/*! \file display.hcc * * \section generic Message build up information and more * * \section project Project information. * Project Graphic Equalizer\n * \author O.M. Schinagl * \date 20041011 * \version 0.1 * * \section copyright Copyright * Copyright ©2004 Koninklijke Philips Electronics N.V. All rights reserved * * \section history Change history * 20041011: O.M. Schinagl\n Initial version * ********************************************************************/ /* * Set the Clock rate for this domain. 25.175 Mhz is required for the Video output. */ #define PAL_TARGET_CLOCK_RATE 25175000 /******** System Includes *************/ #include #include "pal_master.hch" /******** Application Includes ********/ #include "configuration.hch" #include "audio.hch" #include "eventhandler_shared.hch" #include "mouse_shared.hch" #include "smartmedia_shared.hch" #include "display_shared.hch" #include "display.hch" #if HAVE_DEBUG #include "debug.hch" #endif /* * Channel to notify others when new mousedata is available. If so * Then mousedata struct is updated with shared data. */ chan unsigned 1 maskupdate_notification; /*! \fn void display_main(skindata_t *skindata, audiodata_t *audiodata, events_t *events, mousedata_t *mousedata) * * \brief This routine handles all drawing of pixels. It never returns! * * \param *skindata struct with all skin information. * \param *audiodata struct with (i)fft data to be drawn. * \param *events struct with all events. * \param *mousedata struct with coordinates to current. * X en Y. * * \return Never Returns. * \retval void */ void display_main(skindata_t *skindata, audiodata_t *audiodata, events_t *events, mousedata_t *mousedata) { /* * Setup macro's RAM/Video handles and to coordinate pixel writing. */ macro expr CLOCKRATE = PAL_ACTUAL_CLOCK_RATE; macro expr VIDEOOUT = PalVideoOutOptimalCT(CLOCKRATE); macro expr RAM_BANK0 = PalPL2RAMCT(0); macro expr DW = PalPL2RAMGetMaxDataWidthCT(); macro expr AW = PalPL2RAMGetMaxAddressWidthCT(); macro expr VISIBLEX = PalVideoOutGetVisibleX(VIDEOOUT, CLOCKRATE); macro expr TOTALX = PalVideoOutGetTotalX(VIDEOOUT, CLOCKRATE); macro expr TOTALY = PalVideoOutGetTotalY(VIDEOOUT); macro expr SCANX = PalVideoOutGetX(VIDEOOUT); macro expr SCANY = PalVideoOutGetY(VIDEOOUT); unsigned DW pixeldata; unsigned 24 visual_graph_color; unsigned AW address, address_offset; /* * If the passed button_state tells us the button is active, then we * the button is 'on' and we draw it inverted. Otherwise we draw the * area of the button normally. */ macro proc draw_button(button_state) { if (button_state == pixeldata[31:24]) { PalVideoOutWrite(VIDEOOUT, ~PIXEL); } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } } /* * Prime Rendering Pipeline to start where the skin starts. */ PalPL2RAMSetReadAddress(RAM_BANK0, ADDRESS_SKIN_START); /* * Run the following tasks indefinatly and in parallel */ while (TRUE) { par { /* * Before starting this loop we allready set the the * address. Therefor we can start reading the * previously set address and prepare the next address * for the next cycle. */ PalPL2RAMRead(RAM_BANK0, &pixeldata); PalPL2RAMSetReadAddress(RAM_BANK0, address_offset +address); /* */ switch (events->mode) { case MODE_HELP: address_offset = ADDRESS_HELP_START; break; case MODE_GRAPH: address_offset = ADDRESS_GRAPHMASK_START; break; default: address_offset = ADDRESS_SKIN_START; break; } if (MODE_GRAPH == events->mode) { par { visual_graph_color = ((unsigned 8)(0 @ audiodata->fft_info.read[pixeldata[31:24]]) << 1) @ ((unsigned 8)(0 @ audiodata->fft_info.read[pixeldata[31:24]]) << -1) @ ((unsigned 8)(0 @ audiodata->fft_info.read[pixeldata[31:24]]) << 0); PalVideoOutWrite(VIDEOOUT, 0 @ visual_graph_color); } } else { /* * Determin what to draw where here. Every case has an * if else statement comparing wether to draw something * special or the background. Every specific drawing * obviously only happens in the masked area. */ switch (pixeldata[31:24]) { /* */ case AREA_WAVEFORM: if (SCANY == 0 @ skindata->area_waveform_bottom -(0 @ (audiodata->ifft_info.read[((SCANX -(0 @ skindata->area_waveform_left)) <-8)]))) { PalVideoOutWrite(VIDEOOUT, skindata->color_area_waveform); } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } break; /* * Volume control over the Y-axis. */ case AREA_VOLUME_YAXIS: /* * The volume_position stores the * highest point of our bar. Every * pixel after this point is drawn. */ if (SCANY >= 0 @ events->volume_position) { PalVideoOutWrite(VIDEOOUT, skindata->color_area_volume); } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } break; /* * Spectrum Analyzer */ case AREA_SPECTRUM_ANALYZER: /* * We draw every pixel that is smaller TODO */ if ((SCANY >= (0 @ skindata->area_spectrum_bottom) -(0 @ audiodata->fft_info.read[(SCANX -(0 @ skindata->area_spectrum_left))[9:2]])) && ((SCANX -(0 @ skindata->area_spectrum_left)) <- 2)) { PalVideoOutWrite(VIDEOOUT, PIXEL_SPECTRUM); } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } break; /* * Since all buttons are drawn equally, either * we draw them normally or we inverse them, we * can handle them almost equally. */ case BUTTON_PRESET_1: /* fall through */ case BUTTON_PRESET_2: /* fall through */ case BUTTON_PRESET_3: /* fall through */ case BUTTON_PRESET_4: /* fall through */ case BUTTON_PRESET_5: /* fall through */ case BUTTON_PRESET_6: /* * The active preset tells us what * button is currently enabled. We must * however not forget to add the preset * button offset to possibly match it * with the current mask. */ draw_button((events->active_preset +BUTTON_PRESET_1) <- 8); break; case BUTTON_PRECISE: /* fall through */ case BUTTON_CONCAVE_HALF: /* fall through */ case BUTTON_CONVEX_HALF: /* fall through */ case BUTTON_CONCAVE_FULL: /* fall through */ case BUTTON_CONVEX_FULL: /* * equalizer mode tells us what button * is currently enabled. By adding the * equalizer mode button offset we can * safley check wether it matches our * mask. */ draw_button((0 @ events->equalizer_mode) +BUTTON_PRECISE); break; case BUTTON_LOG: /* * */ draw_button((0 @ audiodata->display_log) +BUTTON_LOG); break; /* * The default case is split up into two parts * actually. This is because we have 128 bands * for the equalizer and thus as many mask * entries. Since we don't want 128 identical * cases we check wether the equalizer mask is * currently active and if so draw it. If this * is not the case we simply draw the * background. */ default: /* (pixeldata[31:24] <= AREA_EQUALIZER_MAX) && */ if ((AREA_EQUALIZER_MIN <= pixeldata[31:24]) && (!events->locked_display)) { if ((SCANY == 0 @ events->equalizer_display[(pixeldata[31:24] -AREA_EQUALIZER_MIN) <- 7]) || ((SCANY +1) == 0 @ events->equalizer_display[(pixeldata[31:24] -AREA_EQUALIZER_MIN) <- 7])) { PalVideoOutWrite(VIDEOOUT, skindata->color_equalizer); } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } } else { PalVideoOutWrite(VIDEOOUT, PIXEL); } break; } } /* * We compare our current X and Y scan positions of the * output to the x and y data of the mouse. When those * are equal we set the current mask to the mask stored * in memory at that location. We then know what mask * is to be used for events. */ if (MOUSE_UPDATED == mousedata->status) { if ((SCANX == 0 @ mousedata->x) && (SCANY == 0 @ mousedata->y)) { par { events->mask = pixeldata[31:24]; mousedata->status = MOUSE_NOT_UPDATED; maskupdate_notification ! MOUSE_UPDATED; } } else { delay; } } else { delay; } /* * The current position of the screen can lay in an * area called the blanking area. We don't have data * for this area as it is not drawn. We therefor have * to determin wether we are beyond the visible area of * the screen, but before the end of the total width of * the screen. Our pipeline consists of 5 total stages. * Therefor we have to substract 5 pixels. */ if ((SCANX > (VISIBLEX - 5)) && (SCANX <= (TOTALX - 5))) { /* * We are in the blanking area of the screen. * If we are on the last line, and thus last * pixel we reset our address counter. */ if (SCANY == (TOTALY -1)) { /* * Reset our draw address counter to 0. */ address = 0; } else { /* * We have reached the end of the * visible line, but not the end of * the screen. Therefore do nothing. */ delay; } } else { /* * Increase the memory counter for each pixel * drawn thus keeping the memory location in * sync with the current pixel position. */ address++; } } } } /* --- display_main() --- */ /*! \fn void reload_equalizer(events_t *events, unsigned 4 *equalizer_levels) * \brief This function copies the supplied equalizer values to the array * used for displaying equalizer data. * * \param *events events struct * \param *equalizer_levels pointer to 128 entries where equalizer * is to be copied from. * * \return void * \retval void */ void reload_equalizer(events_t *events, unsigned 4 *equalizer_levels) { unsigned 7 equalizer_band; events->locked_display = TRUE; delay; do { events->equalizer_display[equalizer_band] = equalizer_table_inv[equalizer_levels[equalizer_band]]; equalizer_band++; } while (equalizer_band); events->locked_display = FALSE; } /* --- reload_equalizer() --- */