#include #include #include "morecfg.h" #include "jpeglib.h" #include "c_huffman.h" #include #define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) #define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) /* * In ANSI C, and indeed any rational implementation, size_t is also the * type returned by sizeof(). However, it seems there are some irrational * implementations out there, in which sizeof() returns an int even though * size_t is defined as long or unsigned long. To ensure consistent results * we always use this SIZEOF() macro in place of using sizeof() directly. */ #define SIZEOF(object) ((size_t) sizeof(object)) void ERRORREPORT(void) { printf("Error"); } /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; #define ASSIGN_STATE(dest,src) ((dest) = (src)) /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ // j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; // /////////////////////////////////////////// // Huffman Tables allocated here // // ////////////////////////////////////////// JHUFF_TBL dc_Huffman_Table[2]; JHUFF_TBL ac_Huffman_Table[2]; c_derived_tbl dc_derived_table; c_derived_tbl ac_derived_table; /* * Huffman table setup routines */ LOCAL(void) add_huff_table (JHUFF_TBL *htblptr, const UINT8 *bits, const UINT8 *val) /* Define a Huffman table */ { int nsymbols, len; /* Copy the number-of-symbols-of-each-code-length counts */ MEMCOPY((htblptr)->bits, bits, SIZEOF((htblptr)->bits)); /* Validate the counts. We do this here mainly so we can copy the right * number of symbols from the val[] array, without risking marching off * the end of memory. jchuff.c will do a more thorough test later. */ nsymbols = 0; for (len = 1; len <= 16; len++) nsymbols += bits[len]; if (nsymbols < 1 || nsymbols > 256) { perror("Bad Huffman code table entry"); exit(0); } MEMCOPY((htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); /* Initialize sent_table FALSE so table will be written to JPEG file. */ (htblptr)->sent_table = FALSE; } LOCAL(void) std_huff_tables () /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ /* IMPORTANT: these are only valid for 8-bit data precision! */ { static const UINT8 bits_dc_luminance[17] = { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_luminance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_dc_chrominance[17] = { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_chrominance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_ac_luminance[17] = { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; static const UINT8 val_ac_luminance[] = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; static const UINT8 bits_ac_chrominance[17] = { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; static const UINT8 val_ac_chrominance[] = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; add_huff_table(&dc_Huffman_Table[0], bits_dc_luminance, val_dc_luminance); add_huff_table(&ac_Huffman_Table[0], bits_ac_luminance, val_ac_luminance); add_huff_table(&dc_Huffman_Table[1], bits_dc_chrominance, val_dc_chrominance); add_huff_table(&dc_Huffman_Table[1], bits_ac_chrominance, val_ac_chrominance); } GLOBAL(void) jpeg_make_c_derived_tbl (JHUFF_TBL *htbl, boolean isDC, c_derived_tbl * pdtbl) { c_derived_tbl *dtbl; int p, i, l, lastp, si, maxsymbol; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ if (htbl == NULL) ERRORREPORT(); dtbl = pdtbl; // Figure C.1: make table of Huffman code length for each symbol p = 0; for (l = 1; l <= 16; l++) { i = (int) htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERRORREPORT(); while (i--) huffsize[p++] = (char) l; } huffsize[p] = 0; lastp = p; // Figure C.2: generate the codes themselves // We also validate that the counts represent a legal Huffman code tree. // // code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((INT32) code) >= (((INT32) 1) << si)) ERRORREPORT(); code <<= 1; si++; } /* Figure C.3: generate encoding tables */ /* These are code and size indexed by symbol value */ /* Set all codeless symbols to have code length 0; * this lets us detect duplicate VAL entries here, and later * allows emit_bits to detect any attempt to emit such symbols. */ MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); /* This is also a convenient place to check for out-of-range * and duplicated VAL entries. We allow 0..255 for AC symbols * but only 0..15 for DC. (We could constrain them further * based on data depth and mode, but this seems enough.) */ maxsymbol = isDC ? 15 : 255; for (p = 0; p < lastp; p++) { i = htbl->huffval[p]; if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) ERRORREPORT(); dtbl->ehufco[i] = huffcode[p]; dtbl->ehufsi[i] = huffsize[p]; } } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte(state,val,action) \ { *(state)->next_output_byte++ = (JOCTET) (val); \ if (--(state)->free_in_buffer == 0) \ if (! dump_buffer(state)) \ { action; } } /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ static boolean dump_buffer(working_state * state) { // TODO // /* struct jpeg_destination_mgr * dest = state->cinfo->dest; if (! (*dest->empty_output_buffer) (state->cinfo)) { return FALSE; } // After a successful buffer dump, must reset buffer pointers state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; */ return TRUE; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ /* Emit some bits; return TRUE if successful, FALSE if must suspend */ inline static boolean emit_bits(working_state * state, unsigned int code, int size) { /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = state->cur.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) { perror("Missing Huffman code table entry"); exit(0); /* ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); */ } put_buffer &= (((INT32) 1)<cur.put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(state, c, return FALSE); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(state, 0, return FALSE); } put_buffer <<= 8; put_bits -= 8; } state->cur.put_buffer = put_buffer; /* update state variables */ state->cur.put_bits = put_bits; return TRUE; } static boolean flush_bits (working_state * state) { if (! emit_bits(state, 0x7F, 7)) // fill any partial byte with ones return FALSE; state->cur.put_buffer = 0; // and reset bit-buffer to empty state->cur.put_bits = 0; return TRUE; } extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ int bitCounter; int encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { register int temp, temp2; register int nbits; register int k, r, i; bitCounter = 0; // TODEBUG /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) { perror("DCT coefficient out of range"); exit(0); /* ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); */ } /* Emit the Huffman-coded symbol for the number of bits */ if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) { return FALSE; } bitCounter += dctbl->ehufsi[nbits]; // TODEBUG /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) { /* emit_bits rejects calls with size 0 */ if (! emit_bits(state, (unsigned int) temp2, nbits)) { return FALSE; } bitCounter += nbits; // TODEBUG } /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for (k = 1; k < DCTSIZE2; k++) { if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) { return FALSE; } r -= 16; bitCounter += actbl->ehufsi[0xF0]; // TODEBUG } temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) { nbits++; } /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) { perror("DCT coefficient out of range"); exit(0); /* ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); */ } /* Emit Huffman symbol for run length / number of bits */ i = (r << 4) + nbits; if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) { return FALSE; } bitCounter += actbl->ehufsi[i]; // TODEBUG /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (! emit_bits(state, (unsigned int) temp2, nbits)) { return FALSE; } bitCounter += nbits; // TODEBUG r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) { if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) { return FALSE; } printf("END"); } printf("\n Bitcounter = %d (%d)",bitCounter,bitCounter/8); return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ static boolean emit_restart (working_state * state, int restart_num) { int ci; if (! flush_bits(state)) return FALSE; emit_byte(state, 0xFF, return FALSE); emit_byte(state, JPEG_RST0 + restart_num, return FALSE); // Re-initialize DC predictions to 0 for (ci = 0; ci < MAX_COMPS_IN_SCAN; ci++) state->cur.last_dc_val[ci] = 0; // The restart counter is not updated until we successfully write the MCU. return TRUE; } /* * Encode and output one MCU's worth of Huffman-compressed coefficients. */ /* static boolean encode_mcu_huff ( j_compress_ptr cinfo , JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; int blkn, ci; jpeg_component_info * compptr; // Load up working state state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; // Emit restart marker if needed if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! emit_restart(&state, entropy->next_restart_num)) return FALSE; } // Encode the MCU data blocks for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if (! encode_one_block(&state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no])) return FALSE; // Update last_dc_val state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } // Completed MCU, so update state cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); // Update restart-interval state too if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } */ /* * Finish up at the end of a Huffman-compressed scan. */ /* static void finish_pass_huff (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; // Load up working state ... flush_bits needs it state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; // Flush out the last data if (! flush_bits(&state)) perror("Suspension not allowed here"); exit(0); // ERREXIT(cinfo, JERR_CANT_SUSPEND); // Update state cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); } */ static int lastDCValue; static working_state savedHuffstate; unsigned char outputBufferHuffman[500]; void encode_huffBlock64_init(void) { std_huff_tables(); /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(dc_Huffman_Table, TRUE, &dc_derived_table); jpeg_make_c_derived_tbl(ac_Huffman_Table, FALSE, &ac_derived_table); } void encode_huffBlock64_start(void) { lastDCValue = 0; // Initialise buffer savedHuffstate.next_output_byte = outputBufferHuffman; savedHuffstate.free_in_buffer = 500; // TODO: savedHuffstate.cur.put_buffer = 0; savedHuffstate.cur.put_bits = 0; // savedHuffstate.cinfo = NULL; } void encode_huffBlock64(short * data) { working_state state; // Load up working state ... flush_bits needs it state.next_output_byte = savedHuffstate.next_output_byte; state.free_in_buffer = savedHuffstate.free_in_buffer; ASSIGN_STATE(state.cur, savedHuffstate.cur); encode_one_block(&state, data, savedHuffstate.cur.last_dc_val[0], &dc_derived_table, &ac_derived_table); // Update last_dc_val savedHuffstate.cur.last_dc_val[0] = data[0]; // Different for YUV TODO if all colours used // Completed MCU, so update state savedHuffstate.next_output_byte = state.next_output_byte; savedHuffstate.free_in_buffer = state.free_in_buffer; ASSIGN_STATE(savedHuffstate.cur, state.cur); } void encode_huffBlock64_end(void ) { working_state state; // Load up working state ... flush_bits needs it savedHuffstate.next_output_byte = state.next_output_byte; savedHuffstate.free_in_buffer = state.free_in_buffer ; ASSIGN_STATE(savedHuffstate.cur, state.cur); if (! flush_bits(&state)) { perror("Suspension not allowed here"); exit(0); } } /* typedef struct { unsigned int ehufco[256]; // code for each symbol char ehufsi[256]; // length of code for each symbol // If no code has been allocated for a symbol S, ehufsi[S] contains 0 } c_derived_tbl; */ void dump_Table(void) { int i,j; printf("\n DC Derived Table Code\n\n "); for (i=0; i < 32; i++) { for(j=0;j < 8; j++) { printf("%4x\t",dc_derived_table.ehufco[ ((i * 8) + j)]); } printf("\n"); } printf("\n DC Derived Table Symbol\n\n "); for (i=0; i < 32; i++) { for(j=0;j < 8; j++) { printf("%d\t",dc_derived_table.ehufsi[ ((i * 8) + j)]); } printf("\n"); } printf("\n AC Derived Table Code\n\n"); for (i=0; i < 32; i++) { for(j=0;j < 8; j++) { printf("%4x\t",ac_derived_table.ehufco[ ((i * 8) + j)]); } printf("\n"); } printf("\n AC Derived Table Symbol\n\n "); for (i=0; i < 32; i++) { for(j=0;j < 8; j++) { printf("%d\t",ac_derived_table.ehufsi[ ((i * 8) + j)]); } printf("\n"); } } void dump_Encoded(void) { int i,j; printf("\n Huffman coded\n\n "); for (i=0; i < 50; i++) { for(j=0;j < 10; j++) { printf("%4x\t",outputBufferHuffman[ ((i * 10) + j)]); } printf("\n"); } } void Test_dhuffman(short * data) { // dump_Encoded(); encode_huffBlock64_init(); dump_Table(); encode_huffBlock64_start(); encode_huffBlock64(data); encode_huffBlock64_end(); dump_Encoded(); }