
Visualization 2IV35

Oliver Schinagl (0580852)
Wilrik De Loose (0601583)

January 10, 2008

Contents

1 Introduction 3

2 The skeleton code 5
2.1 Grid-based smoke . 5
2.2 Internal structure . 6

3 Color mapping 7
3.1 Description . 7
3.2 Implementation . 8
3.3 Difficulties . 9

4 Glyphs 10
4.1 Description . 10
4.2 Implementation . 11
4.3 Difficulties . 12
4.4 Quake root . 12

5 Divergence 14
5.1 Description . 14
5.2 Implementation . 14
5.3 Difficulties . 15

6 Isosurfaces 16
6.1 Description . 16
6.2 Implementation . 16
6.3 Difficulties . 18

7 Height plots 20
7.1 Description . 20
7.2 Implementation . 20
7.3 Difficulties . 22

1

8 Streamtubes 24
8.1 Description . 24
8.2 Implementation . 24
8.3 Difficulties . 25

9 Conclusion 26
9.1 Visualization . 26
9.2 The course . 27

10 Functionality 28
10.1 Simulation . 28
10.2 Camera position . 29

2

Chapter 1

Introduction

The visualization course focuses on techniques and algorithms used to visu-
alize large data sets. The code of a 2D fluid simulator was distributed to
implement such techniques on top of the existing code.

Figure 1: Practical assignment

The above figure illustrates the different assignments. After doing step 3
there were two different ways to continue the practical assignment. We chose
to take the left branch of the figure which, amongst others, involved imple-

3

menting isosurfaces and height plots.

Every chapter in this report discusses a particular objective from the practi-
cal assignment. The next chapter will briefly talk about the skeleton program
and how we adapted the code to be able to add functionality. Chapter 3 will
discuss the color mapping, chapter 4 is about glyphs and so on.

We will discuss a few subjects for each practical assignment. Each chapter
gives a short description of each technique with a couple of screenshots, it
talks about how we implemented the technique and what problems we en-
countered if any.

We end our report giving a detailed conclusion about visualization in general
and the visualization course.

4

Chapter 2

The skeleton code

The provided code for the course contains an implementation of a real-time
fluid flow simulation. The fluid flows under the influence of a user-controlled
force field. The simulation follows the Navier-Stokes equations for fluid flow.
These equations describe how the velocity, pressure, temperature and density
of a moving fluid are related.

2.1 Grid-based smoke

The visualization is done using a two dimensional grid as opposed to particle-
based smoke visualization techniques. At every vertex a number of fluid at-
tributes are stored. The skeleton program keeps track of the density, velocity
and force. These attributes can be visualized with different techniques. Each
and every attribute has its own ’preferred’ visualization technique.

Using these values at the cell’s vertices, all sorts of techniques, additional
values and other useful info can be used. The values are used in colormap
techniques, calculation of the divergence and the rendering of the height plots.

5

Figure 2: Fluid visualization

The above screenshot shows us the fluid movement using a grey colormap.
This simple yet effective visualization technique is explained in chapter 3.

2.2 Internal structure

The first assignment was to simply compile the code. That was fairly easy.
However, the code was a bit unstructured. Everything was put into one big
file. To be able to add additional functionality without losing sight of what
we were doing, we created a file for every new technique we implemented.
The second thing we did is we split up the calculations, the rendering func-
tions and user interactions from each other.

With this new structure we were able to manage the code and add additional
functionality. We chose C as our programming language and used the GTK+
library to create the graphical user interface. We also used SVN to manage
our project. This was very useful since we both had different development
environments and also did a lot of work at home.

6

Chapter 3

Color mapping

In chapter 2 we saw a figure (figure 2) which showed a fluid in motion. The
fluid had a very bright grey color. How is this color determined at every
vertex?

3.1 Description

The technique that maps a value to a specific color is called color mapping.
We already explained that the simulation is divided into cells with each 4
vertices that can contain different values (a uniform quad grid). A colormap
calculates the color, given a certain colormap function, for every value at a
vertex. Example:

In figure 2 we saw the smoke using a grey scaled colormap. If we know that
the values at the vertices ranges from 0 to 1, we can use the value to determine
each color aspect, red, green and blue. This means, for each vertex:

red = green = blue = value

To be able to reason about the colored images, we added a legend at the
top of the screen. The leftmost colors indicate low values and the rightmost
colors indicate high values. With such a colormap legend, it’s easier to un-
derstand the produced images and say something about the value of the fluid.

You are also able to set the number of used colors. At default this value is
set to 256 colors, but you can easily set that amount to 16 using a slider.
You will see big bands of colors appear. This way, the line between certain
values becomes more visible.

7

3.2 Implementation

We’ve implemented two actual colormaps and three which only contain one
RGB color, red, green or blue (useful for isolines for instance). The ”Wilrik”
colormap implements a fire elemental color scheme. The other one is called
”Oliver” and is a repeated band of colors which can show quite well where
the fluid’s in motion.

Figure 3: A fire colormap

The fire color is determined as follows:

red = value; green = value/3; blue = 0;

So, if the value is high, a lot of red, one third of green and no blue is taken.
Low values only get a bit of red and almost no green. This gives a black to
dark red to orange, almost yellow colormap.

To create a repeating band of colors, we used to following definition:

value = (int)(value ∗ 100) mod 10

So we first multiply the value with 100, cast it to an integer and take that
value modulo 10. We then take some colors from a look-up-table to pick the
color for the band.

8

3.3 Difficulties

The last mechanisms to implement for this assignment were scaling and
clamping. With clamping you let the user set a minimum and maximum
for the values. This is done by first enabling clamping and then click some-
where in the bottom of the color legend and drag the minimum and maximum
clamping indictors. Actual data lower then the minimum or higher than the
maximum are set to the maximum or minimum respectively.

The (auto)scaling mechanism was a bit more subtle. When enabled, you
can set the scaling in the same way as the clamping. For the auto-scaling,
the minimum and maximum values are stored and the entire dataset at the
current time moment is mapped to the visible colormap. This is not so hard
to do, but we had not foreseen that values could also be negative. It wasn’t
until we implemented the divergence that we found this problem.

9

Chapter 4

Glyphs

When taking a snapshot of the moving fluid a lot of information about the
simulation is lost. The direction the fluid was heading for instance. Glyphs
are used to take care of such problems.

4.1 Description

”Glyphs are icons that convey the value (orientation, magnitude) of a vector
field by means of several graphical icons, such as arrows.”

Figure 4: Triangle glyphs with a grey scaled colormap

10

What does it mean? The smoke in our fluid simulation has a direction and
speed. These two values can be represented by a vector encoding the direc-
tion as the orientation and the speed as the magnitude. If you draw this
vector for each vertex you get a vector field that shows the direction and
speed of the fluid at each vertex.

In the figure above (figure 4) you see triangle glyphs with a grey scaled col-
ormap. In the lower right region you can see that the fluid is moving upwards
where at the rest of the simulation the fluid is trying to get to the bottom of
the screen.

4.2 Implementation

We implemented four additional glyphs besides the already implemented
hedgehogs. We implemented triangles (see figure 4), 3D cones, 32x32 bitmap
image glyphs (see figure 5) and s second image glyphs. For every glyph we
go through a set of steps.

• calculate size (length)

• calculate angle (rotation)

• rotate and render object

The length is calculated using the following equation of Pythagoras:

length =
√

x3 + y3 + z3

The angle Θ of the glyph is calculated using the inner product (inprod). The
inner product is used to calculate the glyphs angle:

Θ = acos(inprod) ∗ (180◦/Π)

11

Figure 5: Image glyphs colored with a rainbow colormap

The second part of this assignment was to let the user be able to choose
an alternative resolution for the sample grid. The default grid resolution is
50x50. The user is now able to alter that resolution. We use the value of the
nearest-neighbor for the glyph to visualize it.

4.3 Difficulties

We had some troubles with calculating the angle of the glyph. For some rea-
son the calculation checks the smallest angle which is between 0◦ and 180◦.
When we located this irregularity it was easily fixed.

4.4 Quake root

A nice side note to this chapter is that we don’t use the default sqrt(float)
function that the C-library offers to determine the length of a vector for in-
stance. We use a function that we like to call the ”Quake Root” from the
game Quake 3.

The code implements the Newton Approximation of roots. The Newton ap-
proximation is supposed to be ran in iterations; each iteration enhances the
accuracy until enough iterations have been made for reaching the desired

12

accuracy. The really interesting aspect of this function is a magic constant,
used to calculate the initial guess. Only one Newton approximation iteration
is required for a low relative error of 10−3.

The function runs up to 4 times faster than the sqrt(float) function, even
though it’s usually implemented using the FSQRT assembly instruction!

You can read more about the magical square root at:
http://www.codemaestro.com/reviews/9

13

Chapter 5

Divergence

After implementing the glyphs it was time for the divergence. This is a value
which can be calculated using the already known value at each vertex and
that of its neighbors.

5.1 Description

The divergence shows the amount of mass which is compressed or expanded.
If mass enters the field at some point, called a source point, then that point
will have a positive divergence value. If mass exits the field at some point,
called a sink point, then that point will have a negative divergence value.

5.2 Implementation

The calculation of the divergence is rather simple, once you get it. For the
divergence of the velocity it looks like:

∇ · v =
∂v

∂x
+

∂v

∂y
=

vx(i + 1, j)− vx(i, j)

cellx
+

vy(i + 1, j)− vy(i, j)

celly

Where vx(i, j) is the x-value at the gridpoint (i, j) and similar for the y-value.
The cellx and celly are the width and height of the cell. We also implemented
the divergence of the force field with the same formula.

14

The definition of the divergence says high values should appear where mat-
ter is injected and low values where matter exits the field. This means high
values should appear in front of the mouse while dragging and low values
behind it.

5.3 Difficulties

Although we have a good definition of what the divergence is and what the
result should look like, it is rather difficult to verify it using the simulation.
This is a know difficulty. The divergence can be verified by setting up a test
environment where the outcome of the divergence should be obvious. For
instance create one source and one sink point.

15

Chapter 6

Isosurfaces

This assignment was a really interesting one. It introduces a method to im-
plement so called isolines. Such an isoline creates a surface that encapsulates
a region with a value higher than a given threshold.

6.1 Description

An isoline is a line that sort to speak follows a given value. If the values of
a field ranges from 0 to 1, a good threshold would be 0.6 for instance. The
isoline visualizes the points that equal the value of 0.6.

Our program is able to define the number of contour-lines and the minimum
and maximum values in between the isolines are rendered.

6.2 Implementation

The algorithm that implements the isolines follows a structured pattern. In
pseudo-code it looks like this:

for (each cell ci of the dataset)
{

for (each vertex vj of ci)
store inside/outside state of vj in bit b of status;

select the optimized code from the case table using status;
for (all cell edges ej of the selected case)

16

intersect ej with the isovalue;
construct the line segment(s);

}

So the algorithm passes through every cell and then checks the four cell ver-
tices {v0, v1, v2, v3} of that cell. Each vertex has it’s own value. With that
value, the algorithm can check if a vertex is inside (vj ≥ threshold) or out-
side (vj < threshold) the isosurface. The inside/outside state is then stored
in a bit.

Figure 6: Three fire-like colored isolines on a blue grid

If a vertex, say v0 is inside the isosurface, v0 is set to 1, else it’s left to 0.
This is done for all four vertices which results in a 4-bit status. This means
there are in total 16 different cases in which the isoline can run through a cell.

17

Figure 7: The 16 marching square cases

The above image (figure 7) shows the 16 different cases of the marching
squares algorithm. A white vertex indicates that the vertex is outside the
isosurface and black indicates it is inside the isosurface. Every inside or out-
side case has it’s counterpart. So we’ve reduced the number of cases down
to 8. In case 0 and 15 for instance, no lines have to be rendered, yet they are
both very different cases.

The cases 5 and 10 are both ambiguous cases as becomes clear from the next
image (figure 8).

Figure 8: Two ambiguous cases in the marching squares algorithm

6.3 Difficulties

The contouring algorithm is very simple to implement. Just follow the in-
structions of the method. Still our contour was not very smooth. It had

18

sharp edges everywhere and there was no smooth curve in the contour. The
problem was with the intersection with the isovalue. We did’nt exactly fol-
low the equation that was in the study material. When we reverted to that
equation the isolines where nice and smooth.

19

Chapter 7

Height plots

This chapter treats a very neat visualization technique, namely the height
plots. What are height plots, what are they used for and how did we imple-
ment them?

7.1 Description

All the previous discussed methods are implemented on a 2D grid. But some-
times it’s also useful to see the value not by it’s color but by the height of the
surface. This is exactly what a height plot does. It maps the values onto the
Z-axis. This means that, initially, you won’t see much differences between
the version with and without the high plots implemented. This is because
of the height that is being drawn onto the Z-axis that runs towards the screen.

To make the height more visible, we implemented a method to rotate the
field by dragging the mouse over the screen while holding the middle mouse
button. This way you can see the height of the field.

7.2 Implementation

First of all we implemented the method to rotate the field by mouse. With-
out this useful functionality, the height would’nt be that visible. After we
implemented this feature we added the height to the program.

We created the height by adding an extra Z-coordinate to each value. We
created an extra array that would keep track of the height of each vertex.

20

When drawing a vertex we used the stored height from the array and render
the vertex using that value for the Z-coordinate.

To see more depth in the picture we also included some ambient and diffuse
light to the program. In order to let the light have effect on the surface we
calculated the normal vector for each vertex.

Figure 9: A height plot of the density

The above picture (figure 9) shows a height plot of a fluid where the height
encodes the density of the fluid. The colormap is also mapped to the density
but this is not necessarily the case. In the snapshot on the next page (fig-
ure 10), the height is visualizing the velocity of the fluid while the colormap
shows differences in the density.

As you can see from the second height plot, the bright yellow colors are not
on the highest point of the height map. This means the density is not always
the largest where the velocity is high.

21

Figure 10: Another height plot, but this time of the velocity

7.2.1 Normal vector

For the calculation of the normal vector for a given vertex, say v0, we first
take the two neighboring vertices in that cell, v1 and v2. We take the differ-
ence of v0 with v1 and of v1 with v2. Then we take the cross product of these
two differences and normalize the result. This gives us the normal vector at
v0.

The OpenGL renderer uses this vector to calculate the angle between the
normal and the light that is shining on the vertex. This angle is then used
to shade a vertex and with that an entire surface.

7.3 Difficulties

We had some small issues during the implementation of this entire assign-
ment but we managed to implement them correctly.

22

7.3.1 Rotation

The first problem we encountered was due to the rotation of the field. Ro-
tating around one axis was not to difficult. When we tried to rotate the field
around two or three axis’, the simulation wasn’t rotating around it’s center
any more.

It turned out we were translating and rotating in the opposite order. When
we changed the order of rotating and translating the simulation rotated
around it’s center.

7.3.2 Height strips

When we first tried to implement the height plots we simply added a third di-
mension when rendering the triangle strips for the smoke visualization. This
had as an effect that the different rows of the simulation where’nt connected.
In stead of a height plots we implemented height strips.

We countered this problem by first calculation the height for each vertex.
When rendering a vertex, we look up the correct value for the height.

7.3.3 Calculating the normal

When enabling the light in our program and adding the normal to each ver-
tex we had some crazy outcome. This was because of the fact we did’nt
consistently took the left and lower neighbor of a vertex to calculate the nor-
mal vector. As a result each vertex was randomly pointing up or downwards.
This looked like some sort of checkers board.

We rendered the normal vectors and immediately saw the cause of the prob-
lem. It was simply solved by always taking the same neighboring vertices.

23

Chapter 8

Streamtubes

The last of the non-optional assignments. This is, just as the height plots, a
3-dimensional assignment although streamlines and streamtubes can be used
in 2D grids.

8.1 Description

Imagine you drop of bit of ink into the fluid and let it flow for a while. What
you will get is a line that shows the path a ink particle has taken. Such a
path is called a streamline. A streamtube is a 3D variant of a streamline. A
streamtube consists of a number of consecutive tubes that together form a
thick 3-dimensional flexible tube.

Each streamtube has a begin and end. The begin point of a streamtube is
called a seedpoint. From a seed point the tube will begin flowing with the
fluid. It ends after a number of frames, seconds or parts. This can be variable.

The streamtubes we had to implement were’nt actually flowing trough the
fluid but through a frame history. Each frame is stored in a history array
and the streamtubes take a path trough history. The 2D grid became a 3D
grid with this new feature.

8.2 Implementation

First we implemented the placement of the streamtubes. We chose to let
the user be able to point the exact position of each seedpoint by mouse. A

24

seedpoint is rendered as a small sphere.

We also created a history array that stores up to 50 frames.

8.3 Difficulties

We did’nt have enough time to actually trace a streamtube.

25

Chapter 9

Conclusion

We saw a lot of different visualization methods, algorithm, techniques, tips
and tricks during the entire course. We participated with great enthusiasm
and look back to a successful semester.

We also have some conclusions and recommendations about visualization and
this course.

9.1 Visualization

When we first started this course we did’nt know what visualization was
truly about. It’s not about drawing nice pictures, but the entire process
from getting the measured data up until the rendering process; the entire
visualization pipeline.

So, visualization itself is a field in which many specializations of other fields
are used. Think of physics, mathematics, computer science, computer graph-
ics and probably many more.

A lot of research is still being done. The translation from 3D to 2D brings
difficulties. Some information is hard to visualize in 2 and/or 3 dimensions.
The bigger glyphs get, the more they overlap. If you use blending, some
details are lost but some new information may be gained. These examples
are only a two of many more tradeoffs when visualizing large datasets.

26

9.2 The course

The visualization course encourages to explore the given assignments in dif-
ferent directions. It is stated that visualization is much about designing
creative solutions to a given problem to gain different insights. And this
turned out to be a positive approach for us to some of the assignments.

We say it turned out to be a positive approach to some of the assignments.
For some other problems we needed the insight of an expert. We found it
very useful to be able to mail some of the troubles we had during the imple-
mentation.

The two practical hours after the theoretical part were a bit to crowded for
the teacher to be able to handle all questions from the students. This was a
bit of a downside. Because of this we were’nt always able to show our new
results or post question during the practical hour.

27

Chapter 10

Functionality

This final chapter lists all functionalities of our visualization program.

10.1 Simulation

Toggle grid on/off
Check the ”Draw grid” box on the ”Main” tab to draw a grid.

Toggle smoke on/off
Uncheck the ”Draw smoke” box on the ”Main” tab to disable the smoke.

Toggle glyphs on/off
Check the ”Draw glyphs” box on the ”Main” tab to enable glyphs.

Toggle isolines on/off
Check the ”Draw isolines” box on the ”Main” tab to enable isolines.

Toggle streamlines on/off
Check the ”Draw streamlines” box on the ”Main” tab to enable streamlines.

Toggle calculation
Uncheck the ”Toggle calculation” box on the ”Main” tab to pause the smoke
simulation.

Toggle normal vectors on/off
Check the ”Toggle normal vectors” box on the ”Main” tab to render the
normal vectors.

28

Reset simulation
Push the ”Reset simulation” button on the ”Main” tab to reset the smoke’s
attributes.

Change smoke dataset
Select either the density rho, velocity, force or the divergence to change the
smoke’s dataset.

10.2 Camera position

Reset all
Push the ”Reset all” button the ”Main” tab to reset the rotation, translation
and zoom to its defaults.

29

