by
FS-CSS. This results in wasted processor allocation toFS-CSS.

The source of this over-estimation lies in the conservative com-
putation of the worst-case data block formula (using a ceiling
function) given in Section 3.4. This processor over-estimation
can be reduced in two ways.

1. Optimize the data block formula by reducing the effect of
the ceiling function.

2. From theFS-CSS processor capacity formula, the higher
the deadlineD0

i of the reservation�i, the less is the number of
average blocks the server has to read. Therefore, if the slack
time to the disk scheduler increases, the number of blocks needed
decreases. This reduces the processor reservationSERRES .
Consequently, the processor over-estimation is shrunk. Two ap-
proaches to increaseD0

i are:
Increase the level of acceptable latency at the application

level. The disk access (middle) stage of the programming model
can be pipelined such that the application can use buffering to
allow an additional period of disk access latency. This approach
increases the slack available and, therefore, increases the slack
time available to the disk scheduler. This is analogous to the
pipeliningstages in an end-to-end path of distributed real-time
systems. The cost is increased data latency at the application
level but with better schedulability.

Increase the percent of slack-sharing for the disk sched-
uler server from BFRES and AFRES . In the experiment de-
scribed earlier, fixed slack-sharing has been used. The percent
of slack-sharing to the disk server can be increased to reduce
the problem of processor over-estimation. However, when the
percent of slack-sharing to the disk server is increased, the slack
available toBFRES andAFRES are decreased. This leads to
shorter deadlines forBFRES andAFRES . From the experiment,
the deadlines ofBFRES andAFRES after slack adjustment are
approximately the same. A reject from the admission control pol-
icy for BFRES andAFRES requests is found if there are many
BFRES andAFRES reservations in the system. This happens
because there is no management of the relationship among the
variousBFRESs andAFRESs. A biased slack-sharingscheme
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Figure 4. The completion of disk access threads wit hout disk bandwidth

reservation. At the same time, all the three reserved CPU tasks meet

all their deadlines.
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Figure 5. The completion of disk access threads with/wit houtdisk band-

width reservation. At the same time, all the three reserved CPU tasks

meet all their deadlines.
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served thread continuouslyconsumingall available CPU. At the same

time, all the three reserved CPU tasks meet all their deadlines.
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which favors the disk resource is a better approach than fixed
slack-sharing for increasing the slack to the scheduler server. It
simultaneously reduces the problem of rejects from the deadline-
monotonic admission control toBFRESs andAFRESs. This
biased slack-sharing scheme is as follows:

Let there ben disk bandwidth reservations in the system as
�1; �2; : : : ; �n whereD1 � D2 � : : : � Dn. Si, SAi

, SBi

are the slack available inSERRES , BFRES andAFRES of �i
respectively, then

SBi
= CAi

+ (dunit � (2i� 1))

SAi
= CBi

+ (dunit � (2i))

In our case, we pickeddunit = 5ms. This approach reduces
the processor competition amongBFRESs andAFRESs because
every time one more pair ofBFRES andAFRES is added into
the system, all slacks ofBFRESs andAFRESs are increased
and adjusted in order of the deadlines of the applications they
are responsible for. Therefore, the processor utilization, which
is seen by any threads that have deadlines falling between the
deadlines ofBFRESs, AFRESs and file-access threads, for all
BFRESs andAFRESs is increased by smaller values if there
are more reservations in the system. This is different from the
linear increase of processor utilization in the case of fixed slack-
sharing. This approach is effective under the assumption that only
a small number of application threads in the system have deadlines
betweendunit andTs. If the number of reserved disk access
threads are increased until the deadline ofBFRES andAFRES
are beyondTs, other application threads will be penalized.

5. Concluding Remarks
Timely access to multiple resources is known to be an NP-

complete problem in the general case. In this paper, we have
considered the problem of co-scheduling accesses to multiple re-
sources which are controlled from a single controlling resource.
This problem is common and arises when a processor must be
used to control and manage peripheral devices to obtain disk

and/or network bandwidth. We have proposed the use of a Co-
operative Scheduling Server,CSS, which serves as a dedicated
resource management server that can use a controlling resource
and a controlled resource. A conjunctive scheme that requires
successful admission on both resources is therefore used. We
have applied this scheme successfully to obtain guarantees in the
use of both disk bandwidthand processor cycles. Our experi-
ments show the effectiveness of the disk bandwidth guarantees
under both heavy processor and competing disk workloads. The
programming model we assume led us to a fixed slack-sharing
scheme. However, the processor capacity needed by this filesys-
temCSS(namedFS-CSS) is found to be rather pessimistic and
conservative. This aspect can be effectively addressed by the
use of a biased slack-sharing scheme that favors the bottleneck
resource or the introduction of pipelining with additional end-to-
end latency at the application level.

Future work on the topic can proceed along several fronts. The
performance-sensitive parameters in ourCSSmodel need to be
studied at greater depth. The choice of the server periodTs im-
pacts not only the effectiveness of theCSSin meeting application-
level deadlines, but also the granularity of the processor capacity
usage. In addition, our admission control of disk access is very
conservative. We use the maximum seek and rotational time of
the disk head, while in practice, the actual seek and rotational de-
lays would be much smaller and variant. Optimized disk layout
schemes and exploitation of the statistical behavior of the disk
can enhance the overall performance of theCSSmodel. Finally,
an implementation ofNT-CSS (the network server usingCSS
model) is needed to co-schedule multiple controlled resources
inside a single node for simultaneous application usage of net-
work bandwidth, disk bandwidth and processor capacity. The
randomness of incoming network packets can also have an ad-
verse effect on theNT-CSSmodel. This effect can be reduced by
(a) minimizing the processing time of packet classifiers inside the
protocol stack, (b) adding a buffer in the kernel so the protocol
stack merely adds incoming packets into the buffer, and (c) by
having theNT-CSS periodically read the buffer and dispatching
to the application based on the processor reservation ofNT-CSS.
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