/* * linux/arch/arm/kernel/setup.c * * Copyright (C) 1995-2000 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MEM_SIZE //#define MEM_SIZE (64*1024*1024) //#define MEM_SIZE (8*1024*1024) #define MEM_SIZE (END_MEM-PAGE_OFFSET) // FIXME #endif #ifndef CONFIG_CMDLINE #define CONFIG_CMDLINE "root=/dev/rom0" #endif #ifdef CONFIG_ARCH_NETARM #include #include #include extern void _netarm_led_blink(void); #endif extern void paging_init(struct meminfo *, struct machine_desc *desc); extern void bootmem_init(struct meminfo *); extern void reboot_setup(char *str); extern unsigned long long memparse(char *ptr, char **retptr); extern unsigned long _end_kernel; extern int root_mountflags; extern int _stext, _text, _etext, _edata, _end; unsigned int processor_id; unsigned int compat; unsigned int __machine_arch_type; unsigned int system_rev; unsigned int system_serial_low; unsigned int system_serial_high; unsigned int mem_fclk_21285 = 50000000; unsigned int elf_hwcap; #ifdef MULTI_CPU struct processor processor; #endif struct drive_info_struct { char dummy[32]; } drive_info; struct screen_info screen_info = { orig_video_lines: 30, orig_video_cols: 80, orig_video_mode: 0, orig_video_ega_bx: 0, orig_video_isVGA: 1, orig_video_points: 8 }; unsigned char aux_device_present; char elf_platform[ELF_PLATFORM_SIZE]; char saved_command_line[COMMAND_LINE_SIZE]; static struct meminfo meminfo __initdata = { 0, }; static struct proc_info_item proc_info; static const char *machine_name; static char command_line[COMMAND_LINE_SIZE] = "root=/dev/rom0"; static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE; static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; #define ENDIANNESS ((char)endian_test.l) /* * Standard memory resources */ static struct resource mem_res[] = { { "Video RAM", 0, 0, IORESOURCE_MEM }, { "Kernel code", 0, 0, IORESOURCE_MEM }, { "Kernel data", 0, 0, IORESOURCE_MEM } }; #define video_ram mem_res[0] #define kernel_code mem_res[1] #define kernel_data mem_res[2] static struct resource io_res[] = { { "reserved", 0x3bc, 0x3be, IORESOURCE_IO | IORESOURCE_BUSY }, { "reserved", 0x378, 0x37f, IORESOURCE_IO | IORESOURCE_BUSY }, { "reserved", 0x278, 0x27f, IORESOURCE_IO | IORESOURCE_BUSY } }; #define lp0 io_res[0] #define lp1 io_res[1] #define lp2 io_res[2] static void __init setup_processor(void) { extern struct proc_info_list __proc_info_begin, __proc_info_end; struct proc_info_list *list; /* * locate processor in the list of supported processor * types. The linker builds this table for us from the * entries in arch/arm/mm/proc-*.S */ for (list = &__proc_info_begin; list < &__proc_info_end ; list++) if ((processor_id & list->cpu_mask) == list->cpu_val) break; /* * If processor type is unrecognised, then we * can do nothing... */ if (list >= &__proc_info_end) { printk("CPU configuration botched (ID %08x), unable " "to continue.\n", processor_id); while (1); } proc_info = *list->info; #ifdef MULTI_CPU processor = *list->proc; #endif printk("Processor: %s %s revision %d\n", proc_info.manufacturer, proc_info.cpu_name, (int)processor_id & 15); sprintf(system_utsname.machine, "%s%c", list->arch_name, ENDIANNESS); sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS); elf_hwcap = list->elf_hwcap; cpu_proc_init(); } static struct machine_desc * __init setup_architecture(unsigned int nr) { extern struct machine_desc __arch_info_begin, __arch_info_end; struct machine_desc *list; /* * locate architecture in the list of supported architectures. */ for (list = &__arch_info_begin; list < &__arch_info_end; list++) if (list->nr == nr) break; /* * If the architecture type is not recognised, then we * can do nothing... */ if (list >= &__arch_info_end) { printk("Architecture configuration botched (nr %d), unable " "to continue.\n", nr); while (1); } printk("Architecture: %s\n", list->name); if (compat) printk(KERN_WARNING "Using compatibility code " "scheduled for removal in v%d.%d.%d\n", compat >> 24, (compat >> 12) & 0x3ff, compat & 0x3ff); return list; } /* * Initial parsing of the command line. We need to pick out the * memory size. We look for mem=size@start, where start and size * are "size[KkMm]" */ static void __init parse_cmdline(struct meminfo *mi, char **cmdline_p, char *from) { char c = ' ', *to = command_line; int usermem = 0, len = 0; for (;;) { if (c == ' ' && !memcmp(from, "mem=", 4)) { unsigned long start; unsigned long long size; if (to != command_line) to -= 1; /* * If the user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; mi->nr_banks = 0; } start = PHYS_OFFSET; size = memparse(from + 4, &from); if (*from == '@') start = memparse(from + 1, &from); mi->bank[mi->nr_banks].start = start; mi->bank[mi->nr_banks].size = size; mi->bank[mi->nr_banks].node = 0; mi->nr_banks += 1; } c = *from++; if (!c) break; if (COMMAND_LINE_SIZE <= ++len) break; *to++ = c; } *to = '\0'; *cmdline_p = command_line; } void __init setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) { #ifdef CONFIG_BLK_DEV_RAM extern int rd_doload, rd_prompt, rd_image_start, rd_size; rd_image_start = image_start; rd_prompt = prompt; rd_doload = doload; if (rd_sz) rd_size = rd_sz; #endif } /* * initial ram disk */ void __init setup_initrd(unsigned int start, unsigned int size) { #ifdef CONFIG_BLK_DEV_INITRD if (start == 0) size = 0; initrd_start = start; initrd_end = start + size; #endif } static void __init request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc) { struct resource *res; int i; kernel_code.start = __virt_to_bus(init_mm.start_code); kernel_code.end = __virt_to_bus(init_mm.end_code - 1); kernel_data.start = __virt_to_bus(init_mm.end_code); kernel_data.end = __virt_to_bus(init_mm.brk - 1); for (i = 0; i < mi->nr_banks; i++) { unsigned long virt_start, virt_end; if (mi->bank[i].size == 0) continue; virt_start = __phys_to_virt(mi->bank[i].start); virt_end = virt_start + mi->bank[i].size - 1; res = alloc_bootmem_low(sizeof(*res)); res->name = "System RAM"; res->start = __virt_to_bus(virt_start); res->end = __virt_to_bus(virt_end); res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); if (kernel_code.start >= res->start && kernel_code.end <= res->end) request_resource(res, &kernel_code); if (kernel_data.start >= res->start && kernel_data.end <= res->end) request_resource(res, &kernel_data); } if (mdesc->video_start) { video_ram.start = mdesc->video_start; video_ram.end = mdesc->video_end; request_resource(&iomem_resource, &video_ram); } /* * Some machines don't have the possibility of ever * possessing lp0, lp1 or lp2 */ if (mdesc->reserve_lp0) request_resource(&ioport_resource, &lp0); if (mdesc->reserve_lp1) request_resource(&ioport_resource, &lp1); if (mdesc->reserve_lp2) request_resource(&ioport_resource, &lp2); } /* * Tag parsing. * * This is the new way of passing data to the kernel at boot time. Rather * than passing a fixed inflexible structure to the kernel, we pass a list * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE * tag for the list to be recognised (to distinguish the tagged list from * a param_struct). The list is terminated with a zero-length tag (this tag * is not parsed in any way). */ static int __init parse_tag_core(const struct tag *tag) { if ((tag->u.core.flags & 1) == 0) root_mountflags &= ~MS_RDONLY; ROOT_DEV = to_kdev_t(tag->u.core.rootdev); return 0; } static int __init parse_tag_mem32(const struct tag *tag) { if (meminfo.nr_banks >= NR_BANKS) { printk(KERN_WARNING "Ignoring memory bank 0x%08x size %dKB\n", tag->u.mem.start, tag->u.mem.size / 1024); return -EINVAL; } meminfo.bank[meminfo.nr_banks].start = tag->u.mem.start; meminfo.bank[meminfo.nr_banks].size = tag->u.mem.size; meminfo.bank[meminfo.nr_banks].node = 0; meminfo.nr_banks += 1; return 0; } static int __init parse_tag_videotext(const struct tag *tag) { screen_info.orig_x = tag->u.videotext.x; screen_info.orig_y = tag->u.videotext.y; screen_info.orig_video_page = tag->u.videotext.video_page; screen_info.orig_video_mode = tag->u.videotext.video_mode; screen_info.orig_video_cols = tag->u.videotext.video_cols; screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx; screen_info.orig_video_lines = tag->u.videotext.video_lines; screen_info.orig_video_isVGA = tag->u.videotext.video_isvga; screen_info.orig_video_points = tag->u.videotext.video_points; return 0; } static int __init parse_tag_ramdisk(const struct tag *tag) { setup_ramdisk((tag->u.ramdisk.flags & 1) == 0, (tag->u.ramdisk.flags & 2) == 0, tag->u.ramdisk.start, tag->u.ramdisk.size); return 0; } static int __init parse_tag_initrd(const struct tag *tag) { setup_initrd(tag->u.initrd.start, tag->u.initrd.size); return 0; } static int __init parse_tag_serialnr(const struct tag *tag) { system_serial_low = tag->u.serialnr.low; system_serial_high = tag->u.serialnr.high; return 0; } static int __init parse_tag_revision(const struct tag *tag) { system_rev = tag->u.revision.rev; return 0; } static int __init parse_tag_cmdline(const struct tag *tag) { strncpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); default_command_line[COMMAND_LINE_SIZE - 1] = '\0'; return 0; } /* * This is the core tag table; these are the tags * that we recognise for any machine type. */ static const struct tagtable core_tagtable[] __init = { { ATAG_CORE, parse_tag_core }, { ATAG_MEM, parse_tag_mem32 }, { ATAG_VIDEOTEXT, parse_tag_videotext }, { ATAG_RAMDISK, parse_tag_ramdisk }, { ATAG_INITRD, parse_tag_initrd }, { ATAG_SERIAL, parse_tag_serialnr }, { ATAG_REVISION, parse_tag_revision }, { ATAG_CMDLINE, parse_tag_cmdline } }; /* * Scan one tag table for this tag, and call its parse function. */ static int __init parse_tag(const struct tagtable *tbl, int size, const struct tag *t) { int i; for (i = 0; i < size; i++, tbl++) if (t->hdr.tag == tbl->tag) { tbl->parse(t); break; } return i < size; } /* * Parse all tags in the list, checking both the global and architecture * specific tag tables. */ static void __init parse_tags(const struct tagtable *tbl, int size, const struct tag *t) { /* * The tag list is terminated with a zero-sized tag. Size is * defined to be in units of 32-bit quantities. */ for (; t->hdr.size; t = (struct tag *)((u32 *)t + t->hdr.size)) { if (parse_tag(core_tagtable, ARRAY_SIZE(core_tagtable), t)) continue; if (tbl && parse_tag(tbl, size, t)) continue; printk(KERN_WARNING "Ignoring unrecognised tag 0x%08x\n", t->hdr.tag); } } static void __init parse_params(struct param_struct *params) { if (params->u1.s.page_size != PAGE_SIZE) { printk(KERN_WARNING "Warning: bad configuration page, " "trying to continue\n"); return; } ROOT_DEV = to_kdev_t(params->u1.s.rootdev); system_rev = params->u1.s.system_rev; system_serial_low = params->u1.s.system_serial_low; system_serial_high = params->u1.s.system_serial_high; if (params->u1.s.mem_fclk_21285 > 0) mem_fclk_21285 = params->u1.s.mem_fclk_21285; setup_ramdisk((params->u1.s.flags & FLAG_RDLOAD) == 0, (params->u1.s.flags & FLAG_RDPROMPT) == 0, params->u1.s.rd_start, params->u1.s.ramdisk_size); setup_initrd(params->u1.s.initrd_start, params->u1.s.initrd_size); if (!(params->u1.s.flags & FLAG_READONLY)) root_mountflags &= ~MS_RDONLY; strncpy(default_command_line, params->commandline, COMMAND_LINE_SIZE); default_command_line[COMMAND_LINE_SIZE - 1] = '\0'; if (meminfo.nr_banks == 0) { meminfo.nr_banks = 1; meminfo.bank[0].start = PHYS_OFFSET; meminfo.bank[0].size = params->u1.s.nr_pages << PAGE_SHIFT; } } /* * Tell the kernel about any console devices we may have, the user * can use bootargs select which one they get. The default will be * the console you register first. */ void __init setup_arch(char **cmdline_p) { struct param_struct *params = NULL; struct machine_desc *mdesc; char *from = default_command_line; int bootmap_size; unsigned long memory_start = (unsigned long)&_end_kernel; #ifdef CONFIG_ARCH_CNXT unsigned long memory_end = END_MEM; #endif ROOT_DEV = MKDEV(0, 255); setup_processor(); mdesc = setup_architecture(machine_arch_type); machine_name = mdesc->name; if (mdesc->soft_reboot) reboot_setup("s"); if (mdesc->param_offset) params = (struct param_struct*) (phys_to_virt(mdesc->param_offset)); /* * Do the machine-specific fixups before we parse the * parameters or tags. */ if (mdesc->fixup) mdesc->fixup(mdesc, params, &from, &meminfo); if (params) { struct tag *tag = (struct tag *)params; /* * Is the first tag the CORE tag? This differentiates * between the tag list and the parameter table. */ if (tag->hdr.tag == ATAG_CORE) parse_tags(mdesc->tagtable, mdesc->tagsize, tag); else parse_params(params); } if (meminfo.nr_banks == 0) { meminfo.nr_banks = 1; meminfo.bank[0].start = PAGE_OFFSET;//PHYS_OFFSET; meminfo.bank[0].size = MEM_SIZE; } init_mm.start_code = (unsigned long) &_text; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; memcpy(saved_command_line, from, COMMAND_LINE_SIZE); saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; parse_cmdline(&meminfo, cmdline_p, from); #if 1 bootmem_init(&meminfo); #else bootmap_size= init_bootmem_node( NODE_DATA(0), memory_start >> PAGE_SHIFT, PAGE_OFFSET >> PAGE_SHIFT, END_MEM >> PAGE_SHIFT); free_bootmem(memory_start, END_MEM - memory_start); reserve_bootmem(memory_start, bootmap_size); #endif paging_init(&meminfo, mdesc); // mem_map is set up here! request_standard_resources(&meminfo, mdesc); /* * Set up various architecture-specific pointers */ init_arch_irq = mdesc->init_irq; #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif } int get_cpuinfo(char * buffer) { char *p = buffer; p += sprintf(p, "Processor\t: %s %s rev %d (%s)\n", proc_info.manufacturer, proc_info.cpu_name, (int)processor_id & 15, elf_platform); p += sprintf(p, "BogoMIPS\t: %lu.%02lu\n", loops_per_jiffy / (500000/HZ), (loops_per_jiffy / (5000/HZ)) % 100); p += sprintf(p, "Hardware\t: %s\n", machine_name); p += sprintf(p, "Revision\t: %04x\n", system_rev); p += sprintf(p, "Serial\t\t: %08x%08x\n", system_serial_high, system_serial_low); return p - buffer; } /* * Get CPU information for use by the procfs. */ static int show_cpuinfo(struct seq_file *m, void *v) { seq_printf(m, "Processor\t: %s %s rev %d (%s)\n", proc_info.manufacturer, proc_info.cpu_name, (int)processor_id & 15, elf_platform); seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", loops_per_jiffy / (500000/HZ), (loops_per_jiffy / (5000/HZ)) % 100); seq_printf(m, "Hardware\t: %s\n", machine_name); seq_printf(m, "Revision\t: %04x\n", system_rev); seq_printf(m, "Serial\t\t: %08x%08x\n", system_serial_high, system_serial_low); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < NR_CPUS ? ((void *) 0x12345678) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } struct seq_operations cpuinfo_op = { start: c_start, next: c_next, stop: c_stop, show: show_cpuinfo, };