// Portions of this file taken from // Petko Manolov - Petkan (petkan@dce.bg) // from his driver pegasus.c /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #define DEBUG #include #include "CDCEther.h" #define SHORT_DRIVER_DESC "CDC Ethernet Class" #define DRIVER_VERSION "0.98.6" static const char *version = __FILE__ ": " DRIVER_VERSION " 7 Jan 2002 Brad Hards and another"; // We only try to claim CDC Ethernet model devices */ static struct usb_device_id CDCEther_ids[] = { { USB_INTERFACE_INFO(USB_CLASS_COMM, 6, 0) }, { } }; /* * module parameter that provides an alternate upper limit on the * number of multicast filters we use, with a default to use all * the filters available to us. Note that the actual number used * is the lesser of this parameter and the number returned in the * descriptor for the particular device. See Table 41 of the CDC * spec for more info on the descriptor limit. */ static int multicast_filter_limit = 32767; ////////////////////////////////////////////////////////////////////////////// // Callback routines from USB device ///////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void read_bulk_callback( struct urb *urb ) { ether_dev_t *ether_dev = urb->context; struct net_device *net; int count = urb->actual_length, res; struct sk_buff *skb; switch ( urb->status ) { case USB_ST_NOERROR: break; case USB_ST_URB_KILLED: return; default: dbg("rx status %d", urb->status); } // Sanity check if ( !ether_dev || !(ether_dev->flags & CDC_ETHER_RUNNING) ) { dbg("BULK IN callback but driver is not active!"); return; } net = ether_dev->net; if ( !netif_device_present(net) ) { // Somebody killed our network interface... return; } if ( ether_dev->flags & CDC_ETHER_RX_BUSY ) { // Are we already trying to receive a frame??? ether_dev->stats.rx_errors++; dbg("ether_dev Rx busy"); return; } // We are busy, leave us alone! ether_dev->flags |= CDC_ETHER_RX_BUSY; switch ( urb->status ) { case USB_ST_NOERROR: break; case USB_ST_NORESPONSE: dbg( "no repsonse in BULK IN" ); ether_dev->flags &= ~CDC_ETHER_RX_BUSY; break; default: dbg( "%s: RX status %d", net->name, urb->status ); goto goon; } // Check to make sure we got some data... if ( !count ) { // We got no data!!! goto goon; } // Tell the kernel we want some memory if ( !(skb = dev_alloc_skb(count)) ) { // We got no receive buffer. goto goon; } // Here's where it came from skb->dev = net; // Now we copy it over eth_copy_and_sum(skb, ether_dev->rx_buff, count, 0); // Not sure skb_put(skb, count); // Not sure here either skb->protocol = eth_type_trans(skb, net); // Ship it off to the kernel netif_rx(skb); // update out statistics ether_dev->stats.rx_packets++; ether_dev->stats.rx_bytes += count; goon: // Prep the USB to wait for another frame FILL_BULK_URB( ðer_dev->rx_urb, ether_dev->usb, usb_rcvbulkpipe(ether_dev->usb, ether_dev->data_ep_in), ether_dev->rx_buff, ether_dev->wMaxSegmentSize, read_bulk_callback, ether_dev ); // Give this to the USB subsystem so it can tell us // when more data arrives. if ( (res = usb_submit_urb(ðer_dev->rx_urb)) ) { warn("%s failed submit rx_urb %d", __FUNCTION__, res); } // We are no longer busy, show us the frames!!! ether_dev->flags &= ~CDC_ETHER_RX_BUSY; } static void write_bulk_callback( struct urb *urb ) { ether_dev_t *ether_dev = urb->context; // Sanity check if ( !ether_dev || !(ether_dev->flags & CDC_ETHER_RUNNING) ) { // We are insane!!! err( "write_bulk_callback: device not running" ); return; } // Do we still have a valid kernel network device? if ( !netif_device_present(ether_dev->net) ) { // Someone killed our network interface. err( "write_bulk_callback: net device not present" ); return; } // Hmm... What on Earth could have happened??? if ( urb->status ) { dbg("%s: TX status %d", ether_dev->net->name, urb->status); } // Update the network interface and tell it we are // ready for another frame ether_dev->net->trans_start = jiffies; netif_wake_queue( ether_dev->net ); } #if 0 static void setpktfilter_done( struct urb *urb ) { ether_dev_t *ether_dev = urb->context; struct net_device *net; if ( !ether_dev ) return; dbg("got ctrl callback for setting packet filter"); switch ( urb->status ) { case USB_ST_NOERROR: break; case USB_ST_URB_KILLED: return; default: dbg("intr status %d", urb->status); } } #endif static void intr_callback( struct urb *urb ) { ether_dev_t *ether_dev = urb->context; struct net_device *net; __u8 *d; if ( !ether_dev ) return; dbg("got intr callback"); switch ( urb->status ) { case USB_ST_NOERROR: break; case USB_ST_URB_KILLED: return; default: dbg("intr status %d", urb->status); } d = urb->transfer_buffer; dbg("d: %x", d[0]); net = ether_dev->net; if ( d[0] & 0xfc ) { ether_dev->stats.tx_errors++; if ( d[0] & TX_UNDERRUN ) ether_dev->stats.tx_fifo_errors++; if ( d[0] & (EXCESSIVE_COL | JABBER_TIMEOUT) ) ether_dev->stats.tx_aborted_errors++; if ( d[0] & LATE_COL ) ether_dev->stats.tx_window_errors++; if ( d[0] & (NO_CARRIER | LOSS_CARRIER) ) netif_carrier_off(net); } } ////////////////////////////////////////////////////////////////////////////// // Routines for turning net traffic on and off on the USB side /////////////// ////////////////////////////////////////////////////////////////////////////// static inline int enable_net_traffic( ether_dev_t *ether_dev ) { struct usb_device *usb = ether_dev->usb; // Here would be the time to set the data interface to the configuration where // it has two endpoints that use a protocol we can understand. if (usb_set_interface( usb, ether_dev->data_bInterfaceNumber, ether_dev->data_bAlternateSetting_with_traffic ) ) { err("usb_set_interface() failed" ); err("Attempted to set interface %d", ether_dev->data_bInterfaceNumber); err("To alternate setting %d", ether_dev->data_bAlternateSetting_with_traffic); return -1; } return 0; } static inline void disable_net_traffic( ether_dev_t *ether_dev ) { // The thing to do is to set the data interface to the alternate setting that has // no endpoints. This is what the spec suggests. if (ether_dev->data_interface_altset_num_without_traffic >= 0 ) { if (usb_set_interface( ether_dev->usb, ether_dev->data_bInterfaceNumber, ether_dev->data_bAlternateSetting_without_traffic ) ) { err("usb_set_interface() failed"); } } else { // Some devices just may not support this... warn("No way to disable net traffic"); } } ////////////////////////////////////////////////////////////////////////////// // Callback routines for kernel Ethernet Device ////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void CDCEther_tx_timeout( struct net_device *net ) { ether_dev_t *ether_dev = net->priv; // Sanity check if ( !ether_dev ) { // Seems to be a case of insanity here return; } // Tell syslog we are hosed. warn("%s: Tx timed out.", net->name); // Tear the waiting frame off the list ether_dev->tx_urb.transfer_flags |= USB_ASYNC_UNLINK; usb_unlink_urb( ðer_dev->tx_urb ); // Update statistics ether_dev->stats.tx_errors++; } static int CDCEther_start_xmit( struct sk_buff *skb, struct net_device *net ) { ether_dev_t *ether_dev = net->priv; int count; int res; // If we are told to transmit an ethernet frame that fits EXACTLY // into an integer number of USB packets, we force it to send one // more byte so the device will get a runt USB packet signalling the // end of the ethernet frame if ( (skb->len) ^ (ether_dev->data_ep_out_size) ) { // It was not an exact multiple // no need to add anything extra count = skb->len; } else { // Add one to make it NOT an exact multiple count = skb->len + 1; } // Tell the kernel, "No more frames 'til we are done // with this one.' netif_stop_queue( net ); // Copy it from kernel memory to OUR memory memcpy(ether_dev->tx_buff, skb->data, skb->len); // Fill in the URB for shipping it out. FILL_BULK_URB( ðer_dev->tx_urb, ether_dev->usb, usb_sndbulkpipe(ether_dev->usb, ether_dev->data_ep_out), ether_dev->tx_buff, ether_dev->wMaxSegmentSize, write_bulk_callback, ether_dev ); // Tell the URB how much it will be transporting today ether_dev->tx_urb.transfer_buffer_length = count; // Send the URB on its merry way. if ((res = usb_submit_urb(ðer_dev->tx_urb))) { // Hmm... It didn't go. Tell someone... warn("failed tx_urb %d", res); // update some stats... ether_dev->stats.tx_errors++; // and tell the kernel to give us another. // Maybe we'll get it right next time. netif_start_queue( net ); } else { // Okay, it went out. // Update statistics ether_dev->stats.tx_packets++; ether_dev->stats.tx_bytes += skb->len; // And tell the kernel when the last transmit occurred. net->trans_start = jiffies; } // We are done with the kernel's memory dev_kfree_skb(skb); // We are done here. return 0; } ////////////////////////////////////////////////////////////////////////////// // Standard routines for kernel Ethernet Device ////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static struct net_device_stats *CDCEther_netdev_stats( struct net_device *net ) { // Easy enough! return &((ether_dev_t *)net->priv)->stats; } static int CDCEther_open(struct net_device *net) { ether_dev_t *ether_dev = (ether_dev_t *)net->priv; int res; // Turn on the USB and let the packets flow!!! if ( (res = enable_net_traffic( ether_dev )) ) { err("%s can't enable_net_traffic() - %d", __FUNCTION__, res ); return -EIO; } /* Prep a receive URB */ FILL_BULK_URB( ðer_dev->rx_urb, ether_dev->usb, usb_rcvbulkpipe(ether_dev->usb, ether_dev->data_ep_in), ether_dev->rx_buff, ether_dev->wMaxSegmentSize, read_bulk_callback, ether_dev ); /* Put it out there so the device can send us stuff */ if ( (res = usb_submit_urb(ðer_dev->rx_urb)) ) { /* Hmm... Okay... */ warn( "%s failed rx_urb %d", __FUNCTION__, res ); } if (ether_dev->properties & HAVE_NOTIFICATION_ELEMENT) { /* Arm and submit the interrupt URB */ FILL_INT_URB( ðer_dev->intr_urb, ether_dev->usb, usb_rcvintpipe(ether_dev->usb, ether_dev->comm_ep_in), ether_dev->intr_buff, 8, /* Transfer buffer length */ intr_callback, ether_dev, ether_dev->intr_interval); if ( (res = usb_submit_urb(ðer_dev->intr_urb)) ) { warn("%s failed intr_urb %d", __FUNCTION__, res ); } } // Tell the kernel we are ready to start receiving from it netif_start_queue( net ); // We are up and running. ether_dev->flags |= CDC_ETHER_RUNNING; // Let's get ready to move frames!!! return 0; } static int CDCEther_close( struct net_device *net ) { ether_dev_t *ether_dev = net->priv; // We are no longer running. ether_dev->flags &= ~CDC_ETHER_RUNNING; // Tell the kernel to stop sending us stuff netif_stop_queue( net ); // If we are not already unplugged, turn off USB // traffic if ( !(ether_dev->flags & CDC_ETHER_UNPLUG) ) { disable_net_traffic( ether_dev ); } // We don't need the URBs anymore. usb_unlink_urb( ðer_dev->rx_urb ); usb_unlink_urb( ðer_dev->tx_urb ); usb_unlink_urb( ðer_dev->intr_urb ); usb_unlink_urb( ðer_dev->ctrl_urb ); // That's it. I'm done. return 0; } static int netdev_ethtool_ioctl(struct net_device *netdev, void *useraddr) { ether_dev_t *ether_dev = netdev->priv; u32 cmd; char tmp[40]; if (get_user(cmd, (u32 *)useraddr)) return -EFAULT; switch (cmd) { /* get driver info */ case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO}; strncpy(info.driver, SHORT_DRIVER_DESC, ETHTOOL_BUSINFO_LEN); strncpy(info.version, DRIVER_VERSION, ETHTOOL_BUSINFO_LEN); sprintf(tmp, "usb%d:%d", ether_dev->usb->bus->busnum, ether_dev->usb->devnum); strncpy(info.bus_info, tmp, ETHTOOL_BUSINFO_LEN); sprintf(tmp, "CDC %x.%x", ((ether_dev->bcdCDC & 0xff00)>>8), (ether_dev->bcdCDC & 0x00ff) ); strncpy(info.fw_version, tmp, ETHTOOL_BUSINFO_LEN); if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } /* get link status */ case ETHTOOL_GLINK: { struct ethtool_value edata = {ETHTOOL_GLINK}; edata.data = netif_carrier_ok(netdev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } } dbg("Got unsupported ioctl: %x", cmd); return -EOPNOTSUPP; /* the ethtool user space tool relies on this */ } static int CDCEther_ioctl( struct net_device *net, struct ifreq *rq, int cmd ) { switch(cmd) { case SIOCETHTOOL: return netdev_ethtool_ioctl(net, (void *) rq->ifr_data); default: return -ENOTTY; /* per ioctl man page */ } } /* Multicast routines */ static void CDC_SetEthernetPacketFilter (ether_dev_t *ether_dev) { #if 0 struct usb_ctrlrequest *dr = ðer_dev->ctrl_dr; int res; dr->bRequestType = USB_TYPE_CLASS | USB_DIR_OUT | USB_RECIP_INTERFACE; dr->bRequest = SET_ETHERNET_PACKET_FILTER; dr->wValue = cpu_to_le16(ether_dev->mode_flags); dr->wIndex = cpu_to_le16((u16)ether_dev->comm_interface); dr->wLength = 0; FILL_CONTROL_URB(ðer_dev->ctrl_urb, ether_dev->usb, usb_sndctrlpipe(ether_dev->usb, 0), dr, NULL, NULL, setpktfilter_done, ether_dev); if ( (res = usb_submit_urb(ðer_dev->ctrl_urb)) ) { warn("%s failed submit ctrl_urb %d", __FUNCTION__, res); } #endif } static void CDCEther_set_multicast( struct net_device *net ) { ether_dev_t *ether_dev = net->priv; int i; __u8 *buff; // Tell the kernel to stop sending us frames while we get this // all set up. netif_stop_queue(net); /* Note: do not reorder, GCC is clever about common statements. */ if (net->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ dbg( "%s: Promiscuous mode enabled", net->name); ether_dev->mode_flags = MODE_FLAG_PROMISCUOUS | MODE_FLAG_ALL_MULTICAST | MODE_FLAG_DIRECTED | MODE_FLAG_BROADCAST | MODE_FLAG_MULTICAST; } else if (net->mc_count > ether_dev->wNumberMCFilters) { /* Too many to filter perfectly -- accept all multicasts. */ dbg("%s: too many MC filters for hardware, using allmulti", net->name); ether_dev->mode_flags = MODE_FLAG_ALL_MULTICAST | MODE_FLAG_DIRECTED | MODE_FLAG_BROADCAST | MODE_FLAG_MULTICAST; } else if (net->flags & IFF_ALLMULTI) { /* Filter in software */ dbg("%s: using allmulti", net->name); ether_dev->mode_flags = MODE_FLAG_ALL_MULTICAST | MODE_FLAG_DIRECTED | MODE_FLAG_BROADCAST | MODE_FLAG_MULTICAST; } else { /* do multicast filtering in hardware */ struct dev_mc_list *mclist; dbg("%s: set multicast filters", net->name); ether_dev->mode_flags = MODE_FLAG_ALL_MULTICAST | MODE_FLAG_DIRECTED | MODE_FLAG_BROADCAST | MODE_FLAG_MULTICAST; buff = kmalloc(6 * net->mc_count, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); for (i = 0, mclist = net->mc_list; mclist && i < net->mc_count; i++, mclist = mclist->next) { memcpy(&mclist->dmi_addr, &buff[i * 6], 6); } #if 0 usb_control_msg(ether_dev->usb, usb_sndctrlpipe(ether_dev->usb, 0), SET_ETHERNET_MULTICAST_FILTER, /* request */ USB_TYPE_CLASS | USB_DIR_OUT | USB_RECIP_INTERFACE, /* request type */ cpu_to_le16(net->mc_count), /* value */ cpu_to_le16((u16)ether_dev->comm_interface), /* index */ buff, (6* net->mc_count), /* size */ HZ); /* timeout */ #endif kfree(buff); } CDC_SetEthernetPacketFilter(ether_dev); /* Tell the kernel to start giving frames to us again. */ netif_wake_queue(net); } ////////////////////////////////////////////////////////////////////////////// // Routines used to parse out the Functional Descriptors ///////////////////// ////////////////////////////////////////////////////////////////////////////// /* Header Descriptor - CDC Spec 5.2.3.1, Table 26 */ static int parse_header_functional_descriptor( int *bFunctionLength, int bDescriptorType, int bDescriptorSubtype, unsigned char *data, ether_dev_t *ether_dev, int *requirements ) { /* Check to make sure we haven't seen one of these already. */ if ( (~*requirements) & REQ_HDR_FUNC_DESCR ) { err( "Multiple Header Functional Descriptors found." ); return -1; } /* Check for appropriate length */ if (*bFunctionLength != HEADER_FUNC_DESC_LEN) { dbg( "Invalid length in Header Functional Descriptor, working around it." ); /* This is a hack to get around a particular device (NO NAMES) * It has this function length set to the length of the * whole class-specific descriptor */ *bFunctionLength = HEADER_FUNC_DESC_LEN; } /* Nothing extremely useful here */ /* We'll keep it for posterity */ ether_dev->bcdCDC = data[0] + (data[1] << 8); dbg( "Found Header descriptor, CDC version %x.", ether_dev->bcdCDC); /* We've seen one of these */ *requirements &= ~REQ_HDR_FUNC_DESCR; /* Success */ return 0; } /* Union Descriptor - CDC Spec 5.2.3.8, Table 33 */ static int parse_union_functional_descriptor( int *bFunctionLength, int bDescriptorType, int bDescriptorSubtype, unsigned char *data, ether_dev_t *ether_dev, int *requirements ) { /* Check to make sure we haven't seen one of these already. */ if ( (~*requirements) & REQ_UNION_FUNC_DESCR ) { err( "Multiple Union Functional Descriptors found." ); return -1; } /* Check for appropriate length */ if (*bFunctionLength != UNION_FUNC_DESC_LEN) { // It is NOT the size we expected. err( "Invalid length in Union Functional Descriptor." ); return -1; } /* Sanity check of sorts */ if (ether_dev->comm_interface != data[0]) { /* This tells us that we are chasing the wrong comm * interface or we are crazy or something else weird. */ if (ether_dev->comm_interface == data[1]) { dbg( "Probably broken Union descriptor, fudging data interface." ); /* We'll need this in a few microseconds, * so if the comm interface was the first slave, * then probably the master interface is the data one * Just hope for the best */ ether_dev->data_interface = data[0]; } else { err( "Union Functional Descriptor is broken beyond repair." ); return -1; } } else{ /* Descriptor is OK */ ether_dev->data_interface = data[1]; } /* We've seen one of these */ *requirements &= ~REQ_UNION_FUNC_DESCR; /* Success */ return 0; } /* Ethernet Descriptor - CDC Spec 5.2.3.16, Table 41 */ static int parse_ethernet_functional_descriptor( int *bFunctionLength, int bDescriptorType, int bDescriptorSubtype, unsigned char *data, ether_dev_t *ether_dev, int *requirements ) { //* Check to make sure we haven't seen one of these already. */ if ( (~*requirements) & REQ_ETH_FUNC_DESCR ) { err( "Multiple Ethernet Functional Descriptors found." ); return -1; } /* Check for appropriate length */ if (*bFunctionLength != ETHERNET_FUNC_DESC_LEN) { err( "Invalid length in Ethernet Networking Functional Descriptor." ); return -1; } /* Lots of goodies from this one. They are all important. */ ether_dev->iMACAddress = data[0]; ether_dev->bmEthernetStatistics = data[1] + (data[2] << 8) + (data[3] << 16) + (data[4] << 24); ether_dev->wMaxSegmentSize = data[5] + (data[6] << 8); ether_dev->wNumberMCFilters = (data[7] + (data[8] << 8)); if (ether_dev->wNumberMCFilters & (1 << 15)) { ether_dev->properties |= PERFECT_FILTERING; dbg("Perfect filtering support"); } else { dbg("Imperfect filtering support - need sw hashing"); } if (0 == (ether_dev->wNumberMCFilters & (0x7f))) { ether_dev->properties |= NO_SET_MULTICAST; dbg("Can't use SetEthernetMulticastFilters request"); } if (ether_dev->wNumberMCFilters > multicast_filter_limit) { ether_dev->wNumberMCFilters = multicast_filter_limit; } ether_dev->bNumberPowerFilters = data[9]; /* We've seen one of these */ *requirements &= ~REQ_ETH_FUNC_DESCR; /* Success */ return 0; } static int parse_protocol_unit_functional_descriptor( int *bFunctionLength, int bDescriptorType, int bDescriptorSubtype, unsigned char *data, ether_dev_t *ether_dev, int *requirements ) { /* There should only be one type if we are sane */ if (bDescriptorType != CS_INTERFACE) { err( "Invalid bDescriptorType found." ); return -1; } /* The Subtype tells the tale - CDC spec Table 25 */ switch (bDescriptorSubtype) { case 0x00: /* Header Functional Descriptor */ return parse_header_functional_descriptor( bFunctionLength, bDescriptorType, bDescriptorSubtype, data, ether_dev, requirements ); break; case 0x06: /* Union Functional Descriptor */ return parse_union_functional_descriptor( bFunctionLength, bDescriptorType, bDescriptorSubtype, data, ether_dev, requirements ); break; case 0x0F: /* Ethernet Networking Functional Descriptor */ return parse_ethernet_functional_descriptor( bFunctionLength, bDescriptorType, bDescriptorSubtype, data, ether_dev, requirements ); break; default: /* We don't support this at this time... */ /* However that doesn't necessarily indicate an error. */ dbg( "Unexpected header type %x.", bDescriptorSubtype ); return 0; } /* How did we get here? */ return -1; } static int parse_ethernet_class_information( unsigned char *data, int length, ether_dev_t *ether_dev ) { int loc = 0; int rc; int bFunctionLength; int bDescriptorType; int bDescriptorSubtype; int requirements = REQUIREMENTS_TOTAL; /* We init to our needs, and then clear * bits as we find the descriptors */ /* As long as there is something here, we will try to parse it */ /* All of the functional descriptors start with the same 3 byte pattern */ while (loc < length) { /* Length */ bFunctionLength = data[loc]; loc++; /* Type */ bDescriptorType = data[loc]; loc++; /* Subtype */ bDescriptorSubtype = data[loc]; loc++; /* ship this off to be processed */ rc = parse_protocol_unit_functional_descriptor( &bFunctionLength, bDescriptorType, bDescriptorSubtype, &data[loc], ether_dev, &requirements ); /* Did it process okay? */ if (rc) { /* Something was hosed somewhere. */ /* No need to continue */ err("Bad descriptor parsing: %x", rc ); return -1; } /* We move the loc pointer along, remembering * that we have already taken three bytes */ loc += (bFunctionLength - 3); } /* Check to see if we got everything we need. */ if (requirements) { // We missed some of the requirements... err( "Not all required functional descriptors present 0x%08X.", requirements ); return -1; } /* We got everything */ return 0; } ////////////////////////////////////////////////////////////////////////////// // Routine to check for the existence of the Functional Descriptors ////////// ////////////////////////////////////////////////////////////////////////////// static int find_and_parse_ethernet_class_information( struct usb_device *device, ether_dev_t *ether_dev ) { struct usb_config_descriptor *conf = NULL; struct usb_interface *comm_intf_group = NULL; struct usb_interface_descriptor *comm_intf = NULL; int rc = -1; /* The assumption here is that find_ethernet_comm_interface * and find_valid_configuration * have already filled in the information about where to find * the a valid commication interface. */ conf = &( device->config[ether_dev->configuration_num] ); comm_intf_group = &( conf->interface[ether_dev->comm_interface] ); comm_intf = &( comm_intf_group->altsetting[ether_dev->comm_interface_altset_num] ); /* Let's check and see if it has the extra information we need */ if (comm_intf->extralen > 0) { /* This is where the information is SUPPOSED to be */ rc = parse_ethernet_class_information( comm_intf->extra, comm_intf->extralen, ether_dev ); } else if (conf->extralen > 0) { /* This is a hack. The spec says it should be at the interface * location checked above. However I have seen it here also. * This is the same device that requires the functional descriptor hack above */ dbg( "Ethernet information found at device configuration. Trying to use it anyway." ); rc = parse_ethernet_class_information( conf->extra, conf->extralen, ether_dev ); } else { /* I don't know where else to look */ err( "No ethernet information found." ); rc = -1; } return rc; } ////////////////////////////////////////////////////////////////////////////// // Routines to verify the data interface ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int get_data_interface_endpoints( struct usb_device *device, ether_dev_t *ether_dev ) { struct usb_config_descriptor *conf = NULL; struct usb_interface *data_intf_group = NULL; struct usb_interface_descriptor *data_intf = NULL; /* Walk through and get to the data interface we are checking. */ conf = &( device->config[ether_dev->configuration_num] ); data_intf_group = &( conf->interface[ether_dev->data_interface] ); data_intf = &( data_intf_group->altsetting[ether_dev->data_interface_altset_num_with_traffic] ); /* Start out assuming we won't find anything we can use */ ether_dev->data_ep_in = 0; ether_dev->data_ep_out = 0; /* If these are not BULK endpoints, we don't want them */ if ( data_intf->endpoint[0].bmAttributes != USB_ENDPOINT_XFER_BULK ) { return -1; } if ( data_intf->endpoint[1].bmAttributes != USB_ENDPOINT_XFER_BULK ) { return -1; } /* Check the first endpoint to see if it is IN or OUT */ if ( data_intf->endpoint[0].bEndpointAddress & USB_DIR_IN ) { ether_dev->data_ep_in = data_intf->endpoint[0].bEndpointAddress & 0x7F; } else { ether_dev->data_ep_out = data_intf->endpoint[0].bEndpointAddress; ether_dev->data_ep_out_size = data_intf->endpoint[0].wMaxPacketSize; } /* Check the second endpoint to see if it is IN or OUT */ if ( data_intf->endpoint[1].bEndpointAddress & USB_DIR_IN ) { ether_dev->data_ep_in = data_intf->endpoint[1].bEndpointAddress & 0x7F; } else { ether_dev->data_ep_out = data_intf->endpoint[1].bEndpointAddress; ether_dev->data_ep_out_size = data_intf->endpoint[1].wMaxPacketSize; } /* Now make sure we got both an IN and an OUT */ if (ether_dev->data_ep_in && ether_dev->data_ep_out) { dbg( "detected BULK OUT packets of size %d", ether_dev->data_ep_out_size ); return 0; } return -1; } static int verify_ethernet_data_interface( struct usb_device *device, ether_dev_t *ether_dev ) { struct usb_config_descriptor *conf = NULL; struct usb_interface *data_intf_group = NULL; struct usb_interface_descriptor *data_intf = NULL; int rc = -1; int status; int altset_num; // The assumption here is that parse_ethernet_class_information() // and find_valid_configuration() // have already filled in the information about where to find // a data interface conf = &( device->config[ether_dev->configuration_num] ); data_intf_group = &( conf->interface[ether_dev->data_interface] ); // start out assuming we won't find what we are looking for. ether_dev->data_interface_altset_num_with_traffic = -1; ether_dev->data_bAlternateSetting_with_traffic = -1; ether_dev->data_interface_altset_num_without_traffic = -1; ether_dev->data_bAlternateSetting_without_traffic = -1; // Walk through every possible setting for this interface until // we find what makes us happy. for ( altset_num = 0; altset_num < data_intf_group->num_altsetting; altset_num++ ) { data_intf = &( data_intf_group->altsetting[altset_num] ); // Is this a data interface we like? if ( ( data_intf->bInterfaceClass == 0x0A ) && ( data_intf->bInterfaceSubClass == 0x00 ) && ( data_intf->bInterfaceProtocol == 0x00 ) ) { if ( data_intf->bNumEndpoints == 2 ) { // We are required to have one of these. // An interface with 2 endpoints to send Ethernet traffic back and forth // It actually may be possible that the device might only // communicate in a vendor specific manner. // That would not be very nice. // We can add that one later. ether_dev->data_bInterfaceNumber = data_intf->bInterfaceNumber; ether_dev->data_interface_altset_num_with_traffic = altset_num; ether_dev->data_bAlternateSetting_with_traffic = data_intf->bAlternateSetting; status = get_data_interface_endpoints( device, ether_dev ); if (!status) { rc = 0; } } if ( data_intf->bNumEndpoints == 0 ) { // According to the spec we are SUPPOSED to have one of these // In fact the device is supposed to come up in this state. // However, I have seen a device that did not have such an interface. // So it must be just optional for our driver... ether_dev->data_bInterfaceNumber = data_intf->bInterfaceNumber; ether_dev->data_interface_altset_num_without_traffic = altset_num; ether_dev->data_bAlternateSetting_without_traffic = data_intf->bAlternateSetting; } } } return rc; } ////////////////////////////////////////////////////////////////////////////// // Routine to find a communication interface ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int find_ethernet_comm_interface( struct usb_device *device, ether_dev_t *ether_dev ) { struct usb_config_descriptor *conf = NULL; struct usb_interface *comm_intf_group = NULL; struct usb_interface_descriptor *comm_intf = NULL; int intf_num; int altset_num; int rc; conf = &( device->config[ether_dev->configuration_num] ); // We need to check and see if any of these interfaces are something we want. // Walk through each interface one at a time for ( intf_num = 0; intf_num < conf->bNumInterfaces; intf_num++ ) { comm_intf_group = &( conf->interface[intf_num] ); // Now for each of those interfaces, check every possible // alternate setting. for ( altset_num = 0; altset_num < comm_intf_group->num_altsetting; altset_num++ ) { comm_intf = &( comm_intf_group->altsetting[altset_num] ); /* Good, we found one, we will try this one */ /* Fill in the structure */ ether_dev->comm_interface = intf_num; ether_dev->comm_bInterfaceNumber = comm_intf->bInterfaceNumber; ether_dev->comm_interface_altset_num = altset_num; ether_dev->comm_bAlternateSetting = comm_intf->bAlternateSetting; // Look for the Ethernet Functional Descriptors rc = find_and_parse_ethernet_class_information( device, ether_dev ); if (rc) { // Nope this was no good after all. continue; } /* Check that we really can talk to the data interface * This includes # of endpoints, protocols, etc. */ rc = verify_ethernet_data_interface( device, ether_dev ); if (rc) { /* We got something we didn't like */ continue; } /* It is a bit ambiguous whether the Ethernet model really requires * the notification element (usually an interrupt endpoint) or not * And some products (eg Sharp Zaurus) don't support it, so we * only use the notification element if present */ /* We check for a sane endpoint before using it */ if ( (comm_intf->bNumEndpoints == 1) && (comm_intf->endpoint[0].bEndpointAddress & USB_DIR_IN) && (comm_intf->endpoint[0].bmAttributes == USB_ENDPOINT_XFER_INT)) { ether_dev->properties |= HAVE_NOTIFICATION_ELEMENT; ether_dev->comm_ep_in = (comm_intf->endpoint[0].bEndpointAddress & 0x7F); dbg("interrupt address: %x",ether_dev->comm_ep_in); ether_dev->intr_interval = (comm_intf->endpoint[0].bInterval); dbg("interrupt interval: %d",ether_dev->intr_interval); } // This communication interface seems to give us everything // we require. We have all the ethernet info we need. return 0; } // end for altset_num } // end for intf_num return -1; } ////////////////////////////////////////////////////////////////////////////// // Routine to go through all configurations and find one that //////////////// // is an Ethernet Networking Device ////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int find_valid_configuration( struct usb_device *device, ether_dev_t *ether_dev ) { struct usb_config_descriptor *conf = NULL; int conf_num; int rc; // We will try each and every possible configuration for ( conf_num = 0; conf_num < device->descriptor.bNumConfigurations; conf_num++ ) { conf = &( device->config[conf_num] ); // Our first requirement : 2 interfaces if ( conf->bNumInterfaces != 2 ) { // I currently don't know how to handle devices with any number of interfaces // other than 2. continue; } // This one passed our first check, fill in some // useful data ether_dev->configuration_num = conf_num; ether_dev->bConfigurationValue = conf->bConfigurationValue; // Now run it through the ringers and see what comes // out the other side. rc = find_ethernet_comm_interface( device, ether_dev ); // Check if we found an ethernet Communcation Device if ( !rc ) { // We found one. return 0; } } // None of the configurations suited us. return -1; } ////////////////////////////////////////////////////////////////////////////// // Routine that checks a given configuration to see if any driver //////////// // has claimed any of the devices interfaces ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int check_for_claimed_interfaces( struct usb_config_descriptor *config ) { struct usb_interface *comm_intf_group; int intf_num; // Go through all the interfaces and make sure none are // claimed by anybody else. for ( intf_num = 0; intf_num < config->bNumInterfaces; intf_num++ ) { comm_intf_group = &( config->interface[intf_num] ); if ( usb_interface_claimed( comm_intf_group ) ) { // Somebody has beat us to this guy. // We can't change the configuration out from underneath of whoever // is using this device, so we will go ahead and give up. return -1; } } // We made it all the way through. // I guess no one has claimed any of these interfaces. return 0; } ////////////////////////////////////////////////////////////////////////////// // Routines to ask for and set the kernel network interface's MAC address //// // Used by driver's probe routine //////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static inline unsigned char hex2dec( unsigned char digit ) { /* Is there a standard way to do this??? */ /* I have written this code TOO MANY times. */ if ( (digit >= '0') && (digit <= '9') ) { return (digit - '0'); } if ( (digit >= 'a') && (digit <= 'f') ) { return (digit - 'a' + 10); } if ( (digit >= 'A') && (digit <= 'F') ) { return (digit - 'A' + 10); } return 16; } /* CDC Ethernet devices provide the MAC address as a string */ /* We get an index to the string in the Ethernet functional header */ /* This routine retrieves the string, sanity checks it, and sets the */ /* MAC address in the network device */ /* The encoding is a bit wacky - see CDC Spec Table 41 for details */ static void set_ethernet_addr( ether_dev_t *ether_dev ) { unsigned char mac_addr[6]; int i; int len; unsigned char buffer[13]; /* Let's assume we don't get anything */ mac_addr[0] = 0x00; mac_addr[1] = 0x00; mac_addr[2] = 0x00; mac_addr[3] = 0x00; mac_addr[4] = 0x00; mac_addr[5] = 0x00; /* Let's ask the device */ if (0 > (len = usb_string(ether_dev->usb, ether_dev->iMACAddress, buffer, 13))) { err("Attempting to get MAC address failed: %d", -1*len); return; } /* Sanity check */ if (len != 12) { /* You gotta love failing sanity checks */ err("Attempting to get MAC address returned %d bytes", len); return; } /* Fill in the mac_addr */ for (i = 0; i < 6; i++) { if ((16 == buffer[2 * i]) || (16 == buffer[2 * i + 1])) { err("Bad value in MAC address"); } else { mac_addr[i] = ( hex2dec( buffer[2 * i] ) << 4 ) + hex2dec( buffer[2 * i + 1] ); } } /* Now copy it over to our network device structure */ memcpy( ether_dev->net->dev_addr, mac_addr, sizeof(mac_addr) ); } ////////////////////////////////////////////////////////////////////////////// // Routine to print to syslog information about the driver /////////////////// // Used by driver's probe routine //////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void log_device_info(ether_dev_t *ether_dev) { int len; int string_num; unsigned char manu[256]; unsigned char prod[256]; unsigned char sern[256]; unsigned char *mac_addr; /* Default empty strings in case we don't find a real one */ manu[0] = 0x00; prod[0] = 0x00; sern[0] = 0x00; /* Try to get the device Manufacturer */ string_num = ether_dev->usb->descriptor.iManufacturer; if (string_num) { // Put it into its buffer len = usb_string(ether_dev->usb, string_num, manu, 255); // Just to be safe manu[len] = 0x00; } /* Try to get the device Product Name */ string_num = ether_dev->usb->descriptor.iProduct; if (string_num) { // Put it into its buffer len = usb_string(ether_dev->usb, string_num, prod, 255); // Just to be safe prod[len] = 0x00; } /* Try to get the device Serial Number */ string_num = ether_dev->usb->descriptor.iSerialNumber; if (string_num) { // Put it into its buffer len = usb_string(ether_dev->usb, string_num, sern, 255); // Just to be safe sern[len] = 0x00; } /* This makes it easier for us to print */ mac_addr = ether_dev->net->dev_addr; /* Now send everything we found to the syslog */ info( "%s: %s %s %s", ether_dev->net->name, manu, prod, sern); dbg( "%s: %02X:%02X:%02X:%02X:%02X:%02X", ether_dev->net->name, mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5] ); } /* Forward declaration */ static struct usb_driver CDCEther_driver ; ////////////////////////////////////////////////////////////////////////////// // Module's probe routine //////////////////////////////////////////////////// // claims interfaces if they are for an Ethernet CDC ///////////////////////// ////////////////////////////////////////////////////////////////////////////// static void * CDCEther_probe( struct usb_device *usb, unsigned int ifnum, const struct usb_device_id *id) { struct net_device *net; ether_dev_t *ether_dev; int rc; // First we should check the active configuration to see if // any other driver has claimed any of the interfaces. if ( check_for_claimed_interfaces( usb->actconfig ) ) { // Someone has already put there grubby paws on this device. // We don't want it now... return NULL; } // We might be finding a device we can use. // We all go ahead and allocate our storage space. // We need to because we have to start filling in the data that // we are going to need later. if(!(ether_dev = kmalloc(sizeof(ether_dev_t), GFP_KERNEL))) { err("out of memory allocating device structure"); return NULL; } // Zero everything out. memset(ether_dev, 0, sizeof(ether_dev_t)); // Let's see if we can find a configuration we can use. rc = find_valid_configuration( usb, ether_dev ); if (rc) { // Nope we couldn't find one we liked. // This device was not meant for us to control. kfree( ether_dev ); return NULL; } // Now that we FOUND a configuration. let's try to make the // device go into it. if ( usb_set_configuration( usb, ether_dev->bConfigurationValue ) ) { err("usb_set_configuration() failed"); kfree( ether_dev ); return NULL; } // Now set the communication interface up as required. if (usb_set_interface(usb, ether_dev->comm_bInterfaceNumber, ether_dev->comm_bAlternateSetting)) { err("usb_set_interface() failed"); kfree( ether_dev ); return NULL; } // Only turn traffic on right now if we must... if (ether_dev->data_interface_altset_num_without_traffic >= 0) { // We found an alternate setting for the data // interface that allows us to turn off traffic. // We should use it. if (usb_set_interface( usb, ether_dev->data_bInterfaceNumber, ether_dev->data_bAlternateSetting_without_traffic)) { err("usb_set_interface() failed"); kfree( ether_dev ); return NULL; } } else { // We didn't find an alternate setting for the data // interface that would let us turn off traffic. // Oh well, let's go ahead and do what we must... if (usb_set_interface( usb, ether_dev->data_bInterfaceNumber, ether_dev->data_bAlternateSetting_with_traffic)) { err("usb_set_interface() failed"); kfree( ether_dev ); return NULL; } } // Now we need to get a kernel Ethernet interface. net = init_etherdev( NULL, 0 ); if ( !net ) { // Hmm... The kernel is not sharing today... // Fine, we didn't want it anyway... err( "Unable to initialize ethernet device" ); kfree( ether_dev ); return NULL; } // Now that we have an ethernet device, let's set it up // (And I don't mean "set [it] up the bomb".) net->priv = ether_dev; SET_MODULE_OWNER(net); net->open = CDCEther_open; net->stop = CDCEther_close; net->watchdog_timeo = CDC_ETHER_TX_TIMEOUT; net->tx_timeout = CDCEther_tx_timeout; // TX timeout function net->do_ioctl = CDCEther_ioctl; net->hard_start_xmit = CDCEther_start_xmit; net->set_multicast_list = CDCEther_set_multicast; net->get_stats = CDCEther_netdev_stats; net->mtu = ether_dev->wMaxSegmentSize - 14; // We'll keep track of this information for later... ether_dev->usb = usb; ether_dev->net = net; // and don't forget the MAC address. set_ethernet_addr( ether_dev ); // Send a message to syslog about what we are handling log_device_info( ether_dev ); /* We need to manually claim the data interface, while the comm interface gets claimed in the return */ usb_driver_claim_interface( &CDCEther_driver, &(usb->config[ether_dev->configuration_num].interface[ether_dev->data_interface]), ether_dev ); // Does this REALLY do anything??? usb_inc_dev_use( usb ); // Okay, we are finally done... return ether_dev; } ////////////////////////////////////////////////////////////////////////////// // Module's disconnect routine /////////////////////////////////////////////// // Called when the driver is unloaded or the device is unplugged ///////////// // (Whichever happens first assuming the driver suceeded at its probe) /////// ////////////////////////////////////////////////////////////////////////////// static void CDCEther_disconnect( struct usb_device *usb, void *ptr ) { ether_dev_t *ether_dev = ptr; // Sanity check!!! if ( !ether_dev || !ether_dev->usb ) { // We failed. We are insane!!! warn("unregistering non-existant device"); return; } // Make sure we fail the sanity check if we try this again. ether_dev->usb = NULL; // It is possible that this function is called before // the "close" function. // This tells the close function we are already disconnected ether_dev->flags |= CDC_ETHER_UNPLUG; // We don't need the network device any more unregister_netdev( ether_dev->net ); // For sanity checks ether_dev->net = NULL; // I ask again, does this do anything??? usb_dec_dev_use( usb ); // We are done with this interface usb_driver_release_interface( &CDCEther_driver, &(usb->config[ether_dev->configuration_num].interface[ether_dev->comm_interface]) ); // We are done with this interface too usb_driver_release_interface( &CDCEther_driver, &(usb->config[ether_dev->configuration_num].interface[ether_dev->data_interface]) ); // No more tied up kernel memory kfree( ether_dev ); // This does no good, but it looks nice! ether_dev = NULL; } ////////////////////////////////////////////////////////////////////////////// // Driver info /////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static struct usb_driver CDCEther_driver = { name: "CDCEther", probe: CDCEther_probe, disconnect: CDCEther_disconnect, id_table: CDCEther_ids, }; ////////////////////////////////////////////////////////////////////////////// // init and exit routines called when driver is installed and uninstalled //// ////////////////////////////////////////////////////////////////////////////// int __init CDCEther_init(void) { dbg( "%s", version ); return usb_register( &CDCEther_driver ); } void __exit CDCEther_exit(void) { usb_deregister( &CDCEther_driver ); } ////////////////////////////////////////////////////////////////////////////// // Module info /////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// module_init( CDCEther_init ); module_exit( CDCEther_exit ); MODULE_AUTHOR("Brad Hards and another"); MODULE_DESCRIPTION("USB CDC Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE (usb, CDCEther_ids); MODULE_PARM (multicast_filter_limit, "i"); MODULE_PARM_DESC (multicast_filter_limit, "CDCEther maximum number of filtered multicast addresses"); ////////////////////////////////////////////////////////////////////////////// // End of file /////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////