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Abstract

This paper revisits response time analysis of real-time
tasks under fixed priority scheduling with deferred preemp-
tion (FPDS), arbitrary phasing, and deadlines within peri-
ods. We show that existing worst-case response time analy-
sis, as presented in [5, 6, 7], is too optimistic. In particular,
the worst-case response time of a task is not necessarily
assumed for the first job of that task when released at an
ε-critical instant. We also show that existing best-case re-
sponse time analysis [4] indeed yields a lower bound.

1 Introduction

Based on the seminal paper of Liu and Layland [14],
many results have been achieved in the area of analysis
for fixed-priority preemptive scheduling (FPPS). Arbitrary
preemption of real-time tasks has a number of drawbacks,
though. In particular in systems using cache memory, e.g. to
bridge the speed gap between processors and main memory,
arbitrary preemptions induce additional cache flushes and
reloads. As a consequence, system performance and pre-
dictability are degraded, which complicates system design,
analysis and testing [7, 9, 12, 16]. Although fixed-priority
non-preemptive scheduling (FPNS) may resolve these prob-
lems, it generally leads to reduced schedulability compared
to FPPS. Therefore, alternative scheduling schemes have
been proposed between the extremes of arbitrary preemp-
tion and no preemption. These schemes are also known as
deferred preemption or co-operative scheduling [6], and are
denoted by fixed-priority scheduling with deferred preemp-
tion (FPDS) in the remainder of this paper.

Worst-case response time analysis of periodic real-time
tasks under FPDS, arbitrary phasing, and deadlines with pe-
riods has been addressed in a number of papers [5, 6, 7, 12].

In this paper, we will show that the existing analysis is not
exact. Whereas it has been shown in [5] that the analysis
presented in [6, 7, 12] is pessimistic, we will show by means
of an example consisting of just two tasks that the analysis
presented in [5, 6, 7] is optimistic. We explore the example
by considering best-case and worst-case response times un-
der FPDS as a function of the relative phasing between the
tasks. The exploration reveals that, although the example
refutes the existing analysis, it does not refute the conjec-
ture in [5] about an ε-critical instant. Concerning best-case
response time analysis, we found that a job that experiences
a ∆-optimal instant [4] may not be able to immediately start
executing upon its activation. As a consequence, the best-
case response time analysis under FPDS and arbitrary phas-
ing as presented in [4] indeed yields a lower bound. This is
a similar result as presented in [15] for FPPS with arbitrary
phasing and deadlines greater than periods.

This paper is organized as follows. Section 2 briefly de-
scribes a basic real-time scheduling model for FPPS and re-
fined model for FPDS. Response time analysis for FPPS and
FPDS is recapitulated in Section 3, and response times for
FPDS are expressed in terms of response times for FPPS.
In Section 4, we present an example that refutes existing
worst-case response time analysis under FPDS. We subse-
quently explore the example by considering response times
under both FPPS and FPDS. Section 5 discusses the results
of the exploration and presents topics of current investiga-
tion. The paper is concluded in Section 6.

2 Scheduling models

This section briefly describes a basic real-time schedul-
ing model for FPPS and a refined model for FPDS. Most of
the definitions and assumptions of these models are taken
from [2], and originate from [14].
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Figure 1. Basic model for task τi.

2.1 Basic model for FPPS

We assume a single processor and a set T of n periodi-
cally released, independent tasks τ1,τ2, . . . ,τn. At any mo-
ment in time, the processor is used to execute the highest
priority task that has work pending. So, when task τi is be-
ing executed, and a release occurs for a higher priority task
τ j, then the execution of τi is preempted, and will resume
when the execution of τ j has ended, as well as all other re-
leases of tasks with a higher priority than τi that have taken
place in the meantime.

Each task τi is characterized by a (release) period Ti ∈
R

+, a computation time Ci ∈ R
+, a (relative) deadline Di ∈

R
+, where Ci ≤ min(Di,Ti), and a phasing ϕi ∈ R. An acti-

vation (or release) time is a time at which a task τi becomes
ready for execution. A release of a task is also termed a job.
The job of task τi with release time ϕi serves as a reference
activation, and is referred to as job zero. The release of job
k of τi therefore takes place at time aik = ϕi + kTi, k ∈ Z.
The deadline of job k of τi takes place at dik = aik +Di. The
set of phasings ϕi is termed the phasing ϕ of the task set T .

The active (or response) interval of job k of τi is defined
as the time span between the activation time of that job and
its completion time cik, i.e. [aik,cik). The response time rik

of job k of τi is defined as the length of its active interval, i.e.
rik = cik − aik. Figure 1 illustrates the above basic notions
for an example job of task τi.

The worst-case response time WRi of a task τi is the
largest response time of any of its jobs, i.e.

WRi = sup
ϕ,k

rik. (1)

A critical instant of a task is defined to be an (hypothetical)
instant that leads to the worst-case response time for that
task. Typically, such an instant is described as a point in
time with particular properties. As an example, a critical
instant for tasks under FPPS is given by a point in time for
which all tasks have a simultaneous release. The best-case
response time BRi of task τi is its shortest response time, i.e.

BRi = inf
ϕ,k

rik. (2)

An optimal instant of a task is defined to be an (hypotheti-
cal) instant that leads to the best-case response time.

We assume that we do not have control over the phas-
ing ϕ, for instance since the tasks are released by external
events, so we assume that any arbitrary phasing may oc-
cur. This assumption is common in real-time scheduling
literature [10, 11, 14]. We also assume other standard ba-
sic assumptions [14], i.e. tasks are ready to run at the start
of each period and do no suspend themselves, tasks will be
preempted instantaneously when a higher priority task be-
comes ready to run, a job of task τi does not start before
its previous job is completed, and the overhead of context
switching and task scheduling is ignored. Finally, we as-
sume that the deadlines are hard, i.e. each job of a task must
be completed before its deadline. Hence, a set T on n peri-
odic tasks can be scheduled if and only if

W Ri ≤ Di (3)

for all i = 1, . . . ,n.
For notational convenience, we assume that the tasks are

given in order of decreasing priority, i.e. task τ1 has highest
priority and task τn has lowest priority.

2.2 Refined model for FPDS

For FPDS, we need to refine our basic model of Section
2.1. Each job of task τi is now assumed to consist of mi

subjobs. The jth subjob of τi is characterized by a computa-
tion time Ci, j ∈ R

+, where Ci = ∑mi
j=1 Ci, j. We assume that

subjobs are non-preemptable. Hence, tasks can only be pre-
empted at subjob boundaries, i.e. at so-called preemption
points. For convenience, we will use the term Fi to denote
the computation time Ci,mi of the final subjob of τi. Note
that when mi = 1 for all i, we have FPNS as special case.

3 Recapitulation of response time analysis

In this section, we recapitulate worst-case response time
analysis and best-case response time analysis for both FPPS
and FPDS. Because we will express response times under
FPDS in terms of response times under FPPS, we will use
subscripts D and P to denote FPDS and FPPS, respectively.
Moreover, we will use a functional notation for response
times when needed, e.g. W Ri(Ci).
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3.1 Response time analysis for FPPS

3.1.1 Worst-case response time analysis

To determine worst-case response times under arbitrary
phasing, it suffices to consider only critical instants. For
FPPS, critical instants are given by time points at which all
tasks have a simultaneous release [14].

From this notion of critical instants, Joseph and Pandya
[10] have derived that for deadlines within periods (i.e. Di ≤
Ti) the worst-case response time WRP

i of a task τi is given
by the smallest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

⌈
x
Tj

⌉
C j. (4)

Assuming a critical instant at time zero, the factor
⌈

x
Tj

⌉
in

(4) gives the maximal number of preemptions that an ex-
ecution of task τi suffers from task τ j in an interval [0,x).
To calculate worst-case response times, we can use an iter-
ative procedure based on recurrence relationships [1]. The
procedure starts with a lower bound.

wr(0)
i = Ci

wr(k+1)
i = Ci + ∑

j<i

⌈
wr(k)

i

Tj

⌉
C j

The procedure is stopped when the same value is found for
two successive iterations of k or when the deadline Di is ex-
ceeded. In the former case, it yields the smallest solution of
the recursive equation, i.e. the worst-case response time of
τi. In the latter case the task is not schedulable. Termina-
tion of the procedure is ensured by the fact that the sequence
wr(k)

i is bounded (from below by Ci, and from above by Di)
and non-decreasing, and that different values for successive
iterations differ at least min j<i C j.

The interested reader is referred to [11, 17] for tech-
niques to derive worst-case response times for arbitrary
deadlines. The main difference with deadlines within pe-
riods is that for arbitrary deadlines the worst-case response
time of a task is not necessarily assumed for the first job that
is released at the critical instant.

3.1.2 Best-case response time analysis

To determine best-case response times under arbitrary phas-
ing, it suffices to consider only so-called optimal (or
favourable) instants [3, 15]. For FPPS, an optimal instant
for task τi is given by a point in time for which the com-
pletion of τi coincides with the simultaneous release of all
higher priority tasks.

From this notion of optimal instants, it has been derived
that for deadlines within periods the best-case response time

BRP
i of a task τi is given by the largest x ∈ R

+ that satisfies

x = Ci + ∑
j<i

(⌈
x
Tj

⌉
−1
)

C j. (5)

Assuming an optimal instant at time zero, the factor(⌈
x
Tj

⌉
−1
)

in (5) gives the minimal number of preemptions
that an execution of task τi suffers from task τ j in an interval
(−x,0). To calculate best-case response times, we can use
the following iterative procedure based on recurrence rela-
tionships. The procedure starts with an upper bound. When
the worst-case response time WRP

i of τi is known, we can
use it as initial value.

br(0)
i = WRP

i

br(k+1)
i = Ci + ∑

j<i

(⌈
br(k)

i

Tj

⌉
−1
)

C j

The procedure is stopped when the same value is found for
two successive iterations of k, yielding the largest solution
of the recursive equation, i.e. the best-case response time
of τi. Termination of the procedure is ensured by the fact
that the sequence br(k)

i is bounded (from below by Ci, and
from above by W RP

i ) and non-increasing, and that different
values for successive iterations differ at least min j<i C j.

We are not aware of a technique to derive best-case re-
sponse times for arbitrary deadlines. However, Redell and
Sanfridson [15] illustrate that the technique given above
yields a lower bound for best-case response times of tasks
with arbitrary deadlines.

3.2 Response time analysis for FPDS

In this section, we recapitulate response time analysis for
FPDS and arbitrary phasing for deadlines within periods.
Note that worst-case response time analysis for FPNS and
arbitrary deadlines is presented in [8], assuming that all task
parameters are taken from Z.

3.2.1 Worst-case response time analysis

In this section, we briefly recapitulate the results from
[5, 6, 7]. The non-preemptive nature of subjobs may cause
blocking of a task by at most one lower priority task under
FPDS. The maximum blocking Bi of task τi by a lower pri-
ority task is equal to the longest computation time of any
subjob of a task with a priority lower than task τi, i.e.

Bi = max
j>i

max
1≤k≤m( j)

C j,k. (6)

The worst-case response time W̃R
D
i under FPDS and arbi-

trary phasing presented in [6] and [7] is given by

W̃R
D
i (∆) = WRP

i (Bi +Ci − (Fi−∆))+(Fi−∆). (7)
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According to [7], ∆ is an arbitrary small positive value
needed to ensure that the final subjob has actually started,
i.e. 0 < ∆ � Fi. Hence, when task τi has consumed
Ci − (Fi−∆), the final subjob has (just) started.

As described in [5], the analysis in [6, 7] does not take
into account that τi can only be blocked by a subjob of a
lower priority task if that subjob starts an amount of time
∆ before the simultaneous release of τi and all tasks with a
higher priority than τi. That paper therefore revisits critical
instants, and postulates the following conjecture.

Conjecture 1 An ε-critical instant of a task τi under FPDS
and arbitrary phasing occurs when that task is released si-
multaneously with all tasks with a higher priority than τi,
and the subjob with the longest computation time of all
lower priority tasks starts an infinitesimal time ε > 0 before
that simultaneous release.

From this conjecture, it is concluded that a critical instant
for FPDS is a supremum for all but the lowest priority task,
i.e. that instant can not be assumed. The results in [6, 7] are
identical to the results in [5] for the lowest priority task, and
the results become similar for the other tasks by replacing
Bi in (7) by (Bi −∆)+, i.e.

WRD
i (∆) =WRP

i ((Bi−∆)++Ci−(Fi−∆))+(Fi−∆). (8)

Here, the notation w+ stands for max(w,0), which is used
to indicate that the blocking time can not become negative
for the lowest priority task. According to [5], the worst-case
response time is actually a supremum for all but the lowest
priority task, i.e.

WRD
i = lim

∆↓0
WRD

i (∆). (9)

3.2.2 Best-case response time analysis

Best-case response time analysis has been addressed in [4].
According to that paper, the best-case response time of the
highest priority task τ1 is equal to its computation time, i.e.

BRD
1 = C1. (10)

To determine best-case response times under FPDS and ar-
bitrary phasing for a lower priority task τi, the paper revisits
optimal instants, and postulates the following conjecture.

Conjecture 2 A ∆-optimal instant of a lower priority task
τi (with 1 < i ≤ n) under FPDS and arbitrary phasing oc-
curs when the final sub-job of τi starts a (sufficiently small)
finite time ∆ > 0 before the simultaneous release of all tasks
with a higher priority than τi.

Note that a ∆-optimal instant can be assumed, unlike an ε-
critical instant, which is a supremum for all but the lowest
priority task.

Based on this conjecture, the following lower bound is
determined for best-case response times of lower priority
tasks

BRD
i (∆) = BRP

i (Ci − (Fi−∆))+(Fi−∆). (11)

4 A counterexample

The task characteristics of an example refuting existing
worst-case response time analysis of real-time tasks under
FPDS and arbitrary phasing is given in Table 1. The table
includes the results of the exploration of best-case response
times and worst-case response times of the example under
FPPS and FPDS. Note that the (processor) utilization factor
U of the task set T1 is given by U = 2

5 + 4.2
7 = 1.

task T C W RP BRP WRD BRD

τ1 5 2 2 2 5 2
τ2 7 1.2 + 3 8.6 6.6 7 5

Table 1. Task characteristics of T1 and worst-
case and best-case response times under
FPPS and FPDS.

4.1 Existing analysis is too optimistic

In this section, we assume that the deadlines are within
periods, i.e. Di ≤ Ti. We will now show that the worst-case
response time of task τ2 as determined by (8) is too opti-
mistic.

Based on (8) and using ∆ = 0.1, we derive

WRD
2 (∆) = WRP

2((B2 −∆)+ +C2 − (F2−∆))+(F2−∆)

= WRP
2(0+4.2− (3.0−0.1))+(3.0−0.1)

= WRP
2(1.3)+2.9 = 6.2.

Figure 2 shows a timeline with the executions of the two
tasks of T1 under FPDS in an interval of length 35, i.e. equal
to the hyperperiod H of the tasks, which is equal to the least
common multiple (lcm) of the periods. The schedule in
[0,35) is repeated in the intervals [hH,(h+1)H) with h∈Z,
i.e. the schedule is periodic with period H. As illustrated in
Figure 2, the derived value for WRD

2 (∆) corresponds with
the response time of the 1st job of task τ2 upon a simultane-
ous release with task τ1, i.e. when task τ2 is released at an
ε-critical instant. However, the response time of the 5th job
of task τ2 is equal to 7 in that figure, illustrating that the ex-
isting analysis is too optimistic. Nevertheless, the task set is
schedulable under FPDS for deadlines equal to periods for
this phasing.
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Figure 2. Timeline for T1 under FPDS with a simultaneous release at time zero. The numbers at the
top right corner of the boxes denote the response times of the respective releases.

4.2 Exploration

We will now consider the example presented in the previ-
ous section in more detail, by determining the best-case re-
sponse times and worst-case response times for both tasks
under FPPS and FPDS. To this end, we vary the relative
phasing ϕR of task τ2 with respect to τ1, i.e. ϕR = ϕ2 −ϕ1.
Because the greatest common divisor of T1 and T2 is equal
to 1, we can restrict ϕR to values in the interval [0,1). In
this section, we will vary the phasing ϕ2 of τ2 and keep the
phasing ϕ1 of task τ1 equal to zero, i.e. ϕR = ϕ2.

4.2.1 Response times for FPPS

Figure 3 shows a timeline with the executions of the two
tasks of T1 under FPPS in an interval of a length 35, i.e.
equal to the hyperperiod of the tasks. Because both tasks
have a simultaneous release at time zero, that time point
is a critical instant. Based on [11, 17], we therefore con-
clude that the job of task τ2 with the largest response time
in [0,35) experiences a worst-case response time WRP

2 , i.e.
WRP

2 = 8.6.
Figure 4 shows a timeline for T1 with an initial release

of τ1 at time zero and an initial release of τ2 at time 0.4.
Hence, the relative phasing ϕR of task τ2 with respect to τ1
is a equal to 0.4. For this phasing, task τ2 experiences an op-
timal instant at time 35, corresponding with the completion
of the 5th job of task τ2. That job is released at time 28.4,
and the best-case response time BRP

2 is therefore equal to
c2,5 − a2,5 = 35− 28.4 = 6.6. Similar to the example with
arbitrary deadlines shown in [15], the job experiencing the
best-case response time cannot immediately start its execu-
tion upon its release, but it is delayed by a previous job.
In this case, the job is deferred for an amount of time 0.4.
As a result, the best-cased response time determined by the
technique described in Section 3.1.2 yields a lower bound,
being 6.2.

The worst-case and best-case response times of task τ2
under FPPS are shown as functions of the relative phasing
ϕR in Figure 5.

A remarkable aspect of this example is that for every rel-
ative phasing ϕR, the end-jitter EJP

2 of task τ2 is constant,

BR
P
2(ϕR)

7

6
0 1.00.80.60.40.2 ϕ

R

8

9

WR
P
2(ϕR)

Figure 5. Worst-case and best-case response
times of τ2 under FPPS as a function of the
relative phasing ϕR.

i.e.

EJP
2 = sup

ϕR
(W RP

2(ϕR)−BRP
2(ϕR)) = 1.6.

4.2.2 Response times for FPDS

Figure 2 shows a timeline with the executions of the two
tasks of T1 under FPDS with a simultaneous release at time
zero in an interval with a length equal to the hyperperiod of
the tasks. Given Figure 2, we observe that for this specific
phasing the 2nd job of task τ2 has the shortest response time,
which is equal to 5.4, and the 5th job of task τ2 has the
longest response time, which is equal to 7. Moreover, we
observe that for this specific phasing the 1st and 7th job of
task τ1 both experience a shortest response time of 2, and
the 3rd job of task τ1 has the longest response time, which
is equal to 4.4.

Now reconsider Figure 2. We observe that the allocation
of the processor to the tasks does not change when the rela-
tive phasing ϕR is increased with at most 0.4. All response
times of the jobs of task τ2 that are activated in the inter-
val [0,35) decrease linearly with the increase of ϕ2 from 0
till 0.4. The worst-case response time WRD

2 (ϕR) and the
best-case response time BRD

2 (ϕR) of task τ2 therefore also
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Figure 3. Timeline for T1 under FPPS with a simultaneous release at time zero.
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Figure 4. Timeline for T1 under FPPS for a relative phasing ϕR = 0.4.

decrease. On the other hand, the executions of the jobs of
task τ1 are not affected. As a result, WRD

1 (ϕR) and BRD
1 (ϕR)

of task τ1 remain the same, i.e. 4.4 and 2, respectively.
For a relative phasing ϕR = 0.4, the 3rd job of task τ2 can

immediately start upon its activation; see Figure 6. When
the phasing is increased even further, the 1st subjob of the
3rd job of task τ2 will defer the execution of the 4th job of
τ1. Because the utilization of the task set is equal to 1, this
implies that all executions of the tasks will be deferred. As a
consequence, the response times of all the jobs of τ2 remain
the same for ϕR ∈ [0.4,1), and the worst-case response time
WRD

2 (ϕR) and the best-case response time BRD
2 (ϕR) of task

τ2 therefore also remain the same. However, the executions
of the jobs of task τ1 are affected. As a result, W RD

1 (ϕR)
and BRD

1 (ϕR) of task τ1 increase linearly with the increase
of ϕR.

The worst-case and best-case response times of both task
τ1 and task τ2 under FPDS are shown as a function of the
phasing in Figure 7. The worst-case response time WRD

2
of task τ2 is equal to 7.0, and assumed for a relative phas-
ing ϕR = 0, i.e. when task τ2 is released at an ε-critical in-
stant. Note that the worst-case response time WRD

1 of task
τ1, given by

WRD
1 = sup

ϕR
WRD

1 (ϕR) = lim
ϕR↑1

WRD
1 (ϕR) = 5.0,

is a supremum and not a maximum, i.e. that value can not be
assumed. We therefore conclude that although the example
refutes the worst-case response time analysis, it does not
refute Conjecture 1 concerning an ε-critical instant.

The best-case response time for τ2 is equal to 5.0. This
value is assumed for multiple values of the relative phasing
ϕR in the interval [0,1). As an example, the 2nd job of task
τ2, which is released at time 7.4, experiences a best-case

response time. Time point 12.4 is therefore a ∆-optimal in-
stant for task τ2. Similar to the best-case situation for FPPS
shown in Figure 4, the job experiencing the best-case re-
sponse time in Figure 6 cannot immediately start executing
upon its activation. As a result, the best-case response time
analysis presented in [4] indeed yields a lower bound, i.e.
based on (11) and using ∆ = 0.1, we derive

BRD
2 (∆) ≥ BRP

2(C2 − (F2−∆))+(F2−∆)

= BRP
2(4.2− (3−0.1))+(3−0.1)

= BRP
2(1.3)+2.9 = 1.3+2.9 = 4.2,

which is smaller than 5.0.
A remarkable aspect of this example is that for every rel-

ative phasing ϕR, the end-jitter of both task τ1 and task τ2 is
constant, i.e.

EJD
1 = sup

ϕR
(W RD

1 (ϕR)−BRD
1 (ϕR)) = 2.4

EJD
2 = sup

ϕR
(W RD

2 (ϕR)−BRD
2 (ϕR)) = 1.6.

5 Discussion

We have shown that even when deadlines are within pe-
riods, we cannot restrict ourselves to the response time of
a single job of a task when determining the worst-case re-
sponse time of that task under FPDS. The reason for this
is that the final subjob of a task τi can defer the execution
of higher priority tasks, which can potentially give rise to
higher interference for subsequent jobs of task τi.

Considering Figure 2, we see that every job of task τ2 in
the interval [0,26.8) defers the execution of a job of task τ1.
Moreover, that deferred job of task τ1 subsequently gives
rise to additional interference for the next job of task τ2.
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Figure 6. Timeline for T1 under FPDS for a relative phasing ϕR = 0.4.
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Figure 7. Worst-case and best-case response
times under FPDS as a function of the relative
phasing ϕR.

This situation ends when the job of τ2 is started at time
t = 28, i.e. the 5th job of τ2 does not defer the execution
of a job of τ1. Viewed in a different way, we may state that
the active intervals of the jobs of tasks τ1 and τ2 overlap in
the interval [0,35). Note that this overlapping starts at time
t = 0 and ends at time t = 35, and we therefore term this in-
terval [0,35) a level-2 active period. Considering Figure 6,
we observe that the overlapping active intervals of the jobs
of τ1 and τ2 divide the interval [0,35) in two level-2 active
intervals, i.e. [0,14.4) and [14.4,35). Informally, a level-i
active period is a smallest interval that only contains entire
active intervals of jobs of task τi and jobs of tasks with a
higher priority than task τi. Hence, the active interval of
every job of a task τi is contained in a level-i active pe-
riod. To determine the worst-case response time of a task
τi, we therefore only have to consider level-i active periods.

However, as illustrated by the example shown in Section 4
and mentioned above, we cannot restrict ourselves to the
response time of the first job of a task τi in a level-i ac-
tive period when determining the worst-case response time
of that task under FPDS. Instead, we have to consider the
response times of all jobs in a level-i active period.

We are currently investigating the possibility to deter-
mine the worst-case response time of a task τi under FPDS
and arbitrary phasing based on the response times of jobs of
τi in a level-i active period that starts at an ε-critical instant.

Note that our notion of level-i active period differs from
the notion of level-i busy period [11, 13], which has been
introduced to determine worst-case response times of tasks
for arbitrary deadlines under FPPS and arbitrary phasing.
The level-i busy period is defined as follows.

Definition 1 A level-i busy period is a time interval [a,b]
within which jobs of priority i or higher are processed
throughout [a,b] but no jobs of level i or higher are pro-
cessed in (a− ε,a) or (b,b+ ε) for sufficiently small ε > 0.

From this definition, we immediately see that the level-2
busy period never ends for our example because U = 1.
Conversely, the level-2 active period that started at time
t = 0 in Figure 2 ends at time t = 35. There is another
striking difference between level-i active periods and level-
i busy periods. A level-i active period may start when a task
with a lower priority is still being processed, as illustrated
by the level-1 active period that starts at time t = 5 in Fig-
ure 2. The corresponding level-1 busy period does not start
at time t = 5, but at time t = 6.2 instead.

6 Conclusion

In this document, we considered response times of real-
time tasks under FPDS and arbitrary phasing. We showed
by means of an example consisting of just two tasks that
existing worst-case response time analysis for deadlines
within periods as presented in [5, 6, 7] is too optimistic.

We explored the example by considering both best-case
and worst-case response times under both FPPS and FPDS
as a function of the relative phasing between the tasks. From
this exploration, we gained the following results. We found
that, although the example refutes the existing worst-case
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response time analysis, it does not refute Conjecture 1 con-
cerning the notion of ε-critical instant. The example merely
reveals that the worst-case response time of a task sched-
uled under FPDS is not necessarily assumed for the first
job of that task when released at an ε-critical instant. This
is a similar result as presented in [13] for critical instants
of tasks under FPPS with arbitrary phasing and deadlines
greater than periods. Our example also revealed that a job
that experiences a ∆-optimal instant may not be able to im-
mediately start executing upon its activation. As a conse-
quence, the best-case response time analysis under FPDS
and arbitrary phasing as presented in [4] indeed yields a
lower bound. This is a similar result as presented in [15]
for FPPS with arbitrary phasing and deadlines greater than
periods.

Worst-case response time analysis of a task τi under
FPDS and arbitrary phasing is a topic of future work. We
are currently investigating the possibility to determine the
worst-case response time of a task τi under FPDS and ar-
bitrary phasing based on the response times of jobs of τi

in a so-called level-i active period that starts at an ε-critical
instant. Initial results suggest that the technique is similar
to existing techniques for FPPS with arbitrary phasing and
arbitrary deadlines [11, 17].
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Harbour. A Practitioner’s Handbook for Real-Time Analy-
sis: Guide to Rate Monotonic Analysis for Real-Time Sys-
tems. Kluwer Academic Publishers, 1993.

[12] S. Lee, C.-G. Lee, M. Lee, S. Min, and C.-S. Kim. Lim-
ited preemptible scheduling to embrace cache memory in
real-time systems. In Proc. ACM Sigplan Workshop on
Languages, Compilers and Tools for Embedded Systems
(LCTES), pages 51–64, June 1998. Lecture Notes in Com-
puter Science (LNCS) 1474.

[13] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In Proc. 11th IEEE Real-Time Sys-
tems Symposium (RTSS), pages 201–209, December 1990.

[14] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[15] O. Redell and M. Sanfridson. Exact best-case response time
analysis of fixed priority scheduled tasks. In Proc. 14th Eu-
romicro Conf. on Real-Time Systems (ECRTS), pages 165–
172, June 2002.

[16] J. Simonson and J. Patel. Use of preferred preemption points
in cache-based real-time systems. In Proc. IEEE Interna-
tional Computer Performance and Dependability Sympo-
sium (IPDS), pages 316–325, April 1995.

[17] K. Tindell. An extendible approach for analysing fixed prior-
ity hard real-time tasks. Report YCS 189, Dep. of Computer
Science, University of York, December 1992.

A Timelines for T1

Timelines for T1 under FPPS and FPDS for a relative
phasing ϕR ∈ {0,0.2,0.4,0.6,0.8,1.0} are shown in Fig-
ures 8 and 9, respectively.
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Figure 8. Timelines for T1 under FPPS for a relative phasing ϕR ∈ {0,0.2,0.4,0.6,0.8,1.0}.
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Figure 9. Timelines for T1 under FPDS for a relative phasing ϕR ∈ {0,0.2,0.4,0.6,0.8,1.0}.


