
Real-Time Architecture (2IN25)

Assignment 4

Dennis Peeten (0571361)
Oliver Schinagl (0580852)
Wilrik De Loose (0601583)

Tan Zhi Ming Joshua (0645373)

May 23, 2008

1

Contents

1 Introduction 3

2 Motivation 3

3 Development considerations 4
3.1 Using a compiler . 4
3.2 Manually . 5

4 Architectural considerations 6
4.1 Processors . 6
4.2 Memory . 6

4.2.1 Cache . 6
4.2.2 Local and global memory 7

4.3 Interrupt handling . 8
4.4 Multi-processor systems . 8

5 Application domains 11
5.1 Control systems . 11
5.2 HQ-Video . 11

6 Discussion and conclusion 12

2

1 Introduction

Our world is getting more and more surrounded by electronical devices. Only
a few years ago our surroundings were limited to Radio’s and Televisions. Soon
after we got our Microwaves and washing machines, not to mention the boom
in the mobile phone corner. All these devices require Operating systems and
nearly all require real-time operating systems.

To define a real-time operating system is beyond the scope of this article, what
is not however is that all (real-time) operating systems use some sort of schedul-
ing algorithm.

We have done a literature study concerining one of these algorithms, called
Fixed Priority Deferred Schedule (FPDS) and looked at various aspects of it.

2 Motivation

FPPS does many great things. One of which however is not, dealing with caches.
Caches are great things if you can use them. Audio/Video almost always work
a lot faster with caches, so if you like to use caches in a real-time system, there
is a scheduling algorythm that allows exactly this, namly is FPDS. FPDS allows
the uses of caches, and still behaves like a real-time system.

Resource control can get complex very fast, due to things like Interupt Service
Routines (ISR) and buffers to actually access certain resources. With FPPS
this is very complex task and introduces a lot of overhead. One of the design
goals of FPDS was to simply this and thus also reducing the overhead.

3

3 Development considerations

Arbitrary preemptions of tasks which are used in fixed priority preemptive
scheduling, often result in cache state changes in between execution of the pro-
gram. This causes difficulties in determining the effect of cache reload overheads
on execution time. These preemptions make the problem of determining cache
hit rates virtually intractable, making the system unpredictable. Although fixed
priority non-preemptive scheduling can solve this problem, it comes at a cost of
reduced schedulability.

Another solution to this problem is to use Fixed Priority Scheduling with De-
ferred Preemption (FPDS). FPDS allows for preemptions at pre-specified points
within a task’s execution. This has two main benefits. The first is that it allows
for greater accuracy in determining the Worst Case Execution Time (WCET).
By allowing preemptions at only specified points, we can more accurately pre-
dict the effect these preemptions will have on schedulability. More importantly,
the second benefit which this provides is that it reduces the costs of preemption
through selecting appropriate points of preemption. In selecting the preemption
points, we can limit preemptions to take place at points where less amount of
cache reloads are required, hence reducing the costs of preemption. Therefore,
special care has to be taken in selecting these preemption points.

Let us first define two terms now. First, an active cache line is defined in [?] as a
cache line that that contains a block of data that will be referenced in the future
prior to its replacement. In other words, it is a cache line in which the next
reference is a hit, had the task been allowed to run to completion. Secondly,
a preferred preemption point for a given task interval ti to tj is defined in [?]
as the instant within the interval having the minimum number of live cache lines.

Bearing these in mind, the task we have at hand is to search for the preferred
preemption points. There are two main ways that these points can be deter-
mined, using a compiler or manually.

3.1 Using a compiler

The compiler is used to analyze the worst-case execution path and preferred
preemption points are determined along this path. The number of active cache
lines at any point can be determined by analyzing the activity of the cache line
with the help of the compiler. After the worst-case execution path is analyzed,
the next worst is analyzed using the preemption points that have been found. If
the execution time of this path is lower than the WCET, the analysis can stop.
Otherwise, the analysis has to be repeated. The help of a compiler is needed to
do the analysis because the analysis requires a lot of processing and monitoring.
Also, the effects of caching become transparent to the user if a compiler is used.

4

3.2 Manually

The preferred preemption points can also be determined by the programmer
with the help of insertion of traps in the source code to monitor when tasks of
higher priority are ready to run. The programmer would already have an intu-
ition as to where the number of live caches is minimized. Using this method,
preferred preemption points can also be determined.

Considering the two methods, it is clear that using the compiler is a more
systematic and transparent way of finding preemption points. In addition, pre-
emption points found using a compiler will generally perform better because
the analysis is more extensive. However, this analysis can also be performed
manually as described above is a compiler cannot be used.

5

4 Architectural considerations

When using fixed priority scheduling with deferred preemption, one must take
some extra architectural considerations into account. This chapter deals with
a number of aspects such as the choice of processor, use of the memory and
interrupt handling.

4.1 Processors

In this section, two types of processors are being compared. These two are
pipelined processors and general purpose processors. Pipelining, a standard fea-
ture in RISC1 processors, is much like an assembly line. Because the processor
works on different steps of the instruction at the same time, more instructions
can be executed in a shorter period of time. General purpose processors on the
other hand are mainly used to achieve a decent average response time (although
most architectures nowadays contain a pipeline feature).

The use of a pipelined processor can result in significant performance improve-
ments. However, dependencies between instructions can cause pipeline hazards
that may delay the completion of instructions. Christopher A. Healy et. al.
posed a method to determine the worst case execution times of pipelined pro-
cessors with cache in [?]. This approach reads all kinds of information about
each type of instruction from a machine-dependent data file. This way the per-
formance of a sequence of instructions in a pipeline can be analyzed.

In the paper of Healy et. al. they assume a system with a non-preemptive
scheduling paradigm. In the case of deferred preemption scheduling, a task is
split up in one or more sub-tasks which are all non-preemptive, thus making
the approach applicable to FPDS. This means the worst case execution times
can be calculated and thus the system can be analyzed if it’s schedulable under
FPDS.

It’s clear that the use of pipelined processors have a huge advantage over general
purpose processors when it comes down to performance. Yet, determining the
worst case execution times is much more elaborate and complex. Both aspects
need to be taken into account when choosing the right architecture for a specific
real-time application.

4.2 Memory

4.2.1 Cache

When cache memory is to be used in real-time systems, special attention must
be paid since cache memory introduces unpredictability to the system. This un-
predictable behavior is due to cache reloads upon preemption of a task. When
preemptions are frequent, the sum of such cache reloading delays takes a signif-
icant portion of task execution time. The cache reloading costs due to preemp-

1RISC, or Reduced Instruction Set Computer, is a type of microprocessor architecture that
utilizes a small, highly-optimized set of instructions.

6

tions have largely been ignored in real-time scheduling.

Buttazzo states in [?] that it would be more efficient to have processors with-
out cache or with cache disable. Although this would obviously get rid of the
problem, it is not desirable because the use of cache can really improve system
performance. Another approach is to allows preemptions only at predetermined
execution points with small cache reloading costs. A scheduling scheme was
given in [?] and is called Limited Preemptible Scheduling (LPS). The schedul-
ing scheme only allows preemptions only at predetermined execution points
with small cache reloading costs. This means that the method can be applied
to FPDS.

In [?] a method to determine the worst case execution times was given for mul-
tiprocessors with cache. In that paper a cache simulation is used to categorize
a cache operation. Using the outcome of such a simulation the blocking time
can be determined very precisely. It was already stated that this approach is
applicable to FPDS in paragraph 3.1.

4.2.2 Local and global memory

In any multiprocessing system cooperating processes share data via shared data
objects. A typical abstraction of a shared memory multiprocessor real-time
system configuration is depicted in figure 1. Each node of the system contains a
processor together with its local memory. All nodes are connected to the shared
memory via an interconnection network.

Figure 1. Shared memory multiprocessor system structure

However, the literature doesn’t state much about the use of local and global
memory when using FPDS. Therefore it is difficult to make a statement about
this subject. Most likely the use of local memory shouldn’t have much impact
on the schedulability of the system under FPDS. Global memory on the other
hand can indeed bring nondeterminism when using cache. FPDS is therefor
more predictable because the cache misses can be determined more accurately.

Shared variables in a critical section can also bring nondeterminism. When
guarding a critical section with semaphores, a lower priority job can block a
higher priority job. This can be overcome with various protocols like PIP, PCP
and SRP (although the implementations of PIP and PCP recently have been
proven flawed).

7

4.3 Interrupt handling

Real time systems usually have at least two groups of tasks. They are the appli-
cation tasks and the interrupts. Both classes of task are repeatedly fired due to
certain events. The difference between the two classes is that application tasks
are usually periodic and they start executing due to events that are generated
internally. In contrast, interrupts execute in response to external events.

Interrupts generally pre-empt a task in the same way a higher priority task
would pre-empt a lower priority one. There are two main ways an interrupt can
be handled. Interrupts can be handled using a Unified interrupt architecture
where system services can be accessed from Interrupt Service Routines (ISR) or
using a Segmented Interrupt Architecture wherein systems services may not be
accessed from ISR.

In using the Unified interrupt architecture, interrupts are served immediately
after they are invoked, and all interrupts must be disabled during the time the
initial interrupt is served because the ISR can access the system services directly
and there is no way to ascertain which ISRs make which kernel calls. Hence,
there exists a possibility that interrupts may be disabled for too long and an
interrupt may be missed.

In contrast, when using the Segmented Interrupt architecture, ISRs cannot call
kernel services. Instead, the ISRs invoke a Link Service Routine (LSR), which
are then scheduled by a LSR scheduler to run at a later time. LSRs can run
only after all ISRs have been completed. They then call kernel services which
schedule the LSR with respect to all other tasks. The kernel services schedules
the LSR so that it only starts running if and when the appropriate resources
are available. This means that it incurs a lower task switching overhead. Using
this method of serving interrupts also helps to smooth peak interrupt overloads.
When a burst of ISRs are invoked in rapid succession, the LSR scheduler helps
to ensure that temporal integrity is maintained and will allow the interrupts
to run in order of the way they were invoked. Additionally, LSRs run with
interrupts fully enabled, which prevent missing of any interrupts during the ex-
ecution of LSRs.

In conclusion, we find that using the segmented interrupt architectures have the
benefit of lower task switching overhead, smoothing peak interrupts overloads
and prevent the missing of interrupts that occur while LSRs are being served.
Thus, Segmented Interrupt architecture is superior compared to the Unified
interrupt architecture.

4.4 Multi-processor systems

Gai et. al. [?] Describe scheduling of tasks in asymmetric multiprocessor sys-
tems consisting of a general purpose CPU and DSP acting as a co-processor to
the GPP master. The DSP is designed to execute algorithms on a set of data
without interruption, hence the schedule for the DSP is non-preemptive. Gai
et. al. treat the DSP scheduling as a special case of scheduling with shared
resources in a multiprocessor distributed system, using a variant of the coopera-

8

tive scheduling method presented in [?] by Seawong and Rajkumar. Cooperative
scheduling is appropriate in situations where a task can be decomposed into mul-
tiple phases, such that each phase requires a different resource. The basic idea
of cooperative scheduling as described by Seawong and Rajkumar is to associate
suitable deadlines to each phase of a job in order to meet the job deadline.
In order to apply this to the GPP + DSP multiprocessor architecture, Gai
et. al. define their real-time model to consist of periodic and sporadic tasks
subdivided into regular tasks and DSP tasks. The regular tasks (application
tasks, interrupt service routines, ...) are executed entirely on the master CPU
for Ci units of time. The DSP tasks execute for Ci units of time on the master
CPU and an additional CDSP

i units of time on the DSP. It is assumed that
each DSP job performs at most one DSP request after Cpre

i units of time, and
then executes for another Cpost

i units of time, such that Ci = Cpre
i + Cpost

i as
depicted in Figure 4.4.

Main CPU

DSP

Task period

Cpre
i Cpost

i

CDSP
i

time

time

ri di

Figure 1: Structure of a DSP task

When executing a DSP task, a hole within each job is generated in the sched-
ule of the master processor. Gai et. al. show that the earliest deadline first
(EDF) and rate monotonic (RM) scheduling algorithms do not always yield a
feasible schedule, while one exists. Figure 4.4 shows an infeasible task set when
scheduled by RM or EDF. Figure 4.4 shows the same task set scheduled using
a fixed priority assignment where τ2 ≺ τ1, such that τ2 executes in the holes of
the master CPU’s schedule.

1

1

1 2

2

2 3

3

3

τ1

τ2

τ1

CPU

DSP

Figure 2: A task set cannot be scheduled by RM and EDF (τ2 misses all
deadlines).

9

1

1

1 2

2

2 3

3

3

τ1

τ2

τ1

CPU

DSP

Figure 3: A feasible schedule with fixed priority assignment τ2 ≺ τ1.

The main idea is to modify the scheduler to exploit these holes to schedule some
other task on the master processor to improve the schedulability bound of the
system. This is achieved by modeling the DSP request of a task τi as a remote
procedure call that blocks τi for Bi units of time, waiting for its completion. The
scheduling algorithm uses a fixed priority assignment. In order to determine the
next task to be executed, the scheduler enqueues regular tasks and DSP tasks
in two separate queues that are ordered by priority, as shown in Figure 4.4.

CPU

Regular
queue

DSP
queue

DSP in
use

Pick the highest
priority task

>

Figure 4: Structure of a DSP task

When the DSP is idle the scheduler selects the task with the highest priority
between those at the head of the two queues. When the DSP is active, the
scheduler select the highest priority task from the head of the regular queue
only. In this way, a task using the DSP blocks all other tasks requiring the DSP,
but not the regular tasks, which can freely execute on the master processor in
the holes created by DSP activities.
Because the DSP tasks executing on the DSP cannot be preempted, it can
happen that a lower priority DSP task τi is blocking a higher priority task
that was released during the execution of τi on the DSP. The blocking of high
priority DSP tasks by lower priority DSP task has to be accounted for in the
schedulability test. This test is presented [?] using the hyperbolic bound.
The article furthermore present results of a simulation of the described algo-
rithm and compares them to schedules generated by the distributed priority
ceiling protocol (DPCP). However they do not mention the method of priority
assignment used in their simulation.

10

5 Application domains

Having discussed the development and architectural considerations, we can now
explore the application domains for FPDS. We have found that FPDS allows
for better predictability of the WCET compared to scheduling that allows arbi-
trary preemption. This is because with FPDS the number of preemption points
are limited. However, when deadline misses occur with FPDS, there is a higher
chance that the task that misses its deadline is a higher priority task due to the
limitation of preemption points as compared to arbitrary preemptions.

We will now divide the application domains into two main groups, control sys-
tems and HQ-video. For each of these groups, we will discuss whether using
FPDS is suitable.

5.1 Control systems

We find that the area of control systems can once again be divided into two
main groups. In the first group we have control applications where tasks that
miss their deadline preferable have a lower priority. An example would be a fuel
injection system in a car. We would like to miss tasks that control the amount
of fuel injected into the engine rather than tasks that control whether fuel is
injected into the engine at all. If the amount of fuel injected into the engine is
wrong, the car can still function even though the ride may be bumpy. However,
if the fuel is not provided to the engine, the car will not be able to function. In
scenarios that pertain to the first group, schedules with arbitrary preemptions
should be used in favor of FPDS because they would reduce the chance that a
higher priority task misses its deadline.

In the second group, we have applications where missing any deadline would be
equally disastrous. An example would be a space shuttle where any deadline
miss may cause the shuttle to crash. In these cases, it is better to use FPDS
with limited preemption points because FPDS allows us to predict the WCET
more accurately.

5.2 HQ-Video

For high quality videos sound is of a higher priority than the image. A deadline
miss for the audio would greatly decrease the perceived quality, but a deadline
miss for images would not be as noticeable. In this case, we should choose
scheduling with arbitrary preemption points so that the chance missing an audio
deadline will be reduced.

11

6 Discussion and conclusion

If an application requires caches, like Video decoding does, then FPDS is a very
interesting option. This because FPDS allows the use of caches, yet allowing
the system to act in a real-time manner. This however only, and only if, very
occasional misses deadlines are acceptable of high priority tasks, since FPDS
allows a lower priority task to block a high priority task.

What however, if there are a lot of cache misses? If this is the case, then you
could argue that either, the system was designed wrong, either by using a cache
that shouldn’t have been used in the first place. Or the cache would not be
sufficient. On the other hand, it can be argued that there are several algo-
rithms that prove a system is always scheduable. What these algorithms do
not account for when the input data is variable. Like for example a Video-data
stream from a satelite. This video data stream is unpredictable and can be out
of specification. If this is the case, it may still happen that the scheduler misses
it’s deadline if the video decoding all of a sudden requires more CPU power.

12

