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ABSTRACT

PROTOCOL AND REAL-TIME SCHEDULING ISSUES FOR
MULTIMEDIA APPLICATIONS

SEPTEMBER 1994
SRIDHAR PINGALI, B.Tech., INDIAN INSTITUTE OF TECHNOLOGY
M.S., CLEMSON UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James F. Kurose

The growth of higher bandwidth networks and powerful new workstations has
enabled the development of many new multimedia applications. These applications
involve the combined use of different media such as voice, video and text. Supporting
these applications requires the resolution of a number of issues both within the
network and at the end-hosts that originate the applications. In this dissertation
we consider real-time scheduling and protocol problems that arise in this arena.

In the realm of applications operating under hard time-constraints, we address
both network-node and workstation scheduling. In applications involving the use
of video or a combination of voice and video, there can be the need to schedule
classes of traffic with differing importance but identical deadlines at a network-node.
We examine scheduling algorithms that can be used in the situation of two classes
of traffic. We demonstrate using probabilistic arguments that a new “balancing”
discipline can provide better loss performance for both classes than more traditional
schemes in some operating regions. When delay loss probabilities are low, strict
priority scheduling is shown to be a reasonable option.

Turning our attention to the end-hosts, we consider the need to process multime-

dia objects such as voice packets in a periodic fashion within a workstation, and study

vi



two common scheduling algorithms - earliest deadline first (£ D) and rate monotonic
(RM). Recent studies have revealed the importance of the preemption behavior of
the scheduler in determining overall processor performance. We prove that there are
always fewer preemptions under ED than under RM and show through simulations
of well-known task-sets that, on occasion, there can be over 20% more preemptions
under RM than under ED.

Apart from these scheduling problems, we also look at protocol issues that com-
bine network and host considerations. For applications such as world-wide multimedia
lectures, it becomes important to have error-recovery protocols that will scale well
to hundreds of receivers. We perform throughput analyses and demonstrate why
receiver-initiated protocols based on negative acknowledgements are to be preferred
over sender-initiated protocols based on positive acknowledgments. We focus on host

processing costs to illustrate this result.
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CHAPTER 1

INTRODUCTION

The development of higher bandwidth networks and powerful new workstations
has opened the doors to a wide range of new multimedia applications such as dis-
tributed conferencing and video telephony [1]. These applications use media such
as voice, video and shared whiteboard to provide multisensory communication and
computing services to users. In designing suitable protocols and scheduling disciplines
to provide an acceptable quality of service for such applications, due attention must
be given to the various network and computing resources used. The needs of the users
and the nature of the applications determine what level of service is adequate. Some
applications (e.g., those involving the transfer of medical information) demand fully
reliable service- i.e, all the data generated at a source must be correctly transferred
to the destination. In some other applications such as voice transfer, users are able
to tolerate a certain amount of missing data without a significant degradation in the
quality of service.

Data can be lost due to a variety of reasons. Traditional network applications lose
data as a result of transmission errors, noisy channels and buffer overflows. Another
type of loss can occur in multimedia applications when the data have associated “real-
time” constraints— i.e., if a message containing data is not available at a destination
or has not been processed within a specified amount of time, it is considered to be
lost. Henceforth, we shall refer to any loss due to the real-time nature of the data as
delay loss. These kinds of real-time constraints are especially common in interactive
applications such as voice or video where a specified amount of delay loss is tolerable.

Metrics such as the time taken to transfer information from one user of a multi-

media application to another (called the end-to-end delay), and the amount of data
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lost, characterize the overall quality of service (QOS) provided to the users. Typically,
requirements are imposed on the possible values that these performance criteria may
take so that an acceptable QOS is delivered to the users. The actual limits on such
QOS metrics tend to depend on the characteristics of the application, the nature of
the media used, and the purpose of the communication. Figure 1.1 shows examples
of different applications on multimedia workstations in a networked environment.
Different media are made use of with applications such as NeVot [2] and n.v. [3],
which are audio and video conferencing tools respectively, and w.b. [4], which is a

distributed and shared drawing environment.

w.b.

n.v.
/"/Y this is
% FUN!
n.v. w.b. )
/‘/(PY t'?bsr\lﬁ -nevot

1

Figure 1.1. Multimedia applications

In order to meet the QOS requirements for any application, computing and
network resources are needed. For example, NeVot generates and places voice data
at regular intervals on the network link connecting the sending user to the receiving
user. For voice data to be in a form that the network can recognize, it has to be
processed and encapsulated and, for this, computing resources have to be used at the

sending workstation. At the receiving end, the CPU has to strip all network-related



information away from the incoming data and present it to the user in a form that is
recognizable as human speech. Resources are also used within the network. Some of
the data carrying capacity of the network links is used to transfer this information,
and the various nodes within the network must ensure that the voice data is properly
routed to the correct destination. It may also be necessary to store data temporarily
either at nodes within the network or at the sending and receiving workstations. This
uses buffer space. There must be adequate availability of all these resources— CPU
power, network bandwidth, buffer space— in order for there to be an acceptable quality
to the communication between users.

Another example of resource use arises in applications that require fully reliable
service. For distributed conferencing applications using w.b., no data may be lost in
communicating between sender and receiver. It is thus necessary that protocols be
defined that enable the application to recover from any data losses. This imposes
additional requirements on the computational resources at the end-hosts supporting
the application.

Providing the necessary quality of service to users becomes a challenging problem
when there are competing requests for resources. For example, during a multimedia
conference, voice and video data may be simultaneously generated by the sender and
traverse the same path through the network to a receiver. Since there are end-to-end
delay criteria to be met for both voice and video data, there could be contention for
CPU resources and for the network links. In such a situation, policies have to be
defined to arbitrate between these contending claims and to allocate the available
resources appropriately. These resource-allocation policies should consider the rival
performance criteria, such as respective time constraints and tolerable delay losses,
of the different streams of data. The solutions arrived at in this constrained resource
environment must be able to provide an acceptable quality of service to the users.

In this dissertation we study three resource-allocation problems. We look at how

to define algorithms and protocols within a network, at a workstation at the edge of
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a network, and between peers that communicate over a network, so that proper use

may be made of network bandwidth and host processing power. The problems that

we consider are:

e Allocation of link bandwidth to achieve performance tradeoffs for two classes of

1.1

1.1

real-time traffic (e.g., voice and video) at a multiplexing point in the network.
Here our focus is on comparing the delay loss performance of two classes of traffic
under three different link-level packet-scheduling algorithms to determine which

algorithm is the best choice.

CPU allocation for periodic task-sets (e.g., host protocol processing for voice and
video). Here we compare the preemption performance of two well-known proces-
sor scheduling algorithms to determine which is to be preferred for workstation

scheduling.

Specification of scalable error recovery protocols for multicast applications (e.g.,
distributed conferencing using a shared whiteboard). Our concern here is to
provide fully reliable service by distributing host processing costs so that many
hundreds of receivers can be simultaneously supported. We compare the per-
formance of three different protocols to determine which most adequately meets

our needs.

We now introduce and motivate each of these problems in turn.

Motivation

.1 Link Scheduling: Performance Tradeoffs for Real-Time Traffic Stre-

ams

As has been noted above, real-time traffic that is unable to meet a specified

timing constraint is considered lost, regardless of whether it is eventually received at



a destination node. Thus, an end-to-end deadline can be specified along with tolerable
delay loss as a QOS metric for many types of multimedia traffic.

One approach to meeting end-to-end delay requirements is to distribute the end-
to-end delay requirement across the various components of the communication path
by means of an allocation policy [5]. Hence, the end-to-end or global deadline may be
translated into local deadlines at the CPU or at intermediate network nodes as shown
in Figure 1.2. By ensuring that local performance criteria are met, it is possible to
guarantee that end-to-end delays are met for traffic delivered to the receiver. In the
absence of local deadlines, this guarantee is hard to provide because of the variable

nature of network delays.

n.v. w.b.
/"/Y this is
% FUN!
n.v. w.b. )
//(PY t'?bsr\lﬁ -nevot
o P4 [ —
. |

nevot

Global deadlines

S Aal CPU

deadlines

Figure 1.2. Global and local deadlines

The danger with allocating the global deadline across intermediate nodes is that
a particular packet that was unable to meet a local deadline may still have been able
to meet the end-to-end delay constraint. This packet would nonetheless be dropped
within the network. On the other hand, if no local performance criteria are enforced, a

packet that would never make the end-to-end deadline may still continue to consume



network resources unnecessarily. Thus, the particular allocation policy used must
take both possibilities into account.

Local performance can also be used to determine how much additional traffic
can be sustained on an end-to-end basis. Ferrandiz and Lazar [6] show how an
admission control policy for new real-time sessions can be formulated based on the
nodal performance of existing sessions. In general, an admission policy determines
whether there exist sufficient resources to fulfill an application’s request for service
at the requested QOS level while continuing to observe the QOS requirement of
already accepted connections. Local performance thus becomes a measure that the
admission policy can use to determine the feasibility of providing required QOS to
an application.

Since local performance can be of such import, due attention needs to be paid
to scheduling policies at switching nodes within the network. Heterogenous real-
time traffic streams can arrive at a network node. These streams may have differing
local deadlines depending on the tolerable end-to-end delays and the policy used
to apportion these end-to-end delays among intermediate nodes. This is shown in
Figure 1.3 where rq,7s,..., 7 are local deadlines for the k different classes of traffic
that leave a local node on the same output link. It then becomes the responsibility
of the output multiplexer of the node to appropriately schedule packets belonging
to these different streams, giving due consideration to their relative time constraints
and also their relative importance. The manner in which this is done is defined by
the scheduling discipline used at the output multiplexer. An important measure of
the performance of a scheduling discipline is the local delay loss at the multiplexer.
A good algorithm will minimize this loss.

The problem of choosing an appropriate scheduling discipline becomes even more
complex when the packets of the different classes of traffic have identical time con-
straints as in the example shown in Figure 1.2. For synchronized media presentation,

voice and video have to satisfy identical deadlines. However, greater clarity and
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Figure 1.3. Scheduling at an output node

precision is needed in speech than in image for there to be effective communication
in some applications such as conferencing. Thus, the scheduling discipline chosen
should reflect this difference in performance criteria. Another example scenario
could be hierarchical source coding for video applications wherein the digitized video
signal is separated into subsignals of differing importance [7, 8]; the relatively stable
background information in a picture is separated from the information pertaining to
motion. The information content of a scene, in terms of bits needed to represent it,
would depend on the degree of activity in the scene. While the volume of information
content could be different for these different classes of traffic, all the information
pertaining to a single frame would have to be available at the same time at the
receiver. Thus, the deadlines for the two classes of traffic are identical (k = 2 in Figure
1.3 and r; = ry ). However, the stable background information is more important in
sustaining an acceptable QOS for the users than the motion information as it can be
used to refresh the screen at the receiver. Hence, once again the scheduling discipline
chosen should have the ability to accord preferential treatment to the background

information.



In this dissertation we consider the fundamental issue of trading the performance
of two different classes of traffic with specified local deadlines at a single multiplexer
by studying three different scheduling disciplines. The first discipline is priority
scheduling which gives strict priority to one class of traffic over the other. The
second discipline is the minimum laxity thresholding (M LT) scheme. The lazity of a
real-time packet is the time until the expiry of its deadline. M LT is a threshold-based
scheme wherein priority is given to one class of traffic when the minimum laxity of its
queued packets falls below some threshold. The third scheduling discipline we study
is a new “balancing” scheme that we define which assigns priorities on the basis of
the differences in the minimum laxities in the two classes of traffic.

Our modeling approach and analytical methodology takes the discrete time nature
of Asynchronous Transfer Mode (ATM) networks into account and builds on the
work presented in [9]. In [9], a mixture of real-time and non-real-time traffic is
studied. Four scheduling policies are treated there: 1) First Come First Served,
2) Priority Scheduling that always gives priority to real-time traffic, 3) a Minimum
Laxity Threshold policy that gives priority to real-time traffic if the minimum laxity
of the real-time traffic is less than a threshold and 4) a Queue Length Threshold
policy that gives priority to non-real-time packets if their queue length exceeds a
certain threshold. The performance metric of interest in [9] for real-time traffic is
the probability of delay loss while for non-real-time traffic, it is average delay. In our
problem, both classes of traffic are real-time and under the assumption of identical
deadlines, we study the delay loss behavior for both classes of traffic.

We demonstrate that the new balancing scheme provides us with a parameter
that we can vary to achieve better delay loss performance for both classes of traffic
than is obtained under the other two scheduling algorithms for certain traffic arrival
processes in some operating regions. We also show through simulations how, for
other arrival processes, assigning strict priority to one or the other of the two classes

of traffic is a reasonable choice.



1.1.2 CPU Scheduling to Minimize Preemption Costs

The problem of CPU scheduling for real-time tasks is an intriguing one and several
different factors must be weighed before arriving at a suitable discipline. An example
scenario for this scheduling problem can be seen in Figure 1.2. Voice and video
packets could be coming off the network at periodic or near-periodic rates if the
originating source generates data periodically and mechanisms such as stop-and-go
queueing [10, 11] are used to preserve this traffic pattern through the network. The
receiving processor would have to perform protocol processing before presenting the
data to the user at a multimedia workstation. The CPU scheduling discipline has
to ensure that the necessary processing is completed within a local deadline that is
obtained as a portion of an acceptable end-to-end delay by an allocation policy.

The most frequently studied CPU scheduling algorithms are deadline-based dyna-
mic algorithms and rate-based static algorithms. Of these, the earliest deadline first
preemptive scheduling policy (FD) and the rate monotonic preemptive scheduling
policy (RM) are common [12, 13]. Under ED, the task that has the closest deadline
is always served from among all the packets that are awaiting service at the host. This
is equivalent to serving the job with the minimum laxity. Under RM, the earliest
arriving packet of the type with the highest frequency is served first. Thus, under this
policy, fixed priority assignments are made and deadlines are not considered explicitly
in making scheduling decisions.

Both ED and RM are preemptive policies. Thus, under ED, for example, if a
job which has to complete service prior to a given time is being served when another
job that has to finish service by an earlier time arrives, the CPU stops serving the
job currently being served and starts serving the arriving job instead. The same is
true under RM if the arriving job is of higher frequency than the one currently under
service. There is a cost associated with preemptions called the preemption overhead
time during which no effective work associated with any of the jobs in the system can

be done by the CPU. In this dissertation, we study preemptive scheduling algorithms
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by looking at the potential preemption overhead that an algorithm introduces. Recent
studies [14, 15] have demonstrated that this overhead merits serious consideration in
actual workstation implementations. We show here that the number of preemptions
under ED is always smaller than the number of preemptions under RM. This shows
that the preemption overhead under E D is no worse than that under RM and- as our
simulation study indicates— may, on occasion, be markedly lower. For example, our
simulation results show that the difference between the number of preemptions under
each discipline can exceed 20% for the workloads [16] considered. These simulation
results in combination with the well-known fact [12] that greater processor utilizations
can be supported under ED than under RM enable us to present arguments in

support of using ED as the algorithm of choice for workstation processor scheduling.

1.1.3 Scalability in Multicast Error Recovery Protocols

We have recently seen the widespread introduction of applications that support
real-time interactive group collaborations over wide area networks (WANs). These
include applications that support video (nv [3]) and voice (vat [17], NeVot [2]), which
do not require reliable multicast, as well as applications such as shared whiteboards
(e.g., wb [4], shdr [18]) which do require reliable multicast. This requirement of
reliable data transfer for this last set of applications poses a difficult challenge to
network protocol designers— namely how to design and implement a reliable multi-
cast protocol that can handle hundreds or thousands of participants'. In such an
environment, traditional error recovery schemes based on positive acknowledgments
(ACKs) and timeouts at the sender, will lead to what has come to be described
as the ACK-implosion problem [20, 21]. On receiving an ACK, the sender would
have to reset a timer and perform some amount of processing to keep track of which
receiver has acknowledged which piece of data. A single sender that communicates

with multiple receivers will quickly be overwhelmed by the ACK processing overhead

1A recent IETF conference was multicast to several hundred workstations world-wide [19].
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imposed by hundreds of receivers (see Figure 1.4). Hence, attention needs to be paid
to the host processing requirements of any protocol for reliable data transfer in such

environments.

Sender

| MPLCSI ON

Mul ti cast

o
O 0O //Q\ O
O O O'@ o

Figure 1.4. ACK implosion at sender

Broadly, there are two different approaches to providing reliable, scalable mul-
ticast communication. The first is the traditional sender-initiated approach which
places the responsibility for reliable data delivery on the sender. In particular, the
sender is required to maintain state information regarding all receivers to which it is
multicasting data. Reliability and maintenance of this state information is ensured by
having receivers return positive acknowledgments for every packet correctly received,
and the use of timers at the sender for the purpose of detecting packet losses. The
alternate approach, the recewer-initiated approach, shifts most of the responsibility
for reliable data delivery to the receivers. Each receiver is responsible for detecting
lost packets and informing the sender via negative acknowledgments (NAKs) when it

requires the retransmission of a packet.

In this dissertation we study three generic protocols to ensure reliable and scalable
multicast, one that is sender-initiated and two that are receiver-initiated. We focus
on the fundamental differences between them, i.e., the use of ACKs versus NAKs,

the use of point-to-point channels for NAKs versus broadcasting NAKs. Further,
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recognizing that communication bandwidths are expected to grow at a much higher
rate than processing speeds during the next decade, we focus on the processing
requirements of these protocols at both the sending and receiving hosts rather than
on the communication bandwidth requirements. Previous analyses have focussed on
the bandwidth requirements of different reliable multicast protocols. We are also
primarily concerned with scalability: how well each of these approaches will handle
large numbers of receivers.

We observe through simple analyses that a simple receiver-initiated protocol
which requires receivers to return negative acknowledgments (NAKs) to the sender
over point-to-point channels provides substantially better performance (in terms of
the maximum supportable throughput of successfully transmitted messages) than
a sender-initiated protocol. Further, substantial improvement is obtained by the
multicasting of NAKs coupled with the introduction of random delays prior to the

transmission of a NAK.

1.2 Contributions of this Dissertation

The following are the contributions of this work:

o We define a new balancing scheduling algorithm, and compare its delay loss
performance to those of two other well-known scheduling disciplines (M LT and
priority scheduling) for two different classes of traffic that have some given time
constraints. There has been previous work in the area of scheduling to meet
deadline constraints for many classes of real-time traffic (e.g., [22]) and to meet
quality-of-service requirements on mixtures of real-time and non-real-time traffic
(e.g., [9]) but very little has been done on trading the performance of one class of
real-time traffic against that of another. The new balancing scheduling algorithm
that we define has a parameter that can be varied to achieve tradeoffs in the
delay loss performance of the two classes of traffic. We show that we are able

to achieve superior performance for some arrival processes using the new scheme
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as compared to priority scheduling and M LT. For example, for some operating
regions we are able to achieve at 29% drop in the loss probability of Class 2
(when compared to strict priority) with negligible change in the loss probability
of Class 1 traffic while using the new scheme for the traffic arrival processes
considered. We are thus able to argue that our scheme is to be preferred to the

traditional schemes of M LT or priority scheduling.

We compare the preemption performance of two well-known CPU scheduling
algorithms— ED and RM- and prove analytically for a general workload that
ED, which is a dynamic priority assignment, always has fewer preemptions than
the static priority assignment (RM). We show by simulation that the number
of preemptions can be as much as 20% greater for a standard fixed priority
scheme like RM as compared to ED. For other fixed priority schemes, the
difference in the number of preemptions relative to ED can be over 188%. It has
traditionally been argued that the static priority schemes are easier to implement.
A closer look at the actual implementation details suggests that this argument
1s erroneous and that there is only marginal difference in the implementation
complexity of the ED and RM algorithms. Thus, our results show that ED is

to be preferred for processor scheduling.

We demonstrate through analysis and numerical results on different workloads
that receiver-initated, NAK-based protocols provide better scalability perfor-
mance than sender-initiated, ACK-based protocols for reliable and scalable mul-
ticast when host processing capacity is the constrained resource. Much of the
recent work on multicast applications has been focussed on network issues such
as routing [23]. Although there have been attempts at defining protocols that
handle sender issues such as the ACK-implosion problem [21], there has been
no work on explicitly modeling host protocol processing overheads. We perform

host throughput analyses for one sender-initiated and two receiver-initiated pro-
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tocols. We show using complexity expressions and numerical results for specific
workloads that there can be orders of magnitude difference in the performance

of the different protocols studied.

1.3 Structure of this Dissertation

In this introduction, we have provided the context and motivation for three
problems in the areas of scheduling and error recovery protocols for multimedia
applications.

The rest of this dissertation is organized as follows. In the next three chapters we
provide additional technical details for each of the three problems. In each chapter
we present a survey of other work in the specific areas that we consider.

In Chapter 2 we discuss the problem of link-level scheduling for two classes of
real-time traffic. We describe the characteristics of the system that we study. We
then discuss the model we use and our analysis methodology. We present analytic
results for the performance of various scheduling disciplines for a particular geometric
bulk arrrival traffic model. We also describe a superposed voice traffic model and
present simulation results for this model.

In Chapter 3, we discuss the preemption performance of different CPU scheduling
algorithms. We provide the proof of our claim that ED has fewer preemptions than
RM and show corroborating simulation results. We also provide simulation results
comparing numbers of preemptions for different scheduling disciplines in a complex
system in which various operating system costs are modeled.

In Chapter 4, we discuss the scalability of different error-control protocols that
can be used in multicast applications. We provide the throughput analyses for three
such generic protocols and provide complexity expressions to demonstrate how they
scale to large numbers of receivers. We compare the protocols numerically both when
different components of host processing have equal costs and when they have unequal

costs.



15

In Chapter 5, we summarize the dissertation and indicate future research direc-

tions.



CHAPTER 2

PERFORMANCE OF LINK SCHEDULING
ALGORITHMS

2.1 Introduction

In this chapter we consider the issue of link-level scheduling of two classes of
real-time traffic and examine the tradeoffs possible in their delay loss performance
under different scheduling disciplines. As has been noted in Chapter 1, this is an
interesting problem in multimedia applications in which different classes of traffic
with end-to-end timing constraints have different performance criteria to meet. These
end-to-end timing constraints can be translated into local (or nodal) deadlines by an
allocation policy. Scheduling policies can then implemented at switching nodes in the
network. Possible applications of interest include those that make combined use of
voice and video which have to presented at the destination in a synchronized way, or
hierarchical source coding for video where the source traffic is separated into subbands
of differing importance.

We begin this chapter by surveying related work in the literature. We then
describe the characteristics of the system that we study and define the specific link-
level scheduling problem that we address. We present the model that we use for
our analytic study, define the three scheduling policies that we study: strict priority,
minimum laxity thresholding and the balancing discipline. We analytically solve for
loss probabilities, and show how the new balancing scheduling discipline that we
define provides better loss performance than the other two policies for both classes
of traffic for certain arrival processes. We then describe a superposed voice traffic
model for our simulation study and show that with this arrival process, assigning

strict priority to one or the other class becomes the preferred option.
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2.2 Survey of Related Work

For effective interactive communication between users of multimedia applications,
it 1s necessary to limit the end-to-end delays. For example, pauses greater than 100
milliseconds become noticeable to the human ear. Achieving these bounded delays
for networked applications is a challenging problem. One way of achieving these
bounded end-to-end delays is to impose local delay bounds at intermediate nodes in
the network. There has been considerable research effort directed at the problem
of studying packet scheduling mechanisms for real-time traffic at intermediate nodes
and also at designing end-to-end mechanisms for bounding delays. Here we look at
some of this work.

Panwar et. al. [22] consider the problem of scheduling impatient customers at a
single server queue. Each customer has a deadline drawn from a general independent
distribution. The Shortest Time to Extinction (ST E) scheduling discipline is studied
here. STE is very similar to another scheduling algorithm called Earliest Due Date
(EDD). Under EDD, customers are served according to non-decreasing due dates
and ST E differs from this in that a customer whose due date is already past is never
scheduled for service. It is shown that ST E is optimal for single server queues in the
sense of minimizing delay loss. The deadlines here are measured from arrival time to
the beginning of service and the metric that is maximized is the fraction of customers
that begin service within their respective deadlines. The issue of trading off losses for
different classes of traffic is not treated here.

Lim and Kobza [24] consider the problem of scheduling multiple classes of delay
sensitive traffic at a network node. They propose and analyze a link-level priority
scheduling discipline called Head-of-the-Line with Priority Jumps (HOL — PJ). In
this discipline, each class of traffic is assigned a distinct priority level and the packet
that is at the head of the highest priority queue receives service. However, if a packet
has not been served by a delay limit at the current queue, it jumps to the tail of the

next higher priority queue. Through the suitable adjustment of the delay limits of
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each queue, this scheme can be used to to meet average delay criteria for each class
of traffic. While this scheme does impose a certain delay limit on each of the queues
except for the highest priority one, packets that have failed to meet their end-to-end
delay requirement in a network setting will still receive service at this node. This
violates the notion of “better never than late” for real-time traffic, i.e., packets that
are already too late to be useful at the destination should not be permitted to use
up network resources. Schulzrinne et. al. [25] explicitly model local deadlines and
drop real-time packets that will be unable to meet them. The authors propose the
discarding of packets based on the amount of virtual work that an arriving packet sees
at a node as a congestion control mechanism and study the overall loss performance
of the traffic— both due to delays and due to discarding.

Verma et. al. [26] study the feasibility of bounding the delay jitter, i.e., the
variation in end-to-end packet delays, for real-time channels. This is based on earlier
work [27] in which the goal is to provide end-to-end delay bounds by creating local
delay bounds at intermediate nodes at the time of channel establishment. Packet
delay bounds are either expressed deterministically as absolute values, or statistically
as a requirement that the probability of meeting a certain delay bound be greater
than a given value. At each intermediate node, three queues are maintained: one
for deterministic packets, the second for statistical packets and the third for all other
types of packets such as those that are non-real-time. The scheduling policy used is
deadline-based and is a multiclass version of the Earliest Due Date discipline. The
scheduler picks a deterministic packet if the time by which it has to begin service is
before the time by which a statistical packet would end service. Real-time traffic is
accorded higher priority than non-real-time traffic. There is rate-based flow control on
the accepted traffic, i.e., an upper limit is imposed on input rate to the channel. These
mechanisms serve to establish a bounded-delay server. In [26], the bounded-delay
server of [27] is used and the added requirement is imposed that each node preserve

the timing pattern of arriving packets at the input end of the channel. This provides
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bounds on the delay jitter. However, the authors do not consider the case of several
classes of traffic between the same source-destination pair. Therefore, the issue of
trading off the performances of different classes of traffic does not arise in this work.

Clark et. al. [28] argue that some applications (such as voice conversations)
are able to tolerate a proportion of the packets missing the end-to-end delay bound.
Hence, they introduce scheduling for predicted service in which the measured per-
formance of the network is used in computing delay bounds. In [28] the authors
propose an algorithm called FIFO+. The average delay for each aggregate class
of traffic is computed for each hop and for each packet the difference between its
particular delay and the average delay is added to a field in its header. Output
multiplexers serve packets according to their expected arrival times rather than actual
arrival times. FIF O+ is able to slightly decrease the mean delay and considerably
decrease the jitter as compared to FIFO for packets traversing many hops along
the source-destination route. More recently, Schulzrinne et. al. [29] compared
the performance of another algorithm called hop-laxity (H L) scheduling to that of
FIFO+. Under HL, the ratio of the laxity to the number of remaining hops to
destination is computed for each packet and the packet with the least such ratio is
served first. The delay characteristics of H L are similar to those of FIFO+.

Our work differs from all of the above in that we explicitly trade the performance
of one class of traffic against that of another, and examine whether scheduling at
network nodes is an effective means of achieving adequate performance for all classes
of traffic. We study the performance of packet-scheduling algorithms when different

classes of traffic have identical nodal time constraints in detail.

2.3 System Description

As noted earlier, the real-time applications that provide the motivation for this
work operate in a widely distributed networks. It is difficult to provide tight bounds

on end-to-end delays in such environments. For instance, round-trip delays in the
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Internet for users separated across the continental United States can be in the range
of hundreds of milliseconds, with large variations based on the route taken, network
characteristics for the day and time at which the application is run etc.

One way of ensuring bounds on the end-to-end delays is by imposing limits on
the number of hops that a packet may traverse and on the permissible local delay at
each intermediate hop. NeVot [2] is an audio tool that can be used to communicate
over the Internet and can be used as an example to clarify this point. We can assume
a maximum hop count of 15 between a pair of communicating nodes for a permissible
one-way delay of 120 milliseconds plus propagation delays. In order to meet this
end-to-end delay, we could impose a maximum delay of 8 milliseconds at each node.
NeVot uses 160 byte packets plus headers. The transmission time of such a packet
on a T1 link of 1.544 Mbps is 0.83 milliseconds. Thus, an arriving packet has a local
deadline of 10 time slots where a time slot is normalized to the time to transmit a
packet. For higher link speeds (such as the T3 link), permissible local deadlines will
be correspondingly higher. These figures give us an idea of the range of likely local
deadlines for real applications.

In general, different streams (or classes) of data can arrive at an intermediate
switching node in the network and depending on their destinations, all or some of
these streams may compete for the same outgoing link at the node. Here we consider
a multiplexer at the output buffer of the switching node which must decide which
packet from which stream is to transmitted next on a given outgoing link (see Figure
2.1). The different types of data could all potentially have different local deadlines
and the scheduling policy used must take these values into account in addition to the
relative importance accorded to the various classes of traffic. We specifically consider
two classes of traffic bound for the same destination and examine the performance of

the multiplexer under different scheduling discipines.
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Figure 2.1. Switching node in the network
2.4 Metrics and Policies

Any real-time packet that does not reach its destination within the specified
deadline is lost and thus the delay loss probability captures the performance of a
particular policy for a particular class of real-time traffic. The delay loss probabilities
of the two classes of traffic may be traded off against one another by various scheduling
policies. We consider only delay losses and assume that there is adequate buffer space
at the multiplexer, i.e., there are no buffer overflow losses. Three scheduling policies

are studied here.

2.4.1 Priority Discipline

In this scheduling policy, priority is always given to Class 1 traffic. Class 2 traffic
is transmitted (served) only if there are no queued Class 1 packets. Within a class,

packets are served FCFS.

2.4.2 Minimum Laxity Thresholding (M LT)

The laxity of a real-time packet is the time until the expiry of that packet’s
deadline. When a packet first arrives at a queue at the scheduler, its laxity is equal
to its deadline and with each passing time slot, its laxity decreases by one. In the

MLT discipline [9], a threshold is specified on the laxity of Class 1 traffic. If the
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minimum laxity of the queued Class 1 packets is less than or equal to the threshold,
or there are no queued Class 2 packets, the minimum laxity Class 1 packet is served.
The queued minimum laxity Class 2 packet is served either if the laxity of minimum
laxity Class 1 packet is greater than the threshold or if there are no queued Class 1
packets. When the threshold 7' is equal to the deadline of Class 1 traffic, M LT reduces
to the priority discipline. Reducing T increases the relative importance accorded to
Class 2 traffic.

Let z; and 23 be minimum laxities of queued Class 1 and Class 2 packets. Further,
let £; = 0 and z5 = 0 correspond to the case of there being no Class 1 and no Class 2
packets in the system respectively. We can write the M LT policy formally as shown
below:

if ((z1#0).and. ((z1 <T) .or. (z2=0)))

serve minimum laxity Class 1 packet;
else if (z, #0)

serve minimum laxity Class 2 packet.

2.4.3 Balancing Discipline

In this scheduling discipline, a quantity B is specified with reference to the
difference between the laxities of the minimum laxity Class 1 and Class 2 packets.
A Class 1 packet is served unless the laxity of the minimum laxity Class 2 packet is
at least B smaller than the laxity of the minimum laxity Class 1 packet. Thus, B
becomes a parameter that can be varied to change the relative priorities of the two
classes. When B is equal to the deadline of Class 1 traffic, the balancing discipline
reduces to the priority discipline.

Using the same notation as in the M LT case, we may write the balancing
discipline more formally as follows:

if ((z2#0).and. ((z1 —2z3) > B))

serve minimum laxity Class 2 packet;
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else if (z; #0)
serve minimum laxity Class 1 packet.
As can be seen from the above descriptions, the M LT and balancing schemes
provide us with parameters 7" and B, respectively, which can be varied to effect
tradeoffs between the loss of Class 1 and Class 2 traffic. Both M LT and the balancing

scheme become the same as the priority discipline in limiting cases.

2.5 Modeling and Analysis
2.5.1 Assumptions for Analysis

We consider a discrete-time multiplexer at the output buffer of a switching node
that makes the scheduling decision with regard to two arriving classes of real-time
traffic with local deadlines r; and r,. The two classes of traffic can be thought of as
being queued separately and the multiplexer selects a single fixed length packet from
either queue for transmission during a slot.

We assume that the arrival streams of the two classes of traffic are independent of
each other. We will initially assume that arrivals in a slot are independent of arrivals
in all other slots. For each class of traffic, arrivals in a slot are treated as bulks with
the bulk sizes being geometrically distributed. All arrivals in a slot are assumed to
have occurred just prior to the beginning of the next slot. Each arriving packet of
class k also has an associated laxity equal to the prespecified deadline, r,. A packet
which is not transmitted within its deadline is considered lost, and is removed from
the queue. All arrivals in the same slot of a particular class have the same chance of
being chosen for transmission in succeeding slots. Figure 2.2 illustrates the scenario

we consider.

2.5.2 Solution Approach

The system is modeled as a two dimensional Markov chain (z,z,) where z is

the laxity of the minimum laxity class k packet (nominally at the head of the queue
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Figure 2.2. Scheduling two classes of real-time traffic

of class k packets). This model is possible because of the assumption of geometrically
distributed bulk sizes with independence from slot to slot, which enables us to write
state transition probabilities in a Markovian manner. The possible values for z; are
0,1,2,3,...,r; and for x5 they are 0,1, 2,3, ..., r; where 0 represents the case of there
being no packets of the corresponding class of traffic. Hence, there are (r1+1) x(r241)
possible states of the system.

There exist clearly definable transition probabilities from one state to another.
Due to the Markovian nature of the model, these transition probabilities depend only
on the current state of the system—1i.e., the probability of reaching a particular state in
the following time slot depends only on the current state and the particular scheduling
discipline used. Thus, we can write a matrix of state transition probabilities for the
discrete time Markov chain. This matrix will be of dimension ((r; + 1)(r2 + 1)) X
((r1 + 1)(r2 + 1)). The entries in this matrix will depend on the scheduling discipline
used and represent transitions from state (z],z5) to state (zf, z}).

Using standard techniques, the transition matrix can be used to obtain the state
occupancy probabilities in steady state. Once these state probabilities have been
obtained, the throughput of each class of traffic can be obtained by simply summing

probabilities over those states in which the scheduling discipline will choose a packet
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from that particular class of traffic for transmisson in the next slot. For example, for
the priority discipline, if the system is in state (4,2), Class 1 traffic is transmitted in
the next slot and thus this state contributes to throughput of Class 1 traffic. For the
same discipline, if the state is (0,2), Class 2 traffic is transmitted in the next slot.
More generally, if II; ; gives the state occupancy probability for system state (3, )
and 43 is throughput of class k, we can write throughput expressions for the priority

case as follows:
T1 T2

GEDIPIRILY (2.1)

=1 j=0

and
p” Z Iy ;. (2.2)

Throughput equations for the M LT case are given by

it ZZH i (2.3)

i=1 j=0

and
1=T41 5=1

Throughput equations for the balancing case are

Abal Z Z H,J—|—ZH10 (2.5)

i=1j=:—B+1

ry 1—B

bal Z Z I1; ij t Z HO,J (2-6)

=2 j=1

For all three disciplines, if the arrival rate for Class k 1s A;, then we can write the

probability of loss for Class k traffic, Plossy as

Plossy, = /\k)\_ Ve (2.7)
k

Details of the actual form of the transition matrix are given in Appendix A.



26

2.6 Numerical Results

In order to quantitatively evaluate the performance of the three scheduling disci-
plines, we used the method described in Appendix A and determined the transition
probability matrices for the specific situation of r; = ry = r. Standard numerical
techniques were used to solve the matrix equations for state occupancy probabilities
in steady state. This was done in each case for the specific deadline values of 10 and
30. The value of 10 is suggested by the characteristics of NeVot audio packets as
discussed in Section 2.3. The value of 30 was chosen because for 53 byte packets, the
transmission time on a T1 link for a single packet is 0.28 milliseconds. If the local
deadline is around 8 milliseconds, a local deadline of 30 slots becomes a plausible
figure. For these deadline values, throughputs for each class of traffic were obtained
from the state occupancy probabilities in the manner described in the previous section.
Delay loss probabilities were obtained via Equation 2.7.

Figure 2.3 illustrates the tradeoffs between Ploss; and Plossy for r = 10 for the
case of balanced traffic. Here the arrival rates of the two classes of traffic A = Ay =
0.3. Ploss;, is plotted on the X-axis on a linear scale and Ploss; on a log scale along
the Y-axis. For the M LT and balancing disciplines, the parameters 7' and B can
respectively be varied to yield a set of achievable performance levels. For the priority
discipline, there is no such parameter and there is only one point in the graph that
represents this policy. The parameters 7' and B vary between 1 and 10 and increase
with increasing X-axis values. As can be seen, both M LT and balancing tend to the
priority case in the limiting cases of 7' = 10 and B = 10, respectively, where all three
disciplines have identical performance. The lines joining the points are indicated for
clarity— the points themselves are obtained through independent solutions to the set
of state transition equations.

As can be seen from Figure 2.3, as T  increases, Ploss; decreases in the M LT case.
This happens because the likelihood of serving Class 1 increases. For the balancing

case, as B increases, Ploss; decreases. This is true because as B increases, Class 2
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minimum laxity has to be much smaller than Class 1 minimum laxity for a Class 2
packet to be served. Consequently, the likelihood of serving Class 1 increases, thereby
reducing loss probability for Class 1.

It can be seen that the balancing scheme achieves lower delay loss (for both classes)
over a range of 7" and B values. By reducing B, we move towards the left along the
balancing curve and increase the relative importance given to Class 2 traffic. Looking
at the flat portion of the balancing graph in Figure 2.3 shows us that a useful tradeoff
can be obtained between Ploss; and Ploss;. For example, a halving of Ploss, is
possible in this region while still keeping Ploss; at a low level: Ploss; drops from
0.012 to 0.006 while Ploss; is kept below 107*.

While the results examined thus far favor the balancing scheme, it must be pointed
out that the M LT case can always attain a lower minimum value of Ploss; than
the one achievable by the balancing case. Further, while the gains in Class 2 loss

performance are impressive under the balancing scheme, they are not in the orders
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of magnitude. To probe these aspects further, we plotted both Ploss; and Ploss,
for Ay = Ay = 0.3 along log scales in Figure 2.4. In this figure we also plotted
the data obtained when the positions of the two classes of traffic are switched from
a scheduling perspective. We obtained these additional data points by imposing
thresholds on minimum laxity Class 2 packets instead of on Class 1 packets for the
MLT policy, and by using negative values of B for the balancing policy. These data

points are the mirror images of those obtained earlier.
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As can be seen from Figure 2.4, while the extreme points of M LT and balancing
are the same and correspond to giving strict priority to either Class 1 or Class 2 traffic,
the balancing curve lies under the M LT curve. Thus, for any given value of 7', we
can find a value of B for which the delay loss probabilities of both classes of traffic are
lower (or at least equal in the extreme cases) under the balancing scheme than under

MLT. However, one can also see in this graph that under both balancing and M LT,



29

that there cannot be orders of magnitude improvement in the performance of one class
of traffic without paying a corresponding price for the other class of traffic. While the
balancing scheduling discipline does provide relative benefits over the M LT scheme if
moderate losses can be tolerated for both classes of traffic, if the application demands
extremely low loss for one or the other class of traffic, strict priority scheduling is the

best option.

The differences between the scheduling disciplines become even smaller as we
increase the arrival rates. This can be seen in Figures 2.5 and 2.6 where the arrival

rates are A\; = A3 = 0.4 and A; = Ay = 0.45 respectively.
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As may be expected, the overall delay loss probabilities for both classes of traffic
increase as arrival rates increase and the deadline remains constant. This can be seen
by simply comparing the axes values in Figures 2.4, 2.5 and 2.6. However, as noted
before, the gap between M LT and balancing narrows with increasing arrival rates.

Further, it becomes clear by comparing these figures that for high arrival rates, a
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good option is to always accord strict priority to one or the other class of traffic.
The steep slopes of the graphs show that varying the parameters 7" and B gives us
very little “play” in terms of reducing the delay loss probability of one class of traffic
without a steep increase in the delay loss probability of the other class of traffic.

In Figure 2.7 we keep the arrival rates at A; = Ay = 0.45 but increase the deadline
r to 30. The overall delay loss probabilities are lower than when the deadline i1s 10.
For either class of traffic, the delay loss probabilities can fall on occasion to very low
values that do not appear on our graphs. This is true at either extreme of according
strict priority to one or the other class of traffic. Here too we see that the best option
is to operate at one or the other extreme as the parameterized scheduling disciplines
of MLT and balancing provide little additonal benefit. This argument is the same
as for the case when r = 10.

We now turn our attention to the behavior of the scheduling disciplines for cases

where the arrival rates of the two classes of traffic are not equal but packets of both
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classes have a deadline of 10. Figure 2.8 shows the delay loss tradeoffs possible for
A1 = 0.15, Ay = 0.75. Figure 2.9 shows the results for A; = 0.75, A, = 0.15. For both
these figures we revert to our original schemes of varying 7" and B between 1 and 10.
We do not plot the extended data points as in Figures 2.4 through 2.6 because here we
wish to comment on the effect that low values of threshold for M LT have when the
relative proportions of the two classes of traffic are changed. In both combinations of
arrival rates for the two classes, the total arrival rate is 0.9.

The curves in Figure 2.8 do not extend all the way to the point at which strict
priority is given to Class 1 traffic. This is because the loss probability of Class 1
traffic falls to a value below the minimum value on our log scale.

The conclusions that we can draw from from Figures 2.8 and 2.9 are interesting.
In general, Ploss; values are lower for lower Class 1 arrival rates for both M LT and
balancing. However, under M LT the maximum value of Ploss; is lower for A; = 0.75

(Figure 2.9) than for A; = 0.15 (Figure 2.8). This happens because for low values of



Ploss,

32

-1
10 *__
1072 Tot 0 Priority
RSN +---- MLT
. \+ @i, BalanC| ng
107 "
L) \+
10™ L,
.
LA
_5 “, \\
10 " +\
10°° .«
10”7 [T T T T [ T T T T [T T T T [ T T T T [ T T T T [T T T T]
0.035 0.04 0.045 0.05 0.055 0.06 0.065
Ploss,
Figure 2.8. A; = 0.15,X, = 0.75,r = 10
107
i 0 Priority
X +*---- MLT
_ \i'\\ Q@i BalanCIng
\_k\
- .\‘-k\
i .\\_L_\
".'"~\,_"|'\\
..Q,.\:.+\\
- e ~.+§ -
....,_.:::_k~
...... .:':"-"Q
107 T T T T T T T T T
0 0.1 0.2 0.3 0.4
Ploss,

Figure 2.9. A; =0.75,X, = 0.15,7 = 10



33

laxity thresholds on Class 1 packets, M LT creates a scheduling bias in favor of Class
2 traffic unlike balancing which always maintains a bias in favor of Class 1 traffic.
Thus in our scenario, a scheduling bias in favor of Class 2 traffic on top of the high
Class 2 arrival rate is sufficient to cause high Class 1 delay loss rates despite the low
Class 1 arrival rates. Another interesting observation can be made by considering
the values of Ploss, across the two figures. Ploss, values are higher for Ay = 0.15
than for Ay = 0.75 except for the minimum Ploss; values under M LT that are lower
for lower Class 2 arrival rate. The reason for the higher delay loss rates for lower
Class 2 arrival rates lies in the fact that except for low threshold values under M LT,
both M LT and balancing have scheduling biases in favor of Class 1 traffic. When
the arrival rate of a given class of traffic is low, a scheduling bias in its favor benefits

both classes of traffic.

2.7 Simulation Study

The results of the previous section were obtained under the assumption of bulk
arrivals with geometrically distributed bulk sizes for the two classes of traffic. We also
assumed that arrivals were independent from slot to slot. In this section, we relax
this independence assumption and study more complex traffic patterns.

The particular traffic model we use follows a traditional approach from the lite-
rature [30, 31]. We consider each class of traffic to be a superposition of several voice
sources. We model a single voice source as an on-off source with a talkspurt mean
of 352 milliseconds and a silence period mean of 650 milliseconds. In our discrete
time model, this corresponds to a geometrically distributed number (with mean 22)
of voice packets being generated during each talkspurt; each packet is separated by
16 ms. A time slot corresponds to one-third of a millisecond and is normalized to
the time taken to transmit a voice packet on a T1 link. Hence, a single source can

generate at most one packet every 48 time slots.
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We can vary the expected arrival rate of each class of traffic by varying the
number of voice sources in each stream. Hence, if we have n superposed sources, the

expression for the overall arrival rate A is given by

_ 352 xn
48 x (352 + 650)

In our study, we set n = 61 giving A; = Ay ~ 0.446. We obtained delay loss
probabilities by averaging over 10 runs with each run going up to 5 million time slots.
We discarded the first 9000 slots in each run to account for transient effects. We
obtained the 90% confidence intervals for the delay loss values for deadlines of 10
and 30. When the delay loss values are higher (in the order of 107%), the confidence
intervals are tight. For example, for the case of deadline » = 10, when 7' = 10 under
MLT, the mean value of Ploss; is 0.0330 and the half-interval length is 0.0005.
Similarly, when deadline is 30 and B = 8, under balancing the mean value of Ploss,
1s 0.0130, the half-interval length is 0.0004. However, when the delay loss probabilities
are low (in the order of 107° or 107%), the half-interval length is of the same order
of magnitude as the delay loss probabilites themselves. For example, when deadline
r = 10 and T = 7, the mean value of Ploss; under M LT is 0.0000033 and the
half-interval length is 0.0000016. Similarly when the deadline is 30 and B = 5,
the mean value of Ploss; under balancing is 0.0000056 and the half-interval length is
0.0000035. These confidence interval values suggest to us that we cannot make strong
distinctions between M LT and balancing for low loss probabilites— a conclusion that
is further supported by the discussion below.

In Figure 2.10 we show the delay loss results for a deadline of 10, and in Figure
2.11 for a deadline of 30. In both figures, for M LT we plot loss probabilites by
imposing a threshold on the minimum laxity of Class 1 packets as usual. We then
extend the M LT curves by imposing thresholds on the minimum laxity Class 2 packet.
This extension is obtained by using a mirror image of the original data points—i.e., by

reversing the roles of the two classes of traffic when the two streams are stochastically
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identical. We similarly extend the loss probabilities under the balancing scheme as
well.

From Figures 2.10 and 2.11, it is evident that for higher deadlines, M LT and
balancing become practically indistinguishable. We can also see that the overall loss
probabilities become smaller for higher deadlines. The essential conclusion we can
draw from this is that for low loss probabilities, complex scheduling disciplines such
as MLT or the balancing scheme may not provide much of a tradeoff in terms of
performance of both classes of traffic. The easiest solution here would be to assign

strict priority to one or the other class of traffic.
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Figure 2.10. Voice sources: A; = 0.446, A, = 0.446,r = 10

2.8 Conclusions

In this chapter, we have considered the problem of scheduling two classes of

real-time traffic with correlated time constraints. Three scheduling disciplines were



36

=
<
[N

=
S
Lovvoond vovvoomd vvovmd vovond evomd oo

L TTR RPN W A Y S N — _.|.._t - -

~

=
<
N

Ry SR RN S ._.F.-!';'q- -

=
<
w

=
S
I

Ploss;

0 Priority
& +---- MLT
10 P, Balancn']g
—7
10 | I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII|
1077 10°° 107 1074 1073 1072 1071

Ploss,
Figure 2.11. Voice sources: A; = 0.446, A, = 0.446,r = 30

studied: a priority discipline which gives strict priority to one class of traffic, a
threshold-based scheme in which priority is given to one class of traffic when the
minimum laxity of its queued packets falls below some threshold, and a new “balan-
cing” scheme which assigns priority on the basis of the differences in minimum laxities
in the two classes of traffic. Our analytic results showed that the balancing discipline,
which explicitly considers the difference between minimum laxities of the two classes
of traffic, can yield better performance for both classes of traffic than M LT in some
regions of operation, and can be more effectively used to exploit the tradeoffs that
exist between the two classes of traffic. This was found to be particularly the case
when time constraints were relatively tight and links were loaded up to an 80 percent
nominal load. For loss probabilities that were relatively high (Figure 2.6) or relatively
low (Figure 2.7), there was less difference between M LT and balancing.

In carrying out the analysis, we made several assumptions. Since we were in-

terested in the fundamental problem of scheduling two classes of real-time traffic
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with specified time constraints, these helped make the analysis easier. For particular
applications, however, these assumptions might be hard to justify. There is the
assumption of independence between the arrivals of the two classes. With reference
to video applications, since both classes are obtained from the same video source, the
chances are that there is correlation between them. Further, we assume independence
from slot to slot. Again, for video applications, this is difficult to justify. Usually,
what is transmitted over the network is the difference in the picture from frame
to frame with a regular refresh of the entire picture [7]. Hence, there is likely to
be correlation from slot to slot. We have relaxed the independence assumptions on
traffic arrivals and carried out simulations using models of superposed voice sources
as our arrival streams. Our results show that for these types of traffic, there is not
much difference between the M LT and balancing disciplines. Further, for low loss
probabilities, our best option may be to use the strict priority scheduling policy. This
conclusion is similar to the one arrived at when the arrival process was a geomtric
bulk arrival process. Hence, another conclusion we may draw is that the particular
arrival process does not matter that much in deciding which scheduling discipline to

use if steady state delay loss probabilities are low.



CHAPTER 3

COMPARING END-HOST SCHEDULING
ALGORITHMS

3.1 Introduction

Many real-time applications can run simultaneously on a multimedia workstation.
These applications usually involve the regular reception of real-time data (e.g., voice
or video packets) from the network that the workstation is attached to, or the periodic
generation of such packets for transmission over the network. Each new packet needs
protocol processing and is an arrival to the workstation’s CPU. Depending on the
scheduling discipline used at the CPU, an arrival may preempt the job currently
receiving service. These preemptions have associated costs and reduce the amount
of effective work that the CPU can do. An interesting problem then is to study
how different processor scheduling algorithms perform in terms of the numbers of
preemptions that the arrivals cause.

In this chapter, we compare the numbers of preemptions for periodic task-sets
under well-known processor scheduling disciplines. We study a dynamic discipline
called earliest deadline preemptive scheduling (E£D) and static disciplines including
the rate monotonic preemptive scheduling algorithm (RM) that have fixed priority
assignments, and quantify the superior performance of ED.

Most studies of scheduling algorithms have focused on examining the algorithms’
feasibility regions. A given task-set, which typically consists of a set of periodic
jobs, is said to be feasible under a scheduling discipline if all jobs are able to meet
their deadlines (e.g., see [12] and [13, references therein]). Necessary and sufficient
conditions for feasibility are now available for testing any periodic task-set with

arbitrary deadlines that is scheduled using RM. A feasibility test is not available
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for ED when deadlines are arbitrary. However, the fact that any task-set that is
schedulable under RM is also schedulable under ED suggests that more work can
be extracted out of a processor under ED than under RM. For example, when
a task’s deadline equals its period, and there is a very large number of classes of
jobs, RM can always support processor utilizations up to 69.3%, whereas ED can
support utilizations up to 100%. This disparity becomes especially important if we
consider the kinds of applications for which we would need to perform workstation
scheduling. As an example, consider multimedia conferencing. During a multimedia
conference, real-time traffic such as additional voice, video or screen applications,
may be randomly added to existing traffic, and thus it may not be possible to limit
processor utilization to a bound of less than 70%. Our new results showing that
there are always fewer preemptions under £D than under RM, in combination with
the fact that ED supports higher utilizations than RM, provide an argument for
preferring ED to RM in workstation scheduling.

In the next section of this chapter, we survey some of the work on workstation
scheduling performance. We then present a proof of our claim that there are fewer
preemptions under £D than under RM. Following this, we discuss simulation results
to quantify the difference in the number of preemptions under different scheduling al-
gorithms for well-known task-sets. After this we present simulation results for a more
complex scenario in which some operating system costs associated with preemptive

algorithms are explicitly modeled.

3.2 Survey of Related Work

The field of scheduling real-time periodic tasks sets has been an active research
area for over two decades. Liu and Layland in their classic paper [12] establish the
feasibility region for the preemptive rate monotonic algorithm. RM belongs to the
class of fixed priority scheduling algorithms. For each policy belonging to this class,

each task of a task-set is assigned a static priority level. Jobs of a higher priority level
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take precedence over jobs of a lower priority level. In [12] it is demonstrated that
the processor utilization bound under RM for scheduling m periodic tasks using RM
is m(2'/™ — 1) when deadlines equal periods. As m — oo, the processor utilization
bound goes to 69.3%- i.e., any periodic task-set with processor utilization of less
than 69.3% is schedulable using RM. They also demonstrate that if a feasible fixed
priority exists for some task-set, the rate monotonic priority assignment is feasible
for that task-set, i.e., they establish the optimality of the rate monotonic algorithm
in the class of fixed priority scheduling algorithms. In addition to these results, the
feasibility bound for the preemptive ED algorithm is shown to be a utilization of
100% in [12].

Following the groundwork that was laid in [12], the field of fixed priority sche-
duling has seen many advances. An excellent summary of these new results is given
in [13]. There now exist results to show the feasibility regions for a periodic task-set
with arbitrary deadlines, studies of the average case behavior ([12] gives a worst case
analysis), extensions to take care of aperiodic tasks that are mixed in with the periodic
tasks and ways to handle preemption overheads and priority inversions. Clearly, our
understanding of the behavior of fixed priority scheduling algorithms (including RM)
has expanded greatly. However, there has not been any direct comparison of fixed
and dynamic scheduling policies from the point of view of the number of preemptions
that the policies induce.

An analysis of delay bounds on a single server whose arrival process is a super-
position of periodic processes is given by Jean-Marie et. al. [32] for both premptive
and nonpreemptive disciplines. A feasibility study based on worst case trajectories
for the nonpreemptive case is shown here. The results obtained for a single server
queue are also extended to the network case of a slotted unidirectional ring in [32].
Jeffay et. al. [33] also look at nonpreemtive scheduling of a set of periodic or sporadic

tasks. They provide a set of necessary and sufficient conditions for such a task-set to
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be schedulable and show the optimality of the non-preemptive earliest deadline first
algorithm for task-sets that satisfy these conditions.

An argument in favor of a systemic approach to supporting real-time applications
in workstations is given in [34]. This involves considering the I/O subsystem and
memory management in addition to the issue of processor scheduling. The authors
call for creating the necessary hardware such as multiple, concurrent paths to high-
bandwidth memory to enable the workstation to run several simultaneous time-critical
applications. Bulterman and van Liere [38] show that Unix-like operating systems do
not provide much support for real-time applications. The cost of context switching
in such environments is considerable. For example, [35] shows that the cost of a
Stgnal-Waat, which is the time for a process to signal a waiting process and then
to wait on a condition, is about 50 times greater for Ultrix processes than for fast
threads.

None of the above work presents a clear and systematic comparison of the number
of preemptions seen under various scheduling policies. Our work is interesting in
that we provide just such a comparison of the performance of ED and some fixed
priority policies for processor scheduling. We gquantify the relative performance of
these disciplines for well-known task sets and provide insight on how the structure
of the task-set itself influences the overall number of preemptions. We also explicitly
model and simulate some operating system costs involved in preemptive scheduling

of task-sets and comment on the time that the CPU spends on these overheads.

3.3 Comparing Numbers of Preemptions under £D and RM: Analysis

We wish to compare the number of preemptions obtained for periodic task-sets
scheduled at a single server under the rate monotonic and the earliest deadline first
policies. RM assigns higher priority to jobs with lower period, while ED always

schedules the job with the closest deadline. We first establish a result for more
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general scheduling disciplines and task-sets that need not be periodic, and then apply
it to the particular case in which we are interested.

Consider a stream of jobs w = 1,2, ... that arrive at times a; < ay < .... These
jobs belong to one of K classes labelled £ = 1,2,..., K. Let &, be the class of job u
and let o, denote its service time. Associated with each class k is a relative deadline
r,. Also associated with each job u is an absolute deadline given by d, = a, + 7x,.
The relative deadline of a job u (7., ) is the amount of time from its arrival to when
its service must be completed, and the absolute deadline is the time instant by which
the job has to complete service. Let 7 be any scheduling policy that knows all jobs’

arrival times, service times and relative deadlines. We introduce the following:
e N7(t) - number of preemptions under policy = by time ¢, N*(0) = 0.
e V/7(t) - unfinished work of class k jobs under policy 7 at time ¢
e ¢l - the service completion time of job u under policy .

e m; - a non-idling, preemptive policy which gives priority to the job with the
smallest relative deadline. By “non-idling” we mean that the server does not

remain idle if there is any outstanding work of any class at the server.

e 7 - a non-idling, preemptive policy which gives priority to the job with the

smallest absolute deadline.

Let v be the non-idling, preemptive policy that always schedules class i jobs
when there are no class 7 < 7 jobs in the system. Then, Nain and Towsley [36] have

established the following lemma:

Lemma 3.1 For any arbitrary arrival sequence of jobs,
SNV < Y VT(#), Vit 0<t<oo,i=1,...,K (3.1)
k=1 k=1

We use this result to establish the main theorem of this section.
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Theorem 3.1 If arrival times and service completions never coincide under w; and

my, then for any sequence of service times and arrival times
N™(t) < N™(t), Vt > 0. (3.2)

Proof: It suffices to show that for every preemption under 7, at a time ¢, there is

also a preemption under 7; at the same time.

Let customer v be preempted under 75 at time t. Let customer u be under service
under m; at time ¢{~. Consider two cases based on the values of the relative deadlines

of v and v.
Case 1: r,, > 7,

Since v is preempted at ¢ under 7y, there must be an arrival at time ¢ of some
job, say w, such that d,, < d,. This implies that r,, < 7., (because a,, > a,). Such
an arrival would also preempt u under m; at ¢.

Case 2: 7., <7,

Consider two possibilities.

(i) e >t
This condition implies that d, < d, and since there is a preemption at ¢ under 75, we
get d, < d, < d,. Since a, < a,, we get that r,, < r,, and hence w would preempt
« under m; at time ¢.

(ii) 2 < t

Since job w is still in service at ¢~ under 7, we have
Vel (@) < V(@) (3.3)
But, since 7 1s the same policy as 7, we see from Lemma 3.1 that

D V) < DD V(). (3.4)

1<Ky 1<Ky

It follows from (3.3) and (3.4) that

Y VR < 3 V). (3.5)

1<Ky 1<Ky

Hence there is a non-zero amount of work from some job with a relative deadline (say

r) smaller than r,, that is awaiting service under 7, at time ¢. Therefore the arrival
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at time ¢ with relative deadline r,, must be such that r,, < r, < r., in order for
there to be a preemption at ¢ under 7. Such an arrival would also preempt job u
that is still receiving service under ;.

Combining Cases 1, 2(i) and 2(ii) yields the inequality shown in (3.2).
Remark: Theorem 3.1 was proven under the assumption that there are no simulta-
neous events. This assumption is needed to take care of the possibility that there
may be a preemption under 7, at the very instant that there is a service completion
under m;. The arriving job that causes a preemption under 73 would not cause a
preemption under w;. The way around this is problem is to simply postulate that
all processing associated with a service completion is completed before taking care
of an arrival at that instant. Thus, in our scenario, we would also schedule the next
job according to the m; policy from those jobs that are already in the system before
considering the new arrival. The job that has just been scheduled would receive zero
service this time around and would be preempted immediately by the new arrival.

We now turn our attention to a periodic task-set with classes 1,2,..., K. Jobs
of class 7 have period T; and the first job of that class arrives at time p;, 0 < p; <
T;. We define P = {p1,pa,...,px} as the initial phasing of the task-set. The rate
monotonic algorithm assigns higher priority to jobs with lower periods. Without loss
of generality, we number the tasks so that 77 < 7% < ...Tk and choose the relative
deadlines of jobs to be in the same order relation as their periods. Then, policy m;
of Theorem 3.1 corresponds to RM. Since policy 7, assigns priority to the job with
the smallest absolute deadline, it corresponds to ED. Hence the following corollary

follows directly from Theorem 3.1.

Corollary 3.2 NEP(t) < NEM(¢) 0 < t < oo, for any sequence of arrival times
and service times if relative deadlines are monotonic in exact correspondence to the

periods in a periodic task-set.
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3.4 Comparing Numbers of Premptions: Simulations
3.4.1 Algorithm Performance Without OS Overheads

Corollary 3.2 establishes a sample path inequality indicating that the number of
preemptions under ED is always less than that under RM for any given task-set.
In order to determine the actual quantitative difference in the numbers of preemp-
tions for ED and RM, we simulated an avionics task-set [14] shown in Table 3.1
under the two scheduling policies. We simulated the task-set 3000 times with each
scheduler for the case of relative deadlines of jobs being equal to their periods, each
time with a randomly generated initial phasing, P. The time of the first Class
arrival, p;, was assumed to be a random variable uniformly distributed in the interval
0,T;), ¢« = 1,...,K. For RM scheduling, all jobs with the same period belong
to the same scheduling class; jobs were served in a first-in first-out (F/FO) order
within each scheduling class. Further, in our simulations we ignored operating system
overheads, such as the actual context switching costs, and concentrated on studying
the actual numbers of preemptions under the different scheduling algorithms. In
the next subsection we present simulation results when some of these overheads are
explicitly modeled.

A regeneration cycle for a task set whose jobs have integer periods and an arbitrary
initial phasing begins at the greatest idle instant that is less than or equal to the least
common multiple of periods of the jobs in the set. The duration of the regeneration
cycle will equal the least common multiple of the periods (118000 in the case of the
avionics task-set). The notion of a regeneration cycle is important because the sample
path behavior of the periodic task-set repeats itself every regeneration cycle. Thus,
in our simulations, it was suffficient to collect statistics during one regeneration cycle
for each run.

Let random variables N¥P and NEM represent the number of preemptions in a

regeneration cycle for ED and RM respectively. Then, random variables (N¥P | P)
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Table 3.1. Avionics Task Set (in msecs), Util.=83.01%

Execution Time | Period
2.0 25.0
5.0 25.0
1.0 40.0
3.0 50.0
5.0 50.0
8.0 59.0
9.0 80.0
2.0 80.0
5.0 100.0
3.0 200.0
1.0 200.0
1.0 200.0
3.0 200.0
1.0 1000.0
1.0 1000.0

and (NEM P) denote the numbers of preemptions/cycle for initial phasing P. In our
simulations we collected 3000 sample values of (NEZP, P) and (NEM | P) and estimated
the means of NP and NBM by the sample means over these 3000 values. We denote
these estimated means by E[NZP] and E[N®M]. Further, we estimate the mean
percentage difference between the number of preemptions under the two disciplines
by the mean of the sample differences and denote it as E[Dif]. The percentages are
measured relative to the number of preemptions under ED.

For the 3000 runs, we obtained E[NFP] = 9472.21 and E[NEM] = 9752.02. On
average, there were 3.04% more preemptions under RM than under ED (relative
to ED). More interesting results can been seen by examining the distribution of
the percent difference in the numbers of preemptions obtained over one regeneration
cycle for RM and ED. Figure 3.1 shows the histogram of the sample values of the
percentage differences. As can be seen from the figure, the percentage difference can
exceed 21%. Approximately 25% of the runs exhibit a percentage difference that is

close to 5% or more. This suggests that for a significant proportion of initial phasings,



47

there is a non-negligible difference in the numbers of preemptions observed under £ED

and under RM.
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Figure 3.1. Difference in preemptions, RM-ED, (Avionics)

In order to probe how the structure of the task-set affects the number of pre-

emptions, we also simulated a different task-set, INS [14], shown in Table 3.2. This

Table 3.2. INS Task Set (in msecs), Util.=88.44%

Execution Time | Period

11.8 25.0

42.8 400.0

102.8 625.0
202.8 10000.0
1002.8 10000.0
250.0 12500.0

task-set has a regeneration cycle of 50000 (the least common multiple of the periods
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of the task-set). In this case, we obtained the average (over 3000 runs) numbers of
preemptions to be E[NEP] = 1614.00 and E[NEM] = 1614.02. This is quite a different
result from that obtained for the avionics task-set. A closer look at the behavior of
the two task sets on a sample path basis provides us with a plausible hypothesis as to
why this is so. The INS task-set is such that the ratio of the highest to lowest periods
is 500 (as opposed to 40 for the avionics task-set). Also, the ratio of the maximum
to minimum execution times in the INS task-set is over 21 as opposed to only 9 for
the avionics task-set. Further, in the INS task-set, jobs belonging to the highest
frequency class also have the lowest execution times. This structure of the task-set
suggests to us that in the INS task-set, most of the preemptions will be caused by
arrivals of the highest frequency jobs. Since both the relative and absolute deadlines
of the rapidly arriving high-frequency jobs are likely to be smaller than those of any
job in service (and hence the arriving jobs would have higher priority), we would
expect preemptions to take place under both ED and RM. An examination of the
simulation results does bear this conjecture out, as over 96% of all the preemptions
for the INS task-set in both ED and RM are caused by the low-period jobs. By
contrast, only around 60% of the preemptions are caused by the highest frequency
jobs in avionics task-set under both disciplines.

We obtain further insight into how the structure of the task-set affects the number
of preemptions by considering a scheduling algorithm which is only a slight variation of
RM. Under HEHP (high execution time, high priority), we assign higher priority to
jobs with smaller periods, as in RM scheduling. However, we now make a distinction
between jobs that have the same period but different execution times. Among jobs
that have the same period, the one with highest execution time receives highest
priority. We schedule jobs that have the same period and same execution time in
FIFO order. Figure 3.2 shows the histogram for the percent difference in the number
of preemptions between HEHP and ED (relative to ED). As can be seen, Figure 3.2

exhibits a very long tail and the percentage difference in the number of preemptions
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can be over 188%. About 20% of the runs exhibit a difference in the number of
preemptions that is over 8%. We conjecture that the smaller peaks in Figure 3.2 come
about as there is a finite probability that jobs of the same period (but of different
priorities) arrive close enough to each other that an initial preemption is repeated in
a periodic manner. This suggests to us that if we have a task-set with periods that

are very close (but not equal), there can be many more preemptions under RM than

under ED.
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Figure 3.2. Difference in preemptions, HEHP-ED (Avionics)

We also examined how scaling the execution times while keeping the periods the
same (and thereby changing the overall utilization) changes the preemption behavior
in the case of the avionics and INS task-sets. This corresponds to varying the speed
of the processor executing the task-sets. For the INS task-set, reducing all execution
times to 90% of their original value reduces the total number of preemptions by

about 18% for both scheduling disciplines, but has negligible impact on the relative
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performance of the two schemes. Similarly, increasing the execution times to 110% of
their original value increases the total number of preemptions by over 21%, but has
negligible impact on the relative performance of the two schemes.

Scaling effects on the avionics task-set are shown in Tables 3.3 and 3.4. Table 3.3
shows the effect of varying the processor utilization on the number of preemptions/run
for each of the two scheduling disciplines— RM and ED. Table 3.4 shows the effect
of varying processor utilization on the difference between the number of preemptions
for the two disciplines for the avionics task set. Both the estimated means and
sample maxima (Max[NZP], Max[NBM]) of the numbers of preemptions for each
of the disciplines (Table 3.3) show a generally increasing trend with the processor
utilization. Table 3.4 shows that the average and maximum percentage differences
also generally increase as a function of processor utilization (though this increase is not
uniform for the maximum percentage differences). The coefficient of variation for any
random variable, X is the ratio of its mean to its standard deviation, and the tables
also give the respective behaviors of the two disciplines in this regard. The two tables
indicate that while there is little change in the coefficient of variation (CV[NEP],
CV[NEM)) for either discipline with change in processor utilization, the coefficient of
variation of the difference (CV[Dif]) in the numbers of preemptions does decrease
with increased utilization. Thus the standard deviation of the difference rises faster
than the mean with rising utilization. At higher utilizations, the chance of there
being some initial phasing that causes there to be significantly more preemptions
under RM than under ED is high- this is seen in the Var[D:f] column in Table 3.4
which shows the variance in the difference in the number of preemptions increases
with increasing utilization. We can conclude therefore that at higher utilizations £D
1s to be even more strongly preferred over RM from the point-of-view of lowering the
risk of there being a high number of preemptions. We may further conclude from
looking at the difference in the way in which the INS and avionics task-sets respond

to scaling that scaling has a more significant effect on more “balanced” task-sets than
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on more “skewed” task-sets where the behavior of one class may dominate that of all

the other classes.

Table 3.3. Scaling Effects on Algorithm Performance (Avionics)

Util% | Max[NEP] | E[NEP] | Max[NEM] | E[NEM] | CV[NEZP] | CVINEM]
66.41 14015 7441.74 14015 7522.17 0.2345 0.2326
70.56 14320 7934.65 14320 8047.10 0.2299 0.2280
74.71 14648 8674.96 14773 8832.67 0.2196 0.2180
78.86 14900 8940.80 15095 9150.71 0.2224 0.2207
83.01 14182 9472.21 14367 9752.02 0.2201 0.2183
87.16 15054 10164.93 15241 10541.97 0.2216 0.2141
91.31 15649 10847.17 16064 11362.18 0.2152 0.2118
92.14 15752 10959.14 16278 11510.07 0.2152 0.2119

Table 3.4. Scaling Effects on Difference (Avionics)

Util% | E[Dif] | Max[Dif] | Var[Dif] | CV[Dif]
66.41 | 1.14 11.52 2.21 1.3066
7056 | 1.48 13.53 3.00 1.1693
7471 | 1.88 13.41 3.69 1.0230
78.86 | 2.42 13.58 4.9 0.9240
83.01 | 3.04 21.12 6.37 0.8303
87.16 | 3.82 21.40 T 0.7290
91.31 | 4.90 22.13 9.73 0.6365
92.14 | 5.18 21.60 10.27 | 0.6190

We now comment briefly on the results we obtained by studying a multimedia
task set described in [37]. We changed some of the periods of the original task-set
[37] to obtain a regeneration cycle of manageable duration. This modified task-set
shown in Table 3.5 where all the periods are in CPU cycles normalized with respect
to the requirements of a 9.6 KHz analog interface controller [37]. The task-set has a
nominal utilization of 41.3%. At this utilization, the average difference in the numbers

of preemptions between ED and RM was negligible while the maximum difference
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across 3000 runs was 3.2%. By scaling the execution times we raised the utilization
to 91% and 99% and obtained average differences of 1.5% and 3.3% and maximum
differences of 18.9% and 35.7% respectively. Similar observations to those made on
the avionics task-set could be made for the multimedia task-set with respect to the

coefficient of variation of the difference in the number of preemptions while using ED

and RM.

Table 3.5. Multimedia Task Set, Util.=43.1%

Execution Time | Period
0.852 16.0
0.568 16.0
0.284 16.0
0.284 16.0
0.284 16.0
0.047 16.0
0.134 20.0
0.636 24.0
0.562 24.0
0.350 24.0
0.344 24.0
1.136 40.0
4.654 48.0
3.182 128.0
1.625 224.0
0.686 224.0
0.406 224.0
0.261 224.0
0.170 224.0
0.147 224.0
0.144 224.0
0.082 224.0
0.023 224.0
2.165 1120.0
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3.4.2 Algorithm Performance With Inclusion of OS Overheads

All the results of Section 3.4.1 were obtained by simulating scheduling disciplines
without the inclusion of any system overheads like context switching costs. In this
subsection we discuss the numbers of preemptions obtained under different scheduling
policies for the avionics task-set shown in Table 3.1 when we account for some of the
operating system overheads in our simulations.

In our model, at any instant the server (processor) may be idle, busy or blocking.
We further subdivide the blocking state into two as we shall explain shortly.

An arrival to an idle server (i.e., the processor is not doing any work at that time)
causes the state to change to busy. On completing service, if there are no other jobs
awaiting service, the server idles. If there are waiting jobs, the next one is chosen
according to the scheduling discipline at the processor and the server remains in the
busy state. There is a cost associated with completion of service for each job called
Cezit which we model simply as an additional service time requirement for each job.

An arrival to a busy server that has higher priority than the job currently being
served causes a context switch with the arriving job incurring a cost of Cpreempt- The
server moves into the state “blocked with no higher priority job waiting” for a duration
of Cpreempt- If the arrival to a busy server is of lower priority than the job currently
receiving service, there is no context switch but there is a cost called Cronpreempt
incurred by the job receiving service. The server moves into the state “blocked with
no higher priority job waiting” for a duration of Cronpreempt- On the completion of
the overhead period (whether Cpreempt 0T Cronpreempt ), the job that incurred the cost
receives service.

An arrival to a blocked server that has higher priority than the job currently
incurring an overhead cost causes the server to move to the state “blocked with a
higher priority job waiting”. As soon as the current overhead period is finished, there
is a context switch to this waiting higher priority job. The server moves back to

the state “blocked with no higher priority job waiting” for a duration of Cpreempt-
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Arrivals to a blocked server that have lower priority than the job currently incurring

an overhead cost are simply enqueued to await service. They do not themselves cause

or incur additional overhead.

A diagramatic representation of the above description is given in Figure 3.3. We
must point out that this is a simplified model of a processor and that there are other

possible overhead costs (such as timer costs) that we do not model.

Finish serving, non—empty
queue/serve next

Arrival/start serving

Idle ) Busy

Finish serving,empty queue/wait for arrival

Higher priority arrival/
switch context, preemption
End of overhead cost

period/resume service

Lower priority arrival/
do not switch context,
nonpreempt cost

Higher priority arrival/make arrival next prempting job
—— \
Blocked with a

higher prority
job waiting

Blocked with no
higher priority
job waiting

End of overhead period/switch context,
preemption cost

Lower priority arrival/ Lower priority arrival/
enqueue, no server action enqueue, no server action

Figure 3.3. State description of processor behavior

The actual values for the preemption and nonpreemption costs are obtained from
the work presented in [15] that gives these costs when each job corresponds to an

initiation of a real-time thread in the Mach kernel. For the avionics task-set, there
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are n = 15 threads. The blocking (or nonpreempt) cost, preemption cost and exit
cost are given by

Chronpreempt = 0.39n + 7.12 = 12.9Tusecs
Cpreempt = 0.79n + 30.1 = 41.95usecs
Cezit = 0.74n + 28.8 = 39.9usecs.

We ran 3000 sample runs on the avionics task-set as before and compared the
numbers of preemptions under RM and ED when these costs were also included.
Tables 3.6 and 3.7 show the results thus obtained when the avionics task-set is
used. In Table 3.6 E[NFP] and E[N®M] are the average number of preemptions
per cycle, Inc[N¥P]% and Inc[N®M]% are the percentage increases in these averages
over the case when there are no explicit costs associated with preemptions (see Table
3.3). Ov.ED% and Ov.RM% are the percents of time the CPU spends processing
various overheads for £D and RM respectively. These are obtained by adding all
the Cpreempt'S; Cronpreempt's and Cegit’s incurred over the 3000 regeneration cycles and
determining what percentage of the total simulation time (3000 regeneration cycles)
these overheads consitute. All these values are shown for different effective processor
utilizations (Util%) which are given in the first column.

We can see immediately that the average numbers of preemptions increase when
we take these additional costs into account for both ED and RM. In general, the
percentage increase shows an increasing trend with increased processor utilization.
Similarly, the percentage time the processor spends on overheads is centered around
1% and shows an increasing trend with increased utilization.

Table 3.7 shows how the difference in the number of preemptions for the two
algorithms varies with effective utilization when preemption overheads are included.
Here we see that the maximum percent difference over 3000 runs increases as the
processor utilizations increase. The conclusions that we may draw from Table 3.7 are

very similar to those that may be drawn for Table 3.4 except that the average percent
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Util% | E[N®P] | Inc[N¥P)% | Ov.ED% | E[N®M] | Inc[NFM]% | Ov.RM%
66.41 | 7548.96 1.44 0.89 7635.75 1.51 0.89
70.56 | 8043.10 1.37 0.92 8167.35 1.49 0.92
74.71 | 8797.63 1.41 0.95 8968.29 1.54 0.95
78.86 | 9090.58 1.68 0.97 9317.51 1.82 0.97
83.01 | 9674.43 2.13 0.99 9981.73 2.36 1.00
87.16 | 10384.14 2.16 1.02 10796.76 2.42 1.03
91.31 | 11066.66 2.02 1.06 11644.80 2.49 1.07
92.14 | 11205.46 2.25 1.06 11827.85 2.76 1.08

Table 3.7. Scaling Effects on Difference with Overheads (Avionics)

Util% | E[Dif] | Max[Dif] | Var[Dif] | CV[Dif]
66.41 | 1.21 11.28 2.37 1.2748
7056 | 1.61 13.28 3.28 1.1273
7471 | 2.00 13.27 4.00 1.0003
78.86 | 2.57 17.34 5.36 0.9019
83.01 | 3.26 19.69 6.69 0.7934
87.16 | 4.10 23.04 8.30 0.7034
91.31 | 5.38 22.01 1077 | 0.6104
92.14 | 5.27 27.79 1172 | 0.5982

differences are higher when overheads are included. As before, ED is to be preferred

to RM- especially when processor utilization are high. Using ED reduces the risk of

having large numbers of preemptions.

The difference in the case of including and excluding overheads is not very large

primarily because real-time thread management costs are small compared to the

execution times of the jobs.

Depending on the application, jobs may be run as

repeated activations of processes rather than threads. In such situations, we would

expect overheads to occupy a much higher proportion of processor resources [35] and

consequently, supportable effective CPU utilizations will be lower.
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3.5 Conclusions

In this chapter we quantified the difference in the number of preemptions seen
when different processor scheduling algorithms are used for periodic task-sets. Our
simulation results suggest that in real applications, the preemption overhead induced
by RM could be noticeably more than that induced by ED. This could be a serious
problem under both real-time [15] and Unix-like [38] operating systems. The actual
numbers of preemptions were shown to depend on structure of the task-set used.
Because of the periodic nature of the arrivals, there could be a repetitive nature to
the preemptions also for certain scheduling algorithms such as HEHP.

Preemption performance is one aspect of a scheduling algorithm. Other aspects
include feasible regions and ease of implementation. From the points of view of
preemption performance and task-set feasibility, £ D has been shown to be superior
to RM. A common argument in favor of RM has been that static priority policies
are easier to implement. A closer examination of the implementation details of ED
and RM shows this claim to be questionable. An arrival to an RM scheduler entails
interrupt handling and an addition to the tail of a priority queue. An arrival to an
ED scheduler involves processing an interrupt and insertion into a deadline-sorted
queue. For small numbers of classes of traffic, actual timing differences between these
two possibilities are likely to be small. Thus ED is able to meet most criteria for a
good workstation scheduling policy.

It must be pointed out that this study limits itself to a particular facet of the
workstation performance; processor scheduling algorithm is only one determining
factor in many in obtaining good overall real-time performance. The operating
system used and the supporting hardware available are also important factors in
determining the overall suitability of a given workstation in meeting the requirements

of multimedia applications.



CHAPTER 4

SCALABILITY OF RELIABLE MULTICAST
PROTOCOLS

4.1 Introduction

Many multimedia applications now involve multicasting, the sending of infor-
mation from one site to a number of other sites simultaneously. Examples of such
applications include the so-called shared whiteboard, a distributed and shared screen

environment for browsing through or annotating files, and for drawing.

In this chapter we analyse protocols that implement multicasting in a reliable way.
Our focus i1s on studying the scalability of different protocols when host processing
power is the bottleneck resource. As indicated in Chapter 1, the prime motivation
for studying the scalability properties of different protocols arises from the fact that
when there are large numbers of receivers, the use of mechanisms that require sender
intervention for reliability could cause the sending host to be overwhelmed by protocol

processing overheads.

We begin our discussion by surveying related work. We then describe the three
specific reliable multicast protocols and then study and analyze their host throughput
performance. We demonstrate how protocols which place the burden for loss-recovery
at the receivers (which we call “receiver-initiated” protocols) have better scalability
properties than protocols that place the burden of processing at the sender, both
through the derivation of complexity expressions and with numerical results on par-

ticular workloads.

4.2 Survey of Related Work

In this survey we examine previous work in area of reliable multicast protocols.

Some of this work has to do with multicast routing and some with the analysis
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of various sender-initiated and receiver-initiated protocols for point-to-multipoint
communication.

Multicasting in a local area network (LAN) environment entails taking advantage
of the broadcast routing properties of a LAN. Deering and Cheriton [23] provide
extensions to the distance-vector and link-state routing algorithms to support multi-
casting beyond a single LAN. They describe how hierarchical multicast routing can be
used for multicasting in very large internetworks. They also describe how new users
can join and leave a multicast session and the functionality needed at bridges and
routers to support their algorithms. An actual experiment using IP multicast routing
is described in [19]. Since the necessary host extensions to support multicasting are
not yet available on most Internet routers, this experiment was carried out using
the experimental DARTnet as a backbone. The work described in [23] is essentially
centered on network-related issues for multicasting and does not consider host-related
issues such as processing requirements.

Many papers specify different kinds of protocols for reliable multicast. For ex-
ample, Chang and Maxemchuck [39] describe a reliable broadcast protocol. Their
protocol designates a single primary receiver called the token site. This site has
the responsibility of acknowledging all broadcast messages and responding to any
retransmission requests from other receivers. This responsibility is rotated among
the various receivers. Since only one receiver responds to broadcast messages, only
one acknowledgment is received per message.

Several papers analyze multicasting variations of well-known ARQ error recovery
schemes such as stop-and-wait, go-back-N and selective repeat. Towsley [40] looks at
the go-back-N error control protocol for the point-to-multipoint case. Each message
1s either ACKed or NAKed. Expressions are derived for message delays. Other work
on the analysis of go-back-N multicast protocols includes that given in [41, 42, 43].
Wang and Silvester [41] provide throughput analyses for stop-and-wait and go-back-N

schemes at the data link layer. The protocols discussed in [41] are generalizations of
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the go-back-N protocols given in [42]. It is proposed in [41] that multiple copies of
a data frame be transmitted to a broadcast channel instead of a single copy in order
to increase throughput. A dynamic programming optimization technique is used
to determine the optimal number of copies of the data frame to be sent, based on
round-trip delays and error probabilities. Throughput expressions are derived in [41]
for this scenario and expressions for the average delay are given by the same authors
in [43]. While the variation of throughput with number of recievers is given in [41],
no attempt is made to characterize host processing costs.

Towsley and Mithal [44] give an analysis for the selective repeat ARQ where the
receivers have finite buffers. This work builds on an earlier analysis of the point-
to-point selective repeat ARQ by Weldon [45] and improves on the earlier work by
obtaining a tighter lower bound on the maximum throughput. It is demonstrated here
that for low bit error rates (1075 or less) the performance of this protocol approaches
that of the idealized selective repeat ARQ. While results showing the variation of
throughput with the number of receivers for different protocols are given in [44],
the maximum throughput is obtained simply as the inverse of the expected number
of transmissions for successful receipt of a packet at all receivers. Ram Chandran
and Lin [46] apply the dynamic programming optimization technique given in [41] to
selective repeat ARQ and carry out a throughput analysis. In both [44] and [46] there
is no attempt to explicitly model host processing requirements. Shacham and Towsley
also consider the selective repeat ARQ in [47]. This work is primarily concerned with
obtaining the distributions of packet resequencing delay and buffer occupancy at the
recelver.

The throughput performances of go-back-N, selective repeat with infinite buffers
and selective repeat with finite buffers are compared for two different retransmission
strategies by Sabnani and Schwartz [48]. The target environment is a satellite broad-

cast channel and the transmitter is modeled as a queue. It is shown in [48] that only
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selective repeat with infinite buffers provides acceptable performance when positive
acknowledgements are used for error control.

All the work cited above on ARQ protocols is based on sender-initiated methods,
i.e., if an ACK or a NAK is not received within a timeout interval, the sender in-
itiates retransmissions. Ramakrishnan and Jain [49] designed and evaluated, through
analysis and simulation, a receiver-initiated window based reliable multicast protocol
suitable for a local area network. Jacobson has used similar ideas to implement a
reliable multicast protocol suitable for the Internet [50].

For wide area networks (WANs), Yavatkar and Manoj [21] describe an end-to-end
transport protocol for multimedia multicast. The authors evaluate approaches based
on combinations of redundant transmissions, rate-based flow control and negative
acknowledgments. They provide a simulation study to show that simple optimistic
strategies work well in scaling to hundreds of receivers. Their main interest is in
meeting a prespecified QOS requirement (loss over a time epoch) and there is not
much discussion of how various policy decisions impact host processing costs.

Our work differs from all of the above in that our primary focus is on the host
processing requirements of reliable multicast protocols and that we are interested in
the scalability of these protocols. This is an important consideration as it is possible
that the protocol processing overhead associated with error-recovery may overwhelm
the sender in the one-to-many scenario. This is the #mplosion problem at the sender
that we discussed in Chapter 1. It is necessary, therefore, to study how different
protocols behave as the number of participants in a multicast session increases. In
our work we explicitly model the various components of host processing necessary for
reliable end-to-end multicast communication and compare the scalability of different
protocols. To this end, we consider the fundamental features of sender-initiated and
receiver-initiated protocols rather than attempt an elaborate characterization of all

the possible nuances of these complex error-recovery mechanisms.
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4.3 Protocol Description

We now describe the two approaches for reliable transmission of data from a
sender to multiple receivers. As noted above, the sender-initiated approach, based on
the use of ACKs, places much of the burden for ensuring reliable packet transmission
on the sender whereas the receiver-initiated approach, based on NAKs, shifts this
burden to the receivers. The section ends with a description of our network model.
In the remainder of this chapter, the term “broadcast,” when used, will refer to the

transmission of a packet to all stations involved in the multicast communication.

4.3.1 Sender-Initiated Protocols

A sender-initiated protocol requires the sender to maintain a list (called the
ACK list), for each packet, of the receivers from which it has received a positive
acknowledgment (ACK). Each time a receiver correctly receives a packet, it returns an
ACK. Upon receipt of the ACK, the sender updates the ACK list for the corresponding
packet. Lost packets are dealt with through the use of timers. Specifically, the sender
starts a timer at the time of a packet transmission and, if it expires prior to the sender
having received ACKs for this packet from every receiver, the sender retransmits the
packet and restarts the timer.

Most traditional error-recovery protocols (e.g., TCP, HDLC, TP4) and many
early multicast/broadcast protocols [40, 48, 42, 49, 44| are based on this approach.
Rather than focus on a specific protocol, we will instead focus on a generic protocol

which exhibits the following behavior.

e error recovery is selective repeat, i.e., only packets that are suspected to be lost

or corrupted are retransmitted,

e anytime that a sender transmits or retransmits a packet, it broadcasts to all

receivers and starts a timer,
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e cach time that a receiver receives a packet correctly, it transmits an ACK to the

sender over a point-to-point connection,

e whenever a timer expires, the sender rebroadcasts the corresponding packet,

giving it priority over new packets.

This will be referred to as protocol (A).
This protocol can be optimized in numerous ways, such as grouping ACKs for
different packets into a single control packet (see [40, 48] for examples of such opti-

mizations). We will not pursue them in this dissertation.

4.3.2 Receiver-Initiated Protocols

A receiver-initiated protocol places the responsibility for ensuring reliable packet
delivery on the receivers. The sender continues to transmits new data packets until
it receives a negative acknowledgment (NAK) from a receiver. When this occurs, the
sender then retransmits (i.e., again multicasts) the packet required by that receiver.
The role of the receiveris to check for lost packets. If it decides that it has not received
a particular packet, it transmits a NAK to the sender. In order to guard against either
the loss of the NAK or the subsequent packet retransmission, the receiver uses timers
in a manner similar to the way the sender uses them in sender-initiated protocols.
Typically a receiver will detect a lost packet when it receives packets with larger
sequence numbers (or after a timeout if it is expecting a retransmission). In the case
that the sender does not always have packets to send (i.e., must occasionally wait for
data to be produced at a higher level), it may be necessary for the sender to multicast
periodic state information (e.g., giving the sequence number of the last transmitted
packet) while it is idle; we ignore this potential overhead in our ensuing analysis, as
we are primarily interested in determining the maximum throughput of the protocols.

We will focus on a generic receiver-initiated protocol (N1) that exhibits the

following behavior:
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the sender broadcasts all packets,

the sender gives priority to retransmissions over transmissions of new packets,

e whenever a receiver detects a lost packet, it transmits a NAK to the sender over

a point-to-point channel and starts a timer,

the expiration of a timer without prior reception of the corresponding packet

serves as the detection of a lost packet.

We also study the following variation (N2) suggested by Ramakrishnan and Jain
[49] for a LAN and Jacobson [50] for a WAN

e the sender broadcasts all packets and state information,
e the sender gives priority to retransmissions over transmissions of new packets,

e whenever a receiver detects a lost packet, it waits for a random period of time
and then broadcasts a NAK to the sender and all other receivers, and starts a

timer,

e upon receipt of a NAK for a packet which a receiver has not received, but for
which it initiated the random delay prior to sending a NAK, the receiver sets a

timer and behaves as if it had sent that NAK,

o the expiration of a timer without prior reception of the corresponding packet

serves as the detection of a lost packet.

This second protocol attempts to ensure that at most one NAK is returned to the
sender per packet transmission by staggering the generation of NAKs and broadca-
sting them to all other receivers. Ideally, the first NAK generated for a given packet
should arrive at all other receivers prior to their generating additional NAKs. As
with the sender-initiated protocols, there are numerous optimizations possible which

we will not explore in this dissertation (see [49] for an example).
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4.3.3 Network and Error Model

We assume that one sender transmits a continuous stream of packets to R recei-
vers. We further assume that all loss events at all receivers for all transmissions are
mutually independent and that the probability of packet loss, p, is independent of
receiver. We further assume that ACKs/NAKs are never lost.

The assumption that losses occur as independent events does not typically hold
as different receivers will share portions of the multicast tree connecting all of the
receivers and sender. Consequently the loss or corruption of a packet on a particular
link will affect all receivers sharing that link. However, we expect our analyses to
produce pessimistic bounds on throughput as a consequence of this independence
assumption. The assumption that ACKs/NAKs are never lost is reasonable as control
packets are small and are typically given better treatment in a network. If desired,

this assumption can be relaxed by following the analysis given in [40].

4.4 Throughput Analysis of Sender-Initiated Protocols

We consider a single sender broadcasting to R identical receivers. As the behavior
of the sender differs from that of a receiver, we consider their behaviors separately.
Throughout our analysis we will introduce a number of different parameters as we
need them. These are collected in Table 4.1 for ease of lookup. We consider the
sender first.

In order to compute the maximum supportable throughput, we will determine
the processing time required by the sender to successfully multicast a randomly
chosen packet to all receivers. Let us denote this processing requirement by X4. The
sender must first obtain the data from a higher level protocol/application. A packet
containing this data is constructed and transmitted and a timer is set. Following this,
the sender must process every ACK received for the packet. In addition, each time

that the timer expires and the sender has not received ACKs from all receivers for
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Table 4.1. Notation

Xy - the time to feed in a new packet from the higher protocol layer.

X, - the time to process the transmission of a packet.

Xo, Xn, Xy - the times to process an ACK, a NAK and a timeout at the sender
respectively.

Y., Y1, Y - the times to process a newly received packet, a timeout, and to
playout a packet at a receiver.

Y., Y, - the times to process and transmit an ACK and a NAK from the
receiver respectively.

Y! - the time required to receive and process a NAK at a receiver.

P - the probability of loss at a receiver;
losses at different receivers are assumed to be independent events.

Ly - the number of NAKs from receiver r, w € {N1, N2}.

Lv - the total number of NAKs from all receivers per packet,
w € {N1, N2}.

LA - the number of ACKs from receiver r.

LA - the total number of ACKs from all receivers per packet.

M, - the number of transmissions necessary for receiver r to successfully
receive a packet.

M - the number of transmissions for all receivers to receive the packet
correctly; M = max, {M,}.

Xvyv - the processing time per packet at the sender and receiver
respectively in protocol w € {A, N1, N2}.

A¥ A¥ A, - the throughput for protocol w € {A, N1, N2} at the sender,

receiver and system.

this packet, the packet must be rebroadcasted and the timer restarted. Given these

considerations, we have

XA = Xp 4 26(1)+ 3 ((m) + Xp(m) + 30Xl (4.1)

where Xy is the processing requirement for receiving the data from the higher layers,
X,(m) is the packet processing requirement associated with the m-th transmission
of a given packet, X;(m) is the requirement for processing the timer interrupt that
will result in the mth transmission of the packet, X, (%) is the processing requirement
for the i-th ACK received for this packet, L“ is the total number of ACKs received
for the packet, and M is the total number of transmissions required to transmit the

packet correctly to all R receivers. These processing times include the times required
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to perform a context switch along with processing costs specific to the operation. For
example, X,(z) includes the processing required to take the packet up the protocol
stack to the transport layer (or higher). It also includes the time required to update

the ACK list and, possibly, to turn off the timer.

We assume that the processing requirements have general distributions, that they
are independent of each other, and that {X:(m)}, {X,(m)} and {X,(?)} are each
identically distributed sequences of r.v.’s. Henceforth, we omit the arguments m and

i. The statistics for the r.v.’s L# and M will be obtained shortly.

We are interested in the mean processing requirements per packet in order for the

sender to broadcast packets reliably to all of the receivers. It is given by
EIX4] = E[M|E(X,] + (E[M] — )EX, + E[LA|E[X.] + EIX;].  (42)

Consider the r.v. L4. Define LA to be the number of ACKs generated by receiver
r. Now, E[LA] = E[M](1 — p) is the expected number of ACKs generated by r. As

the receivers are statistically identical, we have
E[L*] = RE[M](1 — p). (4.3)

Note that we have assumed here that a receiver generates an ACK for each successfully
received packet, regardless of whether it has already previously acknowledged the
packet. Substituting this last expression into (4.2) yields the following expression for
E[Xx4],
E[X*] = E[M]E[X,]+ (E[M]~-1)E[X,]+ RE[M](1 - p)E[X,]
+E[Xy]. (4.4)
The only unknown in the right hand side of equations (4.3) and (4.4) is E[M].
Define M, to be the number of transmissions required for receiver r to receive the
packet correctly. Now, P[M, <m|=1—-p™, m=1,... and E[M,] =1/(1 — p). As

the events of lost packets at different receivers are independent, we have

PWgﬂzzﬁHMSM
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E[M] can be obtained numerically from (4.7). The above expression becomes

i

difficult to evaluate for larger values of R because of the alternating signs. The
following is an approximation for E[M| for large R (> 35):

E[M] ~ a+ % (4.8)

where a is the value of E[M] for R = 35 and Hy = Y%, 1/i, k > 1, is the harmonic
series.

If we let A4 denote the rate at which the sender can successfully transmit packets
to all receivers then A4 = 1/E[X4].

In a similar fashion, the mean processing requirement at the receiver for a ran-

domly chosen packet is
E[Y*] = E[M](1 - p)E[Y;] + E[M](1 - p)E[Ya] + E[Y;].

Here the first term corresponds to the mean time spent processing packets received,

the second term corresponds to the mean time spent producing and transmitting
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acknowledgments, and the third term corresponds to the mean time required to pass
the data up to the next level. In the above equation, E[M] is as given in (4.7). The
maximum packet processing rate at the receiver is A2 = 1/E[Y4].

The overall system throughput, A4, for this scheme is given by the minimum of

the per-packet processing rates at the sender and at the receiver, i.e.,
A% = min{A#4, A2} (4.9)

It can be shown that E[M]is O(1+In R/(—1n p)) (see Appendix B). Hence, E[X4]
is O(R(1+1In R/(—1Inp))) and E[Y4] = O(1—p+(1—p)In R/(—Inp)). Observe that,
as p — 0, E[X*] — O(R). Consequently, this protocol places a significant processing

burden on the sender for large values of R even in the case of a highly reliable system.

For constant p, E[X4] is O(RIn R).

4.5 Throughput Analysis of Receiver-Initiated Protocols

We analyze (N1) first by considering the sender. Let X! denote the mean packet
processing requirement at the sender under the receiver-initiated protocol (N1). This

processing time can be expressed as
M AL
XM= X1 Y Xylm) + X Xa(i) (4.10)
m=1 i=1
where the first term corresponds to the processing time required to obtain the data
from the higher layers, the second term corresponds to the processing time associated
with the M different transmissions of the packet and the third term corresponds to the
processing time for the NAKs that are transmitted from the receivers to the sender.
As before, we make no assumptions regarding the distributions of these r.v.’s except
that they are independent of each other and {X,(m)} and {X,(z)} are sequences of

identically distributed r.v.’s. As before, M is the number of transmissions required

and LM! is the number of NAKs received.
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The mean processing time is given as
E[X™] = E[X;] + EIM]E[X,] + E[L"|E[X,].

Now, the number of NAKs returned to the sender by receiver r is M, — 1 with mean
p/(1 — p). Hence the mean number of NAKs returned by all receivers is E[LN!] =

Rp/(1 — p) and the mean per packet processing time at the sender is
E[X™] = E[X;] + E[M]E[X,] + RpE[X.]/(1 - p) (4.11)

and the sender packet processing rate is AN! = 1/E[XN?].

We focus next on the mean per packet processing time at a receiver. Similar to
the analysis leading to (4.2), we have
E[YM] = E[Y;]+ E[M](1 - p)E[Y]
+ P[M, > 1|(E[M,|M, > 1] — 1)E[Y,)]
+ P[M, > 2|(E[M,|M, > 2] — 2)E[Y,].
Here the first two terms correspond to the processing required to correctly receive
packets and send them to the next layer. The third term corresponds to the processing
required to prepare and return NAKs. Note that this only occurs each time the
receiver determines the packet to be lost prior to the first correct receipt of this
packet. The last term corresponds to processing of the timer when it expires. Again,

this is only required after the first transmission (if lost) up to, but not including, the

first correct reception of a given packet.

From the distribution of M,, it follows that
BIM.|M, > 1] = (2-p)/(1-p),
EIM.|M, >2] = (3-2p)/(1-p).
Substitution into (4.12) yields
EY™| = E[Yj]+ E[M](1 - p)E[Y,] + pE[Y,)/(1 - p) + P*E[Y)/(1 - p)

and the receiver packet processing rate is AN = 1/E[YN?].



71

Finally, the throughput AN is given by
AN = min{AM AN}

For this protocol we have E[X¥!] = O(1+pR/(1—p)) and E[YN?] = O(1—p+(1—
p)In R/(—Inp)). Consequently, it is better suited to large scale multicasts than the
generic ACK-based protocol (A). Observe that E[X"!] = O(1) and E[YN!] = O(1)
when p — 0. For constant p, E[X¥] is O(R).

We end this section with the analysis of the receiver-initiated protocol (N2).
Protocol (N2) differs from (N1) in two ways. First, NAKs are broadcast from a
receiver to all other receivers as well as to the sender. If a receiver receives a NAK
for a packet that it has not received correctly prior to sending its own NAK, then
it need not return a NAK. The addition of a random delay at a receiver prior to
returning a NAK ensures that most of the time only one NAK will be generated
among all of the receivers and that it will act as a signal to the remaining receivers to
not return a NAK. How well this mechanism works to limit the number of NAKs per
transmission depends on the network topology and the choice of the random delay
distribution. As we are solely concerned with throughput, we will assume that the
delays are sufficiently long that the event of two or more NAKs being generated by a
transmission is sufficiently small to be ignored.

With these modifications, it is easy to see that
1/Ay? = E[X™?] = E[X;]+ E[M|E[X,] + (E[M] - 1)E[X.]  (4.12)
and

/AN = B[Y™? = E[Y] + E[M](1 - p)E[Y,)

+(E[M] - 1)(E[Ya]/R+ (R - 1)E[Y,]/R)
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+ P[M, > 2)(E[M,|M, > 2] — 2)E[Yi].

Last,

AN? = min{AYN? A2}

Note that for (N2) we have at the sender E[X"? = O(1 4+ In R/(—1np)) and at
the receiver E[Y"V?] = O(1 — p+ (1 — p)In R/(—In p)). This protocol shows the best

potential for handling multicasts to large receiver groups as for constant p, E[X"?|

is O(In R). Furthermore, E[X¥?%] = E[Y¥?%] = O(1) when p — 0.

4.6 Numerical Results
4.6.1 Equal Processing Costs for Components of Host Protocol

We now examine the relative performances of protocols (N1), (N2) and (A). For
ease of comparison, we set E[X,| = E[X;] = E[X,| = E[X,] = E[X¢] = E[Y,] =
E[Y;] = E[Y,] = E[Y,] = E[Y;] = 1. The processing associated with each of these
quantities each involves interrupt costs (interrupt overhead and context switching
costs), possibly some data copying, and a small amount of control action. Hence, the
above simplification is reasonable when packet sizes and copying costs are small. For
all the figures, E[M] is obtained directly from the expression in (4.7) up to the value
of R = 35 and from the approximation given in (4.8) for R > 35.

Figure 4.1 shows how the ratio of sender throughputs obtained under (N1) and
(A) varies with the number of receivers for different loss probabilities. It will become
clear later that the sender throughputs are the same as the system throughputs as the
sender is the bottleneck under all three protocols (A), (N1) and (N2). As can be seen
from the figure, there is no situation in which the throughput ratio falls below 1.0,
i.e., (N1) always outperforms (A) in this regard. As may be expected, when the loss
probability is low (say 0.01), the relative performance of (N1) is better than when the
loss probability is high (say 0.50). This is because a receiver-initiated scheme places

a very light burden on the sender for low loss probabilities while a sender-initiated
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scheme generates many acknowledgments that need to be processed at the sender.
For a given loss probability, the relative performance of (N1) improves over that of
(A) with increasing R. This improvement is logarithmic as indicated in the complexity

results presented in the previous section.
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Figure 4.1. Ratio of sender throughputs for (N1) and (A): AN /A4 vs R

Figure 4.2 shows the relative performance of (N1) and (A) at the receiver end.
In this case too, for loss rates of up to 50%, (N1) provides better performance than
(A). Though not shown in the figure, it is true that for loss rates higher than this,
(A) provides better performance at the receiver when the number of receivers is low.
As can be seen from the figure, for the same loss probability, the throughput ratio
begins to reach an asymptotically constant value. This is as expected as both 1/AN?
and 1/A# are O(In R) for constant p.

Figure 4.3 shows the relative throughput performance at the sender for (N2) and

(A). The rise in performance of (N2) as a function of R relative to (A) is much steeper
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Figure 4.2. Ratio of receiver throughputs for (N1) and (A): AN*/A4 vs R

than that of (N1) as can be seen by comparing curves across Figures 4.1 and 4.3. This
is so because under (N2) there is only at most one NAK per transmission that has to
be processed at the sender. Protocol (N2) is also relatively less sensitive to the loss
probability p than (N1). Both schemes, however, clearly outperform (A). A direct
comparison between the performances at the sender of (N2) and (N1) is shown in
Figure 4.4. As can be seen from this figure, at low loss probabilities and for low
numbers of receivers, the performance of (N2) and (N1) is close. As p — 0, the two
schemes become identical. However, for higher p and R, (N2) does far better than
(N1). Since the main aim in a multicast environment would be to reduce the load at
the sender, we can conclude from Figures 4.1, 4.3 and 4.4 that (N2) provides us with
the best relative performance and is to be preferred over (A) or (N1).

Figure 4.5 shows the relative receiver performance of (N2) and (A) for different
values of p. As can be seen from the graphs, for high values of loss probability,

(A) performs better than (N2). This is so because a greater part of the processing
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complexity is shifted to the sender under (A) for higher p. As R increases, there is
a slow descent to an asymptotically constant value. For constant p, both E[Y4] and
E[Y"?] are O(In R). By comparing curves across Figures 4.2 and 4.5 it becomes clear
that under (N2), in relative terms, a greater burden is placed on the receiver than
under (N1) even for lower loss probabilities. This is as desired as we wish to shift

processing complexity on to the receivers.
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Figure 4.5. Ratio of receiver throughputs for (N2) and (A): AN2/A4 vs R

Figures 4.6, 4.7 and 4.8 show the absolute values of throughput at the sender and
receiver for (A), (N1) and (N2) respectively. For all the graphs, the curves for p = 0.05
and p = 0.25 are shown. As can be seen from Figure 4.6, for both values of p, the
sender is the bottleneck under protocol (A). As the number of receivers increases, the
sender has to either process more acknowledgments (for low loss) or more timeouts
(for high loss). The receiver does better at both probability levels, though clearly

there is higher throughput attained under the lower loss probability. Figures 4.7 and
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4.8 show that the sender remains the bottleneck for overall throughput for (N1) and
(N2) as well. However, the gap between the performance at sender and receiver is
narrower for (N1) than (A), and still narrower for (N2) over (N1). This is especially
clear for (N2) for low numbers of receivers when the sender and receiver throughputs

are very close to each other.
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Figure 4.6. Sender and receiver throughputs for (A): A4, A% vs R

Finally, an interesting observation can be made from Figure 4.9. Here we plot
the number of supportable receivers for different values of processor speed under the
three protocols of (A), (N1) and (N2) for p = 0.01. Figure 4.9 is obtained by setting
to 1 the speed of a processor that can support exactly one receiver under protocol
(A) when E[X,] = E[X;] = ... = 1 as for all the earlier figures. In other words,
if u?[R], w € {A, N1, N2} is the speed of a processor that can support at most R
recievers under protocol w, we set p4[1] = 1. Since E[M]|g=1 = 1/(1 — p), we can

write
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1 3—»p
A | J— —
E[X*]|r=1,p=0.01 = AT p = 3.02.

Using such a processor as the baseline, we can readily write using Equations (4.4),

(4.11) and (4.12)

pA[R] = 0.33 x E[M](2 + R x 0.99),

pN[R] = 0.33 x (1 + E[M] + R/99)

and

p™*[R] = 0.33 x (2E[M]).
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Figure 4.9. Supportable receivers vs. processor speed under (A), (N1), (N2)

The plots of Figure 4.9 are obtained from the above expressions and by treating
processor speed as the independent variable and supportable receivers as the depen-
dent variable. As can be seen from the figure, both (N1) and (N2) can support far
more receivers than (A) for a much smaller processor speed. The number of suppor-

table receivers rises sharply under (N1) and (N2) for only marginal increases in the
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processor speed, whereas there has to be a substantial increase in the processor speed
for there to be any noticeable increase in the number of supportable receivers under
(A). Protocol (N2) demonstrates better performance than (N1) for large numbers of

recelvers.

4.6.2 Unequal Processing Costs for Components of Host Protocol

We now consider a different workload in which we set the cost of sending or
receiving a packet to be twice that of all the other processing costs. In other words,
we set B[X,] = E[Y,] = 2 and E[X,] = E[X,] = B[X,] = E[X] = B[¥;] = E[Yi] =
E[Y,] = E[Y;] = 1. These are plausible normalized values in some machines. For
example, in the SGI Challenge (100Mhz, R4400 multiprocessor), receive time for a 10
byte packet is 44.69 psecs while context switch time (which is most of the processing
associated with all other components of the host protocol) is 21.95 pusecs.

The performance of the three protocols for this workload is very similar to that
seen in the previous subsection where we had equal processing costs for all the
components of protocol processing being equal. The system throughput ratios for
(N1) and (A) are virtually the same as shown in Figure 4.1. However, when (N2)
and (A) or (N2) and (N1) are compared, there is a lowering of the system throughput
ratio to reflect the greater amount of processing necessary for the successful receipt of
a packet as shown in figures 4.10 and 4.11. This is because the percent drop in sender
throughput is higher for (N2) than for (N1) or (A) when we increase X, relative to the
other costs. We can see from Equation 4.12 that it is the term involving E[X,] that
dominates the sender throughput expression for (N2). This is not the case for (N1)
and (A). However, the throughput ratios that we observe are still in same the orders
of magnitude as can be seen by comparing Figure 4.10 with Figure 4.3 and Figure

4.11 with Figure 4.4. Thus, the conclusions that we have drawn on the superiority of

(N2) still hold.
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4.7 Conclusions

In this chapter, we examined examined the problem of providing reliable multi-
cast communication in large scale networks, when possibly thousands of hosts may
participate in a multicast group. We studied three generic error control protocols, one
that was sender-initiated (ACK-based) and two that were receiver-initiated (NAK-
based). An important feature of our analysis of these protocols is that we focused
on host processing as the constrained resource; previous analyses of reliable multicast
protocols have focussed on network bandwidth as the scarce resource— a resource
that we believe is becoming of less importance as network bandwidths continue to
increase and multicasting emerges as an important communication paradigm. Our
analyses provide a quantitative demonstration of the superiority of receiver-initiated
approaches over sender-initiated approaches.

In our analyses, we assume independent loss events at the various receivers. While
we expect this assumption to give us pessimistic bounds on the throughputs, whether
relaxing this assumption affects the throughput expressions for the three protocols
studied in different ways is a question open to investigation.

Another broad arena for future investigation is the scalability performance of
optimized protocols. For example, the possibility of using local groups for error
recovery rather than approaching the global sender for retransmissions is matter that
remains to be studied. Various optimizations of sender-initiated schemes— such as the
grouping of positive acknowledgments— are possible and can be analyzed in a manner
analogous to the one given in this chapter.

So far, we have restricted our attention to throughput performance of the three
protocols. We conjecture that for high loads and large numbers of receivers, the rela-
tive delay performance of the three protocols will be similar to the relative throughput
performance. It is likely that for low numbers of receivers the delay performance of
(N1) will be better than that for (N2), but this is a matter that remains to be

investigated in a precise quantitative way. If the applications need to meet strict
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time constraints, full reliability may not be possible. An interesting issue for study
then would be semi-reliability and the design and analysis of protocols for delay loss

tolerant applications.



CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary of the Dissertation

Here we summarize the research presented in this dissertation. In Chapter 1 we
described the different requirements of multimedia applications and discussed the need
for allocation of resources in the environments that support these applications. We
introduced three specific resource-allocation problems and explained the motivation
for studying each of these problems. The three areas that we identified for study
were link allocation within the network, host-processor allocation at the edge of the
network, and protocols for multicast applications when host processing power is the
constrained resource. We indicated the need to study the performance of real-time
scheduling algorithms and the scalability of multicast protocols in these three areas.
In Chapters 2, 3 and 4 we discussed each of these problems in detail.

In Chapter 2 we looked at the link allocation problem by studying the issue of
trading off the performance of two classes of real-time traffic with different packet-
scheduling algorithms that can be implemented at an output multiplexer of a swit-
ching node. Three algorithms were studied; two of these— priority scheduling and
minimum laxity thresholding— are traditional schemes. We defined a new “balancing”
scheduling discipline as the third scheme studied. Both the balancing scheme and
MLT are parameterized disciplines that enable us to trade the performance of one
class against that of another. For the three scheduling algorithms, we obtained the
delay loss performance of two classes of traffic which have identical local (nodal) dead-
lines, both through analysis and by simulation for different traffic arrival patterns. We

demonstrated how, for a geometric bulk arrival process, in certain operating regions
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the new balancing scheme provides better performance for both classes of traffic than
the other two schemes. For a superposed on/off voice source traffic model, and also
in other operating regions for the geometric bulk arrival process, we showed how
strict priority scheduling is a reasonable option. We concluded that when delay loss
probabilities are low, complex link-level scheduling algorithms are not essential.

In Chapter 3 we examined the processor allocation problem by studying how dif-
ferent CPU scheduling algorithms compare with regard to the number of preemptions
induced by different dynamic and static algorithms for periodic task-sets. We showed
through a sample path proof that there are always more preemptions under rate
monotonic scheduling than under earliest deadline scheduling. We obtained through
simulations the actual distributions of this difference in the number of preemptions
between RM and ED for well-known task-sets. We showed how there is a high
probability of there being significant difference (greater than 4.5% for the avionics
task-set) in the actual numbers of preemptions under the two disciplines. We also
showed how scaling the processor speed up or down either decreases or increases
both the average and the maximum difference in the number of preemptions under
RM and ED. We also studied via simulations how the structure of the task-set can
effect the relative performance of the scheduling policies. If the ratio of the highest
period in the task-set to the smallest period is very large, the sample path behavior
is dominated by the smallest period jobs under both ED and RM. Consequently
there 1s little relative difference in the performance of the two algorithms. Another
insight relates to task-sets which have some tasks whose periods are very close to
one another. Here, there could always be an initial phasing under RM such that
there are repeated premptions of jobs of a given period by jobs whose periods are
only slightly smaller. We surmise this last result by studying the performance of an
algorithm called HEH P, which is a slight variation of RM, and which demonstrates
a maximum difference of over 188% in the number of preemptions relative to ED. We

also simulated a processor through the modeling of some operating system overheads,
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and demonstrated how there is a slight increase in the number of preemptions under
both ED and RM as compared to when these overheads are not taken into account.

In Chapter 4, we studied the performance of three different reliable multicast pro-
tocols when host processing power rather than network bandwidth is the bottleneck.
One of these protocols was a sender-initiated protocol- i.e., the responsibility for in-
itiating recovery from errors was on the sender. The other two were receiver-initiated
protocols where the onus for error-recovery lay on the receivers. For each of these
three protocols we obtained sender and receiver throughput expressions by explicitly
modeling various components of host protocol processing. Using these throughput
expressions, we obtained complexity results for each protocol showing how the pro-
cessing requirements imposed on the hosts change as the number of receivers is scaled
upwards. These complexity results clearly show the superiority of receiver-initiated
protocols as compared to sender-initiated ones with regard to scalability. We also
obtained throughput ratios across these protocols as a function of the number of
receivers for different workloads. These numerical results demonstrate that there can
be orders of magnitude difference in performance between receiver-initiated protocols
and sender-initiated protocols.

The essential conclusion that we may draw from all the work described in this
dissertation is that the manner in which different resources are used in multimedia
applications has to be considered carefully. This can lead to more efficient scheduling
algorithms and more scalable protocols that improve the overall quality of service

provided to the users of the applications.

5.2 Suggestions for Future Work

In this section we indicate a few of the many resource-allocation problems that
need to be addressed for multimedia applications.
In the study of link scheduling algorithms, an open issue is their performance when

the different arrival streams to an output multiplexer are themselves correlated. In
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this dissertation, we modeled arrival processes that demonstrated correlation from
time slot to time slot, but the different traffic classes themselves were mutually
independent. This assumption could be relaxed and, in addition, other traffic models
such as those for video source be used.

The performance of preemptive processor scheduling algorithms with regard to
numbers of preemptions in the context of a comprehensive model of operating system
overheads remains to be examined. In our simulation work we model only a few of
these costs. For example, actual implementation of real-item operating systems like
Mach include timer costs which are not captured in our simulations. Further, an
interesting possibility to explore is whether an order relationship can be estabished
between the numbers of preemptions for different disciplines by means of an analytical
proof when these overheads are taken into account.

In our study of scalable multicast protocols, we confined our attention to fully
reliable protocols. These protocols are realistic in lossy environments only when
no real-time constraints are imposed on data transfer. This suggests that a delay
analysis of the protocols studied would provide useful information in the context of
multimedia applications. Further, the study of different protocols when fully-reliable
service is not demanded is an interesting open issue. Other optimizations of fully
reliable multicast protocols can also be studied- e.g., those that rely on neighbors for
error-recovery rather than the global sender.

In addition to all of the above extensions to the work in this dissertation, there
is also the issue of synchronized media presentation in multimedia workstations.
The resource bottlenecks in this context can be identified and policies arrived at

to properly allocate them.



APPENDIX A

LINK SCHEDULING: TRANSITION
MATRICES

In this appendix we indicate how the transition probability matrix may be ob-
tained for a 2-D Markov chain model of an output multiplexer at a switching node.
There are two classes of traffic.

Let g, and g, be parameters of geometric processes that represent the probability
of succesful packet arrival for Class 1 and Class 2 respectively. In order to explain how
the entries for the transition matrix are obtained, we first define several quantities:

e o; = gi(1 — g;) - probability of having i Class 1 arrivals in a slot
e 3; = gi(i — ga) - probability of having i Class 2 arrivals in a slot
® a;+ = g; - probability of at least one Class 1 arrival in a slot
® 31+ = go - probability of at least one Class 2 arrival in a slot

e p; = (1 — g1)'g; - probability that the laxity of the next-to-last oldest queued
Class 1 packet is 7 slots greater than the laxity of the oldest queued Class 1

packet

e s; = (1 — g;)'gy - probability that the laxity of the next-to-last oldest queued
Class 2 packet is 7 slots greater than the laxity of the oldest queued Class 2

packet

e g =(1— E;-:O p;) - probability that there are no Class 1 arrivals up to 7 slots

after the arrival of the present minimum laxity Class 1 packet

o z; =(1-— Eé':o s;) - probability that there are no Class 2 arrivals up to ¢ slots

after the arrival of the present minimum laxity Class 2 packet.
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Using all of the above, we now consider the priority case in detail. MLT and
balancing schemes can be understood in an analogous fashion. Let the deadlines of
Class 1 and Class 2 packets be r; and 7y respectively. Then, the overall transition
matrix is of dimension ((r; + 1)(r2 4+ 1)) x ((r1 + 1)(r2 + 1)). This is actually a block
partitioned matrix with each block being of dimension (r; + 1) X (r; + 1). Each of
these blocks represents the transitions from an initial Class 1 minimum laxity of z}
to a final Class 1 minimum laxity of #]. The location of the block (r; + 1) x (r1 + 1)
within the larger matrix gives the values of z, and z, which are the initial and final
Class 2 minimum laxities respectively. The basic form of the transition matrix, PP"

for the priority case is as follows:

-Ao A Ay - Arz—z Arz—l Zrz—l
By Bi By -+ B,y Bn_1 Z,,_,
0 By Bi -+ By,_3 By Z, _,
pri— |0 0O By -+ By By Z,_,
o 0 0 -+ B B Z
(0 0 0 -0 Ci+ Co |

Each entry in PP™ is an (r1 + 1) x (r1 + 1) matrix. Each of the zero entries in
PP above corresponds to a matrix of all zeros. The rows of PP™ itself correspond
to values of ¢}, = 1,2,...,75,0 and the columns to z, = 1,2,...,7,,0. Note that the
minimum laxity value of 0 corresponds to the last row and last column and denotes
the state of there being no packets of the corresponding class in the system. We
use this sequence of values for minimum laxities here because we wish to highlight
the empty queue as a special case and separate it from the other values of minimum
laxities. The structure of the transition matrix is better understood in this way as,
in physical reality, when there is a arrival to an empty queue, the minimum laxity
jumps to the value of the deadline.

We give each of the entries of PP™ in a simple way. We define a basic matrix, M

that gives the transition probabilities for Class 1 minimum laxities alone:
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Po P1 P2 ' Pri-2 Pri-1 9r-1
Po P1 P2 ' Pri—-2 Pri-1 9r—1
0 po p1 -+ Pr-3 Pri-2 Gri—2
M=|0 0 po - P4 Pr-3 @ (A.1)
0 0 0 -+ po P1 @
|0 0 0 --- 0 o+ g |
Let D; = diag(s;, si,...,8:),2 =0,1,...,75—1 be a diagonal matrix of dimension

(r1+1)x(r1+1) whose diagonal elements are all equal to s;. The first (r,—1) columns

of the first row of PP™ are given by
Ai=D;M,1=0,1,...,75 — L.

We can write all the other entries of PP™ in a similar manner as shown below. In

each case, the diagonal matrices are of dimension (r; + 1) X (r; + 1).

Zpy—1 = diag(z1,21,...,21)M.
Z’I"z —1 = dlag 0707 bl ’L)M7 i:2737...77'2—]_,

(
(
B, = diag(1,1,...,s0)M.
B; = diag(0,0,...,s)M,1=1,2,...,r5— 1.
Ci+ = diag(Bi+, by, ..., 0i4)M

(

CO = dlag BOJBOJ"'J/HO)

Let Pf,’;i represent the matrix entry at the sth block row, and the jth block column
of PP". To intuitively understand why the form of PP™ is as shown above, we first
look at the zero entries of PP™. For example, Pffzi is a zero matrix. This entry is
for state transitions from (z},4) to (z7,2) with 2} and z taking values 1,2,...,71,0.
Since the state indicates the laxity of the minimum laxity packet for each class, we
see that it 1s ¢mpossible for the minimum laxity of Class 2 packets to drop from 4 to
2 in one slot; if a Class 1 packet is served, the minimum Class 2 laxity merely goes

from 4 to 3. If the Class 2 packet is served (in the priority case, this can only happen
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if there are no Class 1 packets), the new minimum laxity Class 2 packet could only
have arrived in the same slot as the Class 2 packet just served, or later. If it arrived
in the same slot, the new Class 2 minimum laxity would be 3; if it arrived later, it
would be greater than 3. Thus the probability of going from (z},4) to (z,2) is zero.

We now turn our attention to one of the other entries in the transition matrix,

say P:f,rzi = By. The form of By is as follows:

Po Pr P2 - Pry—2 Pri-1 Gri-1
Po Pr P2 - Pry—2 Pri-1 Gri-1
0 po 1 " Pry-3 Pri—2 Gr -2
By = 0 0 po - Pri-a Pri-3 Q2
0 0 0 -+ po D1 5l
| 0 0 0 - 0 SpQ1+ SpQp |

The first 7, rows of By correspond to transitions (z},3) to (z”,2) where z, =
1,2,...,7r;. Since this is the priority discipline, the transition from 3 to 2 for z, hap-
pens automatically when there exists a Class 1 packet to be served. The probability
of going from 2 to 1 for #; is po. This is because the current minimum laxity Class 1
packet is served and for the next minimum laxity Class 1 packet to have a laxity of
1, it should have arrived in the same slot as the packet that is currently served. The
first row is the same as the second row because of the memoryless property of the
geometric distribution. Similarly, we can see that all the other entries for the first r;
rows are correct. The last row corresponds to transitions from (0, 3) to (z;,2). Here,
it is the Class 2 packet that is served and the probability of 25 going from 3 to 2 is so.
From an initial value of 0, the value of z; can either go to r; (the Class 1 deadline)
or remain at 0. The first of these corresponds to the case of there being at least one
Class 1 arrival in the current slot and the second to the case of there being no Class
1 arrivals in the current slot.

The basic form of the transition matrix for the MLT case, P™" is exactly the
same as that for the priority case. By examining PP, we see that there are entries

that are repeated. A similar repetitive structure is obtained for P™® though the
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actual entries in the component matrices of P™* differ from from those of PP™. The
rows of P™* and PP™ corresponding to z} = 0 are the same, i.e., the submatrices C;,
and C, are the same in the two disciplines. The other submatrices in P™* different
from the those in PP™,

We define a basic submatrix, M’ in order to write all the other submatrices of
P™t M'is an (r1+1) X (r1 + 1) matrix that takes the following form for a threshold

value of T':

My, 1<kE<T,1<I<m+1
1, T<k<r,l=k-1

0, T<k<r,l##k-1
Mkl, k:’l°1+]_,]_§l§’l"1—|—]_.

M, = (A.2)

where M is the matrix whose form is shown in (A.1).

We define the notation Diag(n,b,c) to be a special form of a diagonal matrix
whose first n diagonal elements take value b and whose remaining diagonal elements
take value c¢. All the matrices below are of dimension (r; 4+ 1) X (71 + 1) and we write

the submatrices of P™* as

Ai = diag(si,si,...,si)M', ’iZO,l,...,Tg—l.
Zrz—l = diag(zl, 21y, Zl)MI.
Z, _; = Diag(T,0,z;)M', i =2,3,...,75— L.

B() = Diag(T,l,so)M'.

BZ' = Diag(T,O,si)M', 1= 1,2,. e, T2 — 1.

For example, ng‘zlt = By 1s written for 7' = 3 as follows:

Po P P2 - Pri—2 Pri-1 Gr-1
Po P P2 - Pri—2 Pri-1 Gr-1
0 po 1 " Pri-3 Pri-2 Gr -2
ml -
Ps,zt — |10 0 s O 0 0
0 0 O -+ 8 0 0
| 0 0 0 - 0 SpQ1+ SoQp

It is instructive to compare P?Tzlt and P;fzi. It can be seen that the first three rows

of the two matrices are the same. This is because up to the value of the threshold,
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priority scheduling and MLT behave in the same fashion. The last row is also the
same because that corresponds to z; = 0, i.e., there are no Class 1 packets that may
be served in this slot. Rows 4 through 7, are different in accordance with the manner
in which MLT differs from the priority discipline.

The form of the transition matrix for the balancing discipline is a little more
difficult to obtain. Since it is the difference between z, and ) that determines which
class of traffic is served, care must be taken while writing the transition matrix. The
nature of the matrix is given below in terms of the entries of PP"* and P™*. In
understanding the following, it is useful to remember that the row index of P%! is
the same as z, and the column index is the same as z] except for the last row and
last column which correspond to z}, = 0 and ) = 0 respectively.

Let P™(T) denote the transition matrix in the M LT case for threshold of T, and
if T > 71, the Class 1 deadline, let P™(T) = PP"". Further, let B be the parameter
of the balancing discipline. Then, if P}j?l denotes the submatrix at the zth block row

and jth block column of P we may write:

P = Pi+B-1),1<i<m, 1<j<mn+1

bal i .
Pt = oy 1<7<m+1
The reason for the above form is that if #;, = 7, Class 1 traffic is served so long

as ) <14+ B — 1. This is the same as the behavior of the M LT discipline when
a threshold of 2 + B — 1 is imposed on the minimum laxity of Class 1 traffic. If
1+ B —1 > ry, by our notation, we have the balancing scheme behaving exactly as
the priority scheme. This is so because Class 2 minimum laxity never gets to be at
least B less than the Class 1 minimum laxity which can only take values up to r;.
Further, in the above form of P%! we can see that when there are no Class 2 packets

(z3 = 7o + 1), the balancing scheme is the same as the priority scheme.



APPENDIX B

MULTICAST PROTOCOLS: COMPLEXITY OF
E[M]

In this appendix we derive the complexity of the expected number of transmissions
from a sender to R receivers needed for all the receivers to correctly receive the packet.
The probability that any particular receiver will not receive the packet during any
transmission is p and is independent of the loss probability at all other receivers.

Define an i.i.d. sequence of r.v.’s { M, }£ such that

plel=1 x> 1

1 0<z< 1. (B.1)

PUM, > o ={

?

Notice that for integer m, P[M, > m| = p™~ !, which is the same behavior as that
of a geometric random variable of success parameter (1 — p). This geometric random
variable has the interpretation of being the number of transmissions necessary for
successful receipt of the packet at receiver r.

Let M = max, {M,}. If each of the M,’s was replaced by the corresponding
geometric r.v., M would have the interpretation of being the number of transmissions
necessary for a packet to be correctly received at all receivers.

Let N, be an exponentially distributed random variable with parameter A that

satisfies the following:

Mr -1 Sat Nr-

Hence for integer m, we can write
P[M, — 1> m] < P[N, > m|.

Or,
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Therefore

A< —Inp.
If we set A = —Inp we get

plel =t > 1

P[NTZ‘”]:PS{l 0<z <L

?

The RHS of the inequality above is simply the behavior of M, as shown in Equation

B.1. Therefore P[N, > z| < P[M, > z|. Hence we can write the following:
Mr -1 Sat Nr Sst Mr-

Adding 1 to the first two terms of the above order relation and combining it with the

relation of the last two terms above, gives us the following order relation
Nr Sst Mr Sat Nr + ]-

Hence

max {N,} <, max{M,} <, 1+ max{N,}.

Replacing max,{M,} in the above by M and taking expectations we get
B[N] < B[M] < 1+ B[N]

where N is a random variable that is the maximum of R exponentially distributed
random variables each of parameter — In p.

It is well known that the mean of the maximum of R independent exponential
random variables is equal to a harmonic series divided by the parameter of the
exponential random variables. In our context we can therefore write

H H
B <EM]<1+ 2
—lnp —Ilnp

where Hg = ¥F, 1/i. Hence, E[M] = Hg/(—1np) 4+ O(1). It is a well known result
that Hg is O(In R). Thus, we can also express this as E[M] = O(1 4+ In R/(—1n p)).
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