summaryrefslogtreecommitdiffstats
path: root/linux-2.4.x/fs/jffs2/gc.c
diff options
context:
space:
mode:
Diffstat (limited to 'linux-2.4.x/fs/jffs2/gc.c')
-rw-r--r--linux-2.4.x/fs/jffs2/gc.c1272
1 files changed, 966 insertions, 306 deletions
diff --git a/linux-2.4.x/fs/jffs2/gc.c b/linux-2.4.x/fs/jffs2/gc.c
index ead017f..08b34f7 100644
--- a/linux-2.4.x/fs/jffs2/gc.c
+++ b/linux-2.4.x/fs/jffs2/gc.c
@@ -1,99 +1,170 @@
/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
- * Copyright (C) 2001 Red Hat, Inc.
+ * Copyright (C) 2001-2003 Red Hat, Inc.
*
- * Created by David Woodhouse <dwmw2@cambridge.redhat.com>
+ * Created by David Woodhouse <dwmw2@infradead.org>
*
- * The original JFFS, from which the design for JFFS2 was derived,
- * was designed and implemented by Axis Communications AB.
+ * For licensing information, see the file 'LICENCE' in this directory.
*
- * The contents of this file are subject to the Red Hat eCos Public
- * License Version 1.1 (the "Licence"); you may not use this file
- * except in compliance with the Licence. You may obtain a copy of
- * the Licence at http://www.redhat.com/
- *
- * Software distributed under the Licence is distributed on an "AS IS"
- * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
- * See the Licence for the specific language governing rights and
- * limitations under the Licence.
- *
- * The Original Code is JFFS2 - Journalling Flash File System, version 2
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License version 2 (the "GPL"), in
- * which case the provisions of the GPL are applicable instead of the
- * above. If you wish to allow the use of your version of this file
- * only under the terms of the GPL and not to allow others to use your
- * version of this file under the RHEPL, indicate your decision by
- * deleting the provisions above and replace them with the notice and
- * other provisions required by the GPL. If you do not delete the
- * provisions above, a recipient may use your version of this file
- * under either the RHEPL or the GPL.
- *
- * $Id: gc.c,v 1.52.2.5 2002/10/10 13:18:38 dwmw2 Exp $
+ * $Id: gc.c,v 1.161 2006/04/09 21:58:23 dwmw2 Exp $
*
*/
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/slab.h>
-#include <linux/jffs2.h>
-#include <linux/sched.h>
-#include <linux/interrupt.h>
#include <linux/pagemap.h>
+#include <linux/crc32.h>
+#include <linux/compiler.h>
+#include <linux/stat.h>
#include "nodelist.h"
-#include "crc32.h"
-
-static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dnode *fd);
-static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dirent *fd);
-static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dirent *fd);
+#include "compr.h"
+
+static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
+ struct jffs2_inode_cache *ic,
+ struct jffs2_raw_node_ref *raw);
+static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
+static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
+static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *indeo, struct jffs2_full_dnode *fn,
- __u32 start, __u32 end);
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
+ uint32_t start, uint32_t end);
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dnode *fn,
- __u32 start, __u32 end);
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
+ uint32_t start, uint32_t end);
+static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
/* Called with erase_completion_lock held */
static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
{
struct jffs2_eraseblock *ret;
struct list_head *nextlist = NULL;
+ int n = jiffies % 128;
+ int flag = 0;
/* Pick an eraseblock to garbage collect next. This is where we'll
put the clever wear-levelling algorithms. Eventually. */
- if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > JFFS2_RESERVED_BLOCKS_GCBAD) {
+ /* We possibly want to favour the dirtier blocks more when the
+ number of free blocks is low. */
+again:
+ if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
nextlist = &c->bad_used_list;
- } else if (jiffies % 100 && !list_empty(&c->dirty_list)) {
- /* Most of the time, pick one off the dirty list */
+ } else if (n < 50 && !list_empty(&c->erasable_list)) {
+ /* Note that most of them will have gone directly to be erased.
+ So don't favour the erasable_list _too_ much. */
+ D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
+ nextlist = &c->erasable_list;
+ } else if (n < 112 && !list_empty(&c->very_dirty_list)) {
+ /* Most of the time, pick one off the very_dirty list */
+ D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
+ nextlist = &c->very_dirty_list;
+ flag = 1;
+ } else if (n < 128 && !list_empty(&c->dirty_list)) {
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
nextlist = &c->dirty_list;
+ flag = 1;
} else if (!list_empty(&c->clean_list)) {
D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
nextlist = &c->clean_list;
+ flag = 1;
} else if (!list_empty(&c->dirty_list)) {
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
nextlist = &c->dirty_list;
+ flag = 1;
+ } else if (!list_empty(&c->very_dirty_list)) {
+ D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
+ nextlist = &c->very_dirty_list;
+ flag = 1;
+ } else if (!list_empty(&c->erasable_list)) {
+ D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
+
+ nextlist = &c->erasable_list;
+ } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
+ /* There are blocks are wating for the wbuf sync */
+ D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
+ spin_unlock(&c->erase_completion_lock);
+ jffs2_flush_wbuf_pad(c);
+ spin_lock(&c->erase_completion_lock);
+ goto again;
} else {
- /* Eep. Both were empty */
- printk(KERN_NOTICE "jffs2: No clean _or_ dirty blocks to GC from! Where are they all?\n");
+ /* Eep. All were empty */
+ D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
return NULL;
}
ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
list_del(&ret->list);
+ if (flag == 1) {
+ jffs2_remove_from_hash_table(c, ret, 1);
+ }
c->gcblock = ret;
ret->gc_node = ret->first_node;
if (!ret->gc_node) {
printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
BUG();
}
+
+ /* Have we accidentally picked a clean block with wasted space ? */
+ if (ret->wasted_size) {
+ D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
+ ret->dirty_size += ret->wasted_size;
+ c->wasted_size -= ret->wasted_size;
+ c->dirty_size += ret->wasted_size;
+ ret->wasted_size = 0;
+ }
+
+ return ret;
+}
+
+static int jffs2_should_pick_used_block(struct jffs2_sb_info *c)
+{
+ static uint8_t seqno = 99;
+
+ if (((c->max_erase_count >> BUCKET_RANGE_BIT_LEN) - c->used_blocks_current_index)
+ <= WL_DELTA/BUCKET_RANGE) {
+ return 0;
+ }
+ seqno++;
+ if (seqno == 100) {
+ seqno = 0;
+ return 1;
+ }
+ return 0;
+}
+
+static struct jffs2_eraseblock *jffs2_find_gc_block_with_wl(struct jffs2_sb_info *c)
+{
+ struct jffs2_eraseblock *ret;
+
+ if (jffs2_should_pick_used_block(c)) {
+ ret = jffs2_get_used_block(c);
+ if (ret == NULL) {
+ return NULL;
+ }
+ c->gcblock = ret;
+ ret->gc_node = ret->first_node;
+ if (!ret->gc_node) {
+ printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
+ BUG();
+ }
+ if (ret->wasted_size) {
+ D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
+ ret->dirty_size += ret->wasted_size;
+ c->wasted_size -= ret->wasted_size;
+ c->dirty_size += ret->wasted_size;
+ ret->wasted_size = 0;
+ }
+ } else {
+ ret = jffs2_find_gc_block(c);
+ }
+
return ret;
}
@@ -103,36 +174,111 @@ static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
*/
int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
{
- struct jffs2_eraseblock *jeb;
struct jffs2_inode_info *f;
+ struct jffs2_inode_cache *ic;
+ struct jffs2_eraseblock *jeb;
struct jffs2_raw_node_ref *raw;
- struct jffs2_node_frag *frag;
- struct jffs2_full_dnode *fn = NULL;
- struct jffs2_full_dirent *fd;
- __u32 start = 0, end = 0, nrfrags = 0;
- __u32 inum;
- struct inode *inode;
- int ret = 0;
+ int ret = 0, inum, nlink;
if (down_interruptible(&c->alloc_sem))
return -EINTR;
- spin_lock_bh(&c->erase_completion_lock);
+ for (;;) {
+ spin_lock(&c->erase_completion_lock);
+ if (!c->unchecked_size)
+ break;
+
+ /* We can't start doing GC yet. We haven't finished checking
+ the node CRCs etc. Do it now. */
+
+ /* checked_ino is protected by the alloc_sem */
+ if (c->checked_ino > c->highest_ino) {
+ printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
+ c->unchecked_size);
+ jffs2_dbg_dump_block_lists_nolock(c);
+ spin_unlock(&c->erase_completion_lock);
+ BUG();
+ }
+
+ spin_unlock(&c->erase_completion_lock);
+
+ spin_lock(&c->inocache_lock);
+
+ ic = jffs2_get_ino_cache(c, c->checked_ino++);
+
+ if (!ic) {
+ spin_unlock(&c->inocache_lock);
+ continue;
+ }
+
+ if (!ic->nlink) {
+ D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
+ ic->ino));
+ spin_unlock(&c->inocache_lock);
+ continue;
+ }
+ switch(ic->state) {
+ case INO_STATE_CHECKEDABSENT:
+ case INO_STATE_PRESENT:
+ D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
+ spin_unlock(&c->inocache_lock);
+ continue;
+
+ case INO_STATE_GC:
+ case INO_STATE_CHECKING:
+ printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
+ spin_unlock(&c->inocache_lock);
+ BUG();
+
+ case INO_STATE_READING:
+ /* We need to wait for it to finish, lest we move on
+ and trigger the BUG() above while we haven't yet
+ finished checking all its nodes */
+ D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
+ /* We need to come back again for the _same_ inode. We've
+ made no progress in this case, but that should be OK */
+ c->checked_ino--;
+
+ up(&c->alloc_sem);
+ sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
+ return 0;
+
+ default:
+ BUG();
+
+ case INO_STATE_UNCHECKED:
+ ;
+ }
+ ic->state = INO_STATE_CHECKING;
+ spin_unlock(&c->inocache_lock);
+
+ D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
+
+ ret = jffs2_do_crccheck_inode(c, ic);
+ if (ret)
+ printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
+
+ jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
+ up(&c->alloc_sem);
+ return ret;
+ }
/* First, work out which block we're garbage-collecting */
jeb = c->gcblock;
if (!jeb)
- jeb = jffs2_find_gc_block(c);
+ jeb = jffs2_find_gc_block_with_wl(c);
if (!jeb) {
- printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n");
- spin_unlock_bh(&c->erase_completion_lock);
+ D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
+ spin_unlock(&c->erase_completion_lock);
up(&c->alloc_sem);
return -EIO;
}
- D1(printk(KERN_DEBUG "garbage collect from block at phys 0x%08x\n", jeb->offset));
+ D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
+ D1(if (c->nextblock)
+ printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
if (!jeb->used_size) {
up(&c->alloc_sem);
@@ -140,62 +286,216 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
}
raw = jeb->gc_node;
-
- while(raw->flash_offset & 1) {
- D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", raw->flash_offset &~3));
- jeb->gc_node = raw = raw->next_phys;
- if (!raw) {
+
+ while(ref_obsolete(raw)) {
+ D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
+ raw = raw->next_phys;
+ if (unlikely(!raw)) {
printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
- printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
+ printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
- spin_unlock_bh(&c->erase_completion_lock);
+ jeb->gc_node = raw;
+ spin_unlock(&c->erase_completion_lock);
up(&c->alloc_sem);
BUG();
}
}
- D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", raw->flash_offset &~3));
+ jeb->gc_node = raw;
+
+ D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
+
if (!raw->next_in_ino) {
/* Inode-less node. Clean marker, snapshot or something like that */
- spin_unlock_bh(&c->erase_completion_lock);
+ /* FIXME: If it's something that needs to be copied, including something
+ we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
+ spin_unlock(&c->erase_completion_lock);
jffs2_mark_node_obsolete(c, raw);
up(&c->alloc_sem);
goto eraseit_lock;
}
-
- inum = jffs2_raw_ref_to_inum(raw);
- D1(printk(KERN_DEBUG "Inode number is #%u\n", inum));
- spin_unlock_bh(&c->erase_completion_lock);
+ ic = jffs2_raw_ref_to_ic(raw);
+
+ /* We need to hold the inocache. Either the erase_completion_lock or
+ the inocache_lock are sufficient; we trade down since the inocache_lock
+ causes less contention. */
+ spin_lock(&c->inocache_lock);
+
+ spin_unlock(&c->erase_completion_lock);
+
+ D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
+
+ /* Three possibilities:
+ 1. Inode is already in-core. We must iget it and do proper
+ updating to its fragtree, etc.
+ 2. Inode is not in-core, node is REF_PRISTINE. We lock the
+ inocache to prevent a read_inode(), copy the node intact.
+ 3. Inode is not in-core, node is not pristine. We must iget()
+ and take the slow path.
+ */
+
+ switch(ic->state) {
+ case INO_STATE_CHECKEDABSENT:
+ /* It's been checked, but it's not currently in-core.
+ We can just copy any pristine nodes, but have
+ to prevent anyone else from doing read_inode() while
+ we're at it, so we set the state accordingly */
+ if (ref_flags(raw) == REF_PRISTINE)
+ ic->state = INO_STATE_GC;
+ else {
+ D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
+ ic->ino));
+ }
+ break;
- D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x, ino #%u\n", jeb->offset, raw->flash_offset&~3, inum));
+ case INO_STATE_PRESENT:
+ /* It's in-core. GC must iget() it. */
+ break;
- inode = iget(OFNI_BS_2SFFJ(c), inum);
- if (is_bad_inode(inode)) {
- printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u\n", inum);
- /* NB. This will happen again. We need to do something appropriate here. */
+ case INO_STATE_UNCHECKED:
+ case INO_STATE_CHECKING:
+ case INO_STATE_GC:
+ /* Should never happen. We should have finished checking
+ by the time we actually start doing any GC, and since
+ we're holding the alloc_sem, no other garbage collection
+ can happen.
+ */
+ printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
+ ic->ino, ic->state);
up(&c->alloc_sem);
- iput(inode);
- return -EIO;
+ spin_unlock(&c->inocache_lock);
+ BUG();
+
+ case INO_STATE_READING:
+ /* Someone's currently trying to read it. We must wait for
+ them to finish and then go through the full iget() route
+ to do the GC. However, sometimes read_inode() needs to get
+ the alloc_sem() (for marking nodes invalid) so we must
+ drop the alloc_sem before sleeping. */
+
+ up(&c->alloc_sem);
+ D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
+ ic->ino, ic->state));
+ sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
+ /* And because we dropped the alloc_sem we must start again from the
+ beginning. Ponder chance of livelock here -- we're returning success
+ without actually making any progress.
+
+ Q: What are the chances that the inode is back in INO_STATE_READING
+ again by the time we next enter this function? And that this happens
+ enough times to cause a real delay?
+
+ A: Small enough that I don't care :)
+ */
+ return 0;
+ }
+
+ /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
+ node intact, and we don't have to muck about with the fragtree etc.
+ because we know it's not in-core. If it _was_ in-core, we go through
+ all the iget() crap anyway */
+
+ if (ic->state == INO_STATE_GC) {
+ spin_unlock(&c->inocache_lock);
+
+ ret = jffs2_garbage_collect_pristine(c, ic, raw);
+
+ spin_lock(&c->inocache_lock);
+ ic->state = INO_STATE_CHECKEDABSENT;
+ wake_up(&c->inocache_wq);
+
+ if (ret != -EBADFD) {
+ spin_unlock(&c->inocache_lock);
+ goto release_sem;
+ }
+
+ /* Fall through if it wanted us to, with inocache_lock held */
+ }
+
+ /* Prevent the fairly unlikely race where the gcblock is
+ entirely obsoleted by the final close of a file which had
+ the only valid nodes in the block, followed by erasure,
+ followed by freeing of the ic because the erased block(s)
+ held _all_ the nodes of that inode.... never been seen but
+ it's vaguely possible. */
+
+ inum = ic->ino;
+ nlink = ic->nlink;
+ spin_unlock(&c->inocache_lock);
+
+ f = jffs2_gc_fetch_inode(c, inum, nlink);
+ if (IS_ERR(f)) {
+ ret = PTR_ERR(f);
+ goto release_sem;
+ }
+ if (!f) {
+ ret = 0;
+ goto release_sem;
+ }
+
+ ret = jffs2_garbage_collect_live(c, jeb, raw, f);
+
+ jffs2_gc_release_inode(c, f);
+
+ release_sem:
+ up(&c->alloc_sem);
+
+ eraseit_lock:
+ /* If we've finished this block, start it erasing */
+ spin_lock(&c->erase_completion_lock);
+
+ eraseit:
+ if (c->gcblock && !c->gcblock->used_size) {
+ D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
+ /* We're GC'ing an empty block? */
+ list_add_tail(&c->gcblock->list, &c->erase_pending_list);
+ c->gcblock = NULL;
+ c->nr_erasing_blocks++;
+ jffs2_erase_pending_trigger(c);
}
+ spin_unlock(&c->erase_completion_lock);
+
+ return ret;
+}
+
+static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
+{
+ struct jffs2_node_frag *frag;
+ struct jffs2_full_dnode *fn = NULL;
+ struct jffs2_full_dirent *fd;
+ uint32_t start = 0, end = 0, nrfrags = 0;
+ int ret = 0;
- f = JFFS2_INODE_INFO(inode);
down(&f->sem);
+
/* Now we have the lock for this inode. Check that it's still the one at the head
of the list. */
- if (raw->flash_offset & 1) {
+ spin_lock(&c->erase_completion_lock);
+
+ if (c->gcblock != jeb) {
+ spin_unlock(&c->erase_completion_lock);
+ D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
+ goto upnout;
+ }
+ if (ref_obsolete(raw)) {
+ spin_unlock(&c->erase_completion_lock);
D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
/* They'll call again */
goto upnout;
}
+ spin_unlock(&c->erase_completion_lock);
+
/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
if (f->metadata && f->metadata->raw == raw) {
fn = f->metadata;
- ret = jffs2_garbage_collect_metadata(c, jeb, inode, fn);
+ ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
goto upnout;
}
-
- for (frag = f->fraglist; frag; frag = frag->next) {
+
+ /* FIXME. Read node and do lookup? */
+ for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
if (frag->node && frag->node->raw == raw) {
fn = frag->node;
end = frag->ofs + frag->size;
@@ -206,17 +506,26 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
}
}
if (fn) {
+ if (ref_flags(raw) == REF_PRISTINE) {
+ ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
+ if (!ret) {
+ /* Urgh. Return it sensibly. */
+ frag->node->raw = f->inocache->nodes;
+ }
+ if (ret != -EBADFD)
+ goto upnout;
+ }
/* We found a datanode. Do the GC */
if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
/* It crosses a page boundary. Therefore, it must be a hole. */
- ret = jffs2_garbage_collect_hole(c, jeb, inode, fn, start, end);
+ ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
} else {
/* It could still be a hole. But we GC the page this way anyway */
- ret = jffs2_garbage_collect_dnode(c, jeb, inode, fn, start, end);
+ ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
}
goto upnout;
}
-
+
/* Wasn't a dnode. Try dirent */
for (fd = f->dents; fd; fd=fd->next) {
if (fd->raw == raw)
@@ -224,66 +533,226 @@ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
}
if (fd && fd->ino) {
- ret = jffs2_garbage_collect_dirent(c, jeb, inode, fd);
+ ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
} else if (fd) {
- ret = jffs2_garbage_collect_deletion_dirent(c, jeb, inode, fd);
+ ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
} else {
- printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%lu\n", raw->flash_offset&~3, inode->i_ino);
- if (raw->flash_offset & 1) {
+ printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
+ ref_offset(raw), f->inocache->ino);
+ if (ref_obsolete(raw)) {
printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
} else {
- ret = -EIO;
+ jffs2_dbg_dump_node(c, ref_offset(raw));
+ BUG();
}
}
upnout:
up(&f->sem);
- up(&c->alloc_sem);
- iput(inode);
- eraseit_lock:
- /* If we've finished this block, start it erasing */
- spin_lock_bh(&c->erase_completion_lock);
+ return ret;
+}
- eraseit:
- if (c->gcblock && !c->gcblock->used_size) {
- D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
- /* We're GC'ing an empty block? */
- list_add_tail(&c->gcblock->list, &c->erase_pending_list);
- c->gcblock = NULL;
- c->nr_erasing_blocks++;
- jffs2_erase_pending_trigger(c);
+static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
+ struct jffs2_inode_cache *ic,
+ struct jffs2_raw_node_ref *raw)
+{
+ union jffs2_node_union *node;
+ struct jffs2_raw_node_ref *nraw;
+ size_t retlen;
+ int ret;
+ uint32_t phys_ofs, alloclen;
+ uint32_t crc, rawlen;
+ int retried = 0;
+
+ D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
+
+ rawlen = ref_totlen(c, c->gcblock, raw);
+
+ /* Ask for a small amount of space (or the totlen if smaller) because we
+ don't want to force wastage of the end of a block if splitting would
+ work. */
+ ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) +
+ JFFS2_MIN_DATA_LEN, rawlen), &phys_ofs, &alloclen, rawlen);
+ /* this is not the exact summary size of it,
+ it is only an upper estimation */
+
+ if (ret)
+ return ret;
+
+ if (alloclen < rawlen) {
+ /* Doesn't fit untouched. We'll go the old route and split it */
+ return -EBADFD;
+ }
+
+ node = kmalloc(rawlen, GFP_KERNEL);
+ if (!node)
+ return -ENOMEM;
+
+ ret = jffs2_flash_read_safe(c, ref_offset(raw), rawlen, (char*)node);
+ if (ret)
+ goto out_node;
+
+ crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
+ if (je32_to_cpu(node->u.hdr_crc) != crc) {
+ printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
+ goto bail;
}
- spin_unlock_bh(&c->erase_completion_lock);
+ switch(je16_to_cpu(node->u.nodetype)) {
+ case JFFS2_NODETYPE_INODE:
+ crc = crc32(0, node, sizeof(node->i)-8);
+ if (je32_to_cpu(node->i.node_crc) != crc) {
+ printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
+ goto bail;
+ }
+
+ if (je32_to_cpu(node->i.dsize)) {
+ crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
+ if (je32_to_cpu(node->i.data_crc) != crc) {
+ printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
+ goto bail;
+ }
+ }
+ break;
+
+ case JFFS2_NODETYPE_DIRENT:
+ crc = crc32(0, node, sizeof(node->d)-8);
+ if (je32_to_cpu(node->d.node_crc) != crc) {
+ printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
+ goto bail;
+ }
+
+ if (node->d.nsize) {
+ crc = crc32(0, node->d.name, node->d.nsize);
+ if (je32_to_cpu(node->d.name_crc) != crc) {
+ printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
+ ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
+ goto bail;
+ }
+ }
+ break;
+ default:
+ printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
+ ref_offset(raw), je16_to_cpu(node->u.nodetype));
+ goto bail;
+ }
+
+ nraw = jffs2_alloc_raw_node_ref();
+ if (!nraw) {
+ ret = -ENOMEM;
+ goto out_node;
+ }
+
+ /* OK, all the CRCs are good; this node can just be copied as-is. */
+ retry:
+ nraw->flash_offset = phys_ofs;
+ nraw->__totlen = rawlen;
+ nraw->next_phys = NULL;
+
+ ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
+
+ if (ret || (retlen != rawlen)) {
+ printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
+ rawlen, phys_ofs, ret, retlen);
+ if (retlen) {
+ /* Doesn't belong to any inode */
+ nraw->next_in_ino = NULL;
+
+ nraw->flash_offset |= REF_OBSOLETE;
+ jffs2_add_physical_node_ref(c, nraw);
+ jffs2_mark_node_obsolete(c, nraw);
+ } else {
+ printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
+ jffs2_free_raw_node_ref(nraw);
+ }
+ if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
+ /* Try to reallocate space and retry */
+ uint32_t dummy;
+ struct jffs2_eraseblock *jeb = c->blocks[phys_ofs / c->sector_size];
+
+ retried = 1;
+
+ D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
+
+ jffs2_dbg_acct_sanity_check(c,jeb);
+ jffs2_dbg_acct_paranoia_check(c, jeb);
+
+ ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
+ /* this is not the exact summary size of it,
+ it is only an upper estimation */
+
+ if (!ret) {
+ D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
+
+ jffs2_dbg_acct_sanity_check(c,jeb);
+ jffs2_dbg_acct_paranoia_check(c, jeb);
+
+ goto retry;
+ }
+ D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
+ jffs2_free_raw_node_ref(nraw);
+ }
+
+ jffs2_free_raw_node_ref(nraw);
+ if (!ret)
+ ret = -EIO;
+ goto out_node;
+ }
+ nraw->flash_offset |= REF_PRISTINE;
+ jffs2_add_physical_node_ref(c, nraw);
+
+ /* Link into per-inode list. This is safe because of the ic
+ state being INO_STATE_GC. Note that if we're doing this
+ for an inode which is in-core, the 'nraw' pointer is then
+ going to be fetched from ic->nodes by our caller. */
+ spin_lock(&c->erase_completion_lock);
+ nraw->next_in_ino = ic->nodes;
+ ic->nodes = nraw;
+ spin_unlock(&c->erase_completion_lock);
+
+ jffs2_mark_node_obsolete(c, raw);
+ D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
+
+ out_node:
+ kfree(node);
return ret;
+ bail:
+ ret = -EBADFD;
+ goto out_node;
}
-static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dnode *fn)
+static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
{
- struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dnode *new_fn;
struct jffs2_raw_inode ri;
- unsigned short dev;
+ struct jffs2_node_frag *last_frag;
+ jint16_t dev;
char *mdata = NULL, mdatalen = 0;
- __u32 alloclen, phys_ofs;
+ uint32_t alloclen, phys_ofs, ilen;
int ret;
- if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
+ if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
+ S_ISCHR(JFFS2_F_I_MODE(f)) ) {
/* For these, we don't actually need to read the old node */
- dev = (MAJOR(to_kdev_t(inode->i_rdev)) << 8) |
- MINOR(to_kdev_t(inode->i_rdev));
+ /* FIXME: for minor or major > 255. */
+ dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
+ JFFS2_F_I_RDEV_MIN(f)));
mdata = (char *)&dev;
mdatalen = sizeof(dev);
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
- } else if (S_ISLNK(inode->i_mode)) {
+ } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
mdatalen = fn->size;
mdata = kmalloc(fn->size, GFP_KERNEL);
if (!mdata) {
printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
return -ENOMEM;
}
- ret = jffs2_read_dnode(c, fn, mdata, 0, mdatalen);
+ ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
if (ret) {
printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
kfree(mdata);
@@ -292,37 +761,46 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
}
-
- ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
+
+ ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
+ JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
- printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_metadata failed: %d\n",
+ printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
sizeof(ri)+ mdatalen, ret);
goto out;
}
-
+
+ last_frag = frag_last(&f->fragtree);
+ if (last_frag)
+ /* Fetch the inode length from the fragtree rather then
+ * from i_size since i_size may have not been updated yet */
+ ilen = last_frag->ofs + last_frag->size;
+ else
+ ilen = JFFS2_F_I_SIZE(f);
+
memset(&ri, 0, sizeof(ri));
- ri.magic = JFFS2_MAGIC_BITMASK;
- ri.nodetype = JFFS2_NODETYPE_INODE;
- ri.totlen = sizeof(ri) + mdatalen;
- ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
-
- ri.ino = inode->i_ino;
- ri.version = ++f->highest_version;
- ri.mode = inode->i_mode;
- ri.uid = inode->i_uid;
- ri.gid = inode->i_gid;
- ri.isize = inode->i_size;
- ri.atime = inode->i_atime;
- ri.ctime = inode->i_ctime;
- ri.mtime = inode->i_mtime;
- ri.offset = 0;
- ri.csize = mdatalen;
- ri.dsize = mdatalen;
+ ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
+ ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
+ ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
+
+ ri.ino = cpu_to_je32(f->inocache->ino);
+ ri.version = cpu_to_je32(++f->highest_version);
+ ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
+ ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
+ ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
+ ri.isize = cpu_to_je32(ilen);
+ ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
+ ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
+ ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
+ ri.offset = cpu_to_je32(0);
+ ri.csize = cpu_to_je32(mdatalen);
+ ri.dsize = cpu_to_je32(mdatalen);
ri.compr = JFFS2_COMPR_NONE;
- ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
- ri.data_crc = crc32(0, mdata, mdatalen);
+ ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
+ ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
- new_fn = jffs2_write_dnode(inode, &ri, mdata, mdatalen, phys_ofs, NULL);
+ new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
@@ -333,41 +811,46 @@ static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_
jffs2_free_full_dnode(fn);
f->metadata = new_fn;
out:
- if (S_ISLNK(inode->i_mode))
+ if (S_ISLNK(JFFS2_F_I_MODE(f)))
kfree(mdata);
return ret;
}
-static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dirent *fd)
+static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
{
- struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dirent *new_fd;
struct jffs2_raw_dirent rd;
- __u32 alloclen, phys_ofs;
+ uint32_t alloclen, phys_ofs;
int ret;
- rd.magic = JFFS2_MAGIC_BITMASK;
- rd.nodetype = JFFS2_NODETYPE_DIRENT;
+ rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
rd.nsize = strlen(fd->name);
- rd.totlen = sizeof(rd) + rd.nsize;
- rd.hdr_crc = crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4);
+ rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
+ rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
- rd.pino = inode->i_ino;
- rd.version = ++f->highest_version;
- rd.ino = fd->ino;
- rd.mctime = max(inode->i_mtime, inode->i_ctime);
+ rd.pino = cpu_to_je32(f->inocache->ino);
+ rd.version = cpu_to_je32(++f->highest_version);
+ rd.ino = cpu_to_je32(fd->ino);
+ /* If the times on this inode were set by explicit utime() they can be different,
+ so refrain from splatting them. */
+ if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
+ rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
+ else
+ rd.mctime = cpu_to_je32(0);
rd.type = fd->type;
- rd.node_crc = crc32(0, &rd, sizeof(rd)-8);
- rd.name_crc = crc32(0, fd->name, rd.nsize);
-
- ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
+ rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
+ rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
+
+ ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
+ JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
if (ret) {
- printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dirent failed: %d\n",
+ printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
sizeof(rd)+rd.nsize, ret);
return ret;
}
- new_fd = jffs2_write_dirent(inode, &rd, fd->name, rd.nsize, phys_ofs, NULL);
+ new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
if (IS_ERR(new_fd)) {
printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
@@ -377,20 +860,92 @@ static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_er
return 0;
}
-static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dirent *fd)
+static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
+ struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
{
- struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dirent **fdp = &f->dents;
int found = 0;
- /* FIXME: When we run on NAND flash, we need to work out whether
- this deletion dirent is still needed to actively delete a
- 'real' dirent with the same name that's still somewhere else
- on the flash. For now, we know that we've actually obliterated
- all the older dirents when they became obsolete, so we didn't
- really need to write the deletion to flash in the first place.
- */
+ /* On a medium where we can't actually mark nodes obsolete
+ pernamently, such as NAND flash, we need to work out
+ whether this deletion dirent is still needed to actively
+ delete a 'real' dirent with the same name that's still
+ somewhere else on the flash. */
+ if (!jffs2_can_mark_obsolete(c)) {
+ struct jffs2_raw_dirent *rd;
+ struct jffs2_raw_node_ref *raw;
+ int name_len = strlen(fd->name);
+ uint32_t name_crc = crc32(0, fd->name, name_len);
+ uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
+
+ rd = kmalloc(rawlen, GFP_KERNEL);
+ if (!rd)
+ return -ENOMEM;
+
+ /* Prevent the erase code from nicking the obsolete node refs while
+ we're looking at them. I really don't like this extra lock but
+ can't see any alternative. Suggestions on a postcard to... */
+ down(&c->erase_free_sem);
+
+ for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
+
+ /* We only care about obsolete ones */
+ if (!(ref_obsolete(raw)))
+ continue;
+
+ /* Any dirent with the same name is going to have the same length... */
+ if (ref_totlen(c, NULL, raw) != rawlen)
+ continue;
+
+ /* Doesn't matter if there's one in the same erase block. We're going to
+ delete it too at the same time. */
+ if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
+ continue;
+
+ D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
+
+ /* This is an obsolete node belonging to the same directory, and it's of the right
+ length. We need to take a closer look...*/
+ if (jffs2_flash_read_safe(c, ref_offset(raw), rawlen,
+ (char *)rd))
+ /* If we can't read it, we don't need to continue to obsolete it. Continue */
+ continue;
+
+ if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
+ continue;
+
+ /* If the name CRC doesn't match, skip */
+ if (je32_to_cpu(rd->name_crc) != name_crc)
+ continue;
+
+ /* If the name length doesn't match, or it's another deletion dirent, skip */
+ if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
+ continue;
+
+ /* OK, check the actual name now */
+ if (memcmp(rd->name, fd->name, name_len))
+ continue;
+
+ /* OK. The name really does match. There really is still an older node on
+ the flash which our deletion dirent obsoletes. So we have to write out
+ a new deletion dirent to replace it */
+ up(&c->erase_free_sem);
+
+ D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
+ ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
+ kfree(rd);
+
+ return jffs2_garbage_collect_dirent(c, jeb, f, fd);
+ }
+
+ up(&c->erase_free_sem);
+ kfree(rd);
+ }
+
+ /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
+ we should update the metadata node with those times accordingly */
+
+ /* No need for it any more. Just mark it obsolete and remove it from the list */
while (*fdp) {
if ((*fdp) == fd) {
found = 1;
@@ -400,7 +955,7 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
fdp = &(*fdp)->next;
}
if (!found) {
- printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%lu\n", fd->name, inode->i_ino);
+ printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
}
jffs2_mark_node_obsolete(c, fd->raw);
jffs2_free_full_dirent(fd);
@@ -408,93 +963,105 @@ static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct
}
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dnode *fn,
- __u32 start, __u32 end)
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
+ uint32_t start, uint32_t end)
{
- struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_raw_inode ri;
struct jffs2_node_frag *frag;
struct jffs2_full_dnode *new_fn;
- __u32 alloclen, phys_ofs;
+ uint32_t alloclen, phys_ofs, ilen;
int ret;
- D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%lu from offset 0x%x to 0x%x\n",
- inode->i_ino, start, end));
-
+ D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
+ f->inocache->ino, start, end));
+
memset(&ri, 0, sizeof(ri));
if(fn->frags > 1) {
size_t readlen;
- __u32 crc;
- /* It's partially obsoleted by a later write. So we have to
+ uint32_t crc;
+ /* It's partially obsoleted by a later write. So we have to
write it out again with the _same_ version as before */
- ret = c->mtd->read(c->mtd, fn->raw->flash_offset & ~3, sizeof(ri), &readlen, (char *)&ri);
+ ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
if (readlen != sizeof(ri) || ret) {
- printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %d. Data will be lost by writing new hold node\n", ret, readlen);
+ printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
goto fill;
}
- if (ri.nodetype != JFFS2_NODETYPE_INODE) {
+ if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
- fn->raw->flash_offset & ~3, ri.nodetype, JFFS2_NODETYPE_INODE);
+ ref_offset(fn->raw),
+ je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
return -EIO;
}
- if (ri.totlen != sizeof(ri)) {
- printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%x\n",
- fn->raw->flash_offset & ~3, ri.totlen, sizeof(ri));
+ if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
+ printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
+ ref_offset(fn->raw),
+ je32_to_cpu(ri.totlen), sizeof(ri));
return -EIO;
}
crc = crc32(0, &ri, sizeof(ri)-8);
- if (crc != ri.node_crc) {
+ if (crc != je32_to_cpu(ri.node_crc)) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
- fn->raw->flash_offset & ~3, ri.node_crc, crc);
+ ref_offset(fn->raw),
+ je32_to_cpu(ri.node_crc), crc);
/* FIXME: We could possibly deal with this by writing new holes for each frag */
- printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n",
- start, end, inode->i_ino);
+ printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
+ start, end, f->inocache->ino);
goto fill;
}
if (ri.compr != JFFS2_COMPR_ZERO) {
- printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", fn->raw->flash_offset & ~3);
- printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%lu will be lost\n",
- start, end, inode->i_ino);
+ printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
+ printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
+ start, end, f->inocache->ino);
goto fill;
}
} else {
fill:
- ri.magic = JFFS2_MAGIC_BITMASK;
- ri.nodetype = JFFS2_NODETYPE_INODE;
- ri.totlen = sizeof(ri);
- ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
-
- ri.ino = inode->i_ino;
- ri.version = ++f->highest_version;
- ri.offset = start;
- ri.dsize = end - start;
- ri.csize = 0;
+ ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
+ ri.totlen = cpu_to_je32(sizeof(ri));
+ ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
+
+ ri.ino = cpu_to_je32(f->inocache->ino);
+ ri.version = cpu_to_je32(++f->highest_version);
+ ri.offset = cpu_to_je32(start);
+ ri.dsize = cpu_to_je32(end - start);
+ ri.csize = cpu_to_je32(0);
ri.compr = JFFS2_COMPR_ZERO;
}
- ri.mode = inode->i_mode;
- ri.uid = inode->i_uid;
- ri.gid = inode->i_gid;
- ri.isize = inode->i_size;
- ri.atime = inode->i_atime;
- ri.ctime = inode->i_ctime;
- ri.mtime = inode->i_mtime;
- ri.data_crc = 0;
- ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
-
- ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
+
+ frag = frag_last(&f->fragtree);
+ if (frag)
+ /* Fetch the inode length from the fragtree rather then
+ * from i_size since i_size may have not been updated yet */
+ ilen = frag->ofs + frag->size;
+ else
+ ilen = JFFS2_F_I_SIZE(f);
+
+ ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
+ ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
+ ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
+ ri.isize = cpu_to_je32(ilen);
+ ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
+ ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
+ ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
+ ri.data_crc = cpu_to_je32(0);
+ ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
+
+ ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
+ JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
- printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_hole failed: %d\n",
+ printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
sizeof(ri), ret);
return ret;
}
- new_fn = jffs2_write_dnode(inode, &ri, NULL, 0, phys_ofs, NULL);
+ new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
return PTR_ERR(new_fn);
}
- if (ri.version == f->highest_version) {
+ if (je32_to_cpu(ri.version) == f->highest_version) {
jffs2_add_full_dnode_to_inode(c, f, new_fn);
if (f->metadata) {
jffs2_mark_node_obsolete(c, f->metadata->raw);
@@ -504,18 +1071,23 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
return 0;
}
- /*
+ /*
* We should only get here in the case where the node we are
* replacing had more than one frag, so we kept the same version
- * number as before. (Except in case of error -- see 'goto fill;'
+ * number as before. (Except in case of error -- see 'goto fill;'
* above.)
*/
- D1(if(fn->frags <= 1) {
+ D1(if(unlikely(fn->frags <= 1)) {
printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
- fn->frags, ri.version, f->highest_version, ri.ino);
+ fn->frags, je32_to_cpu(ri.version), f->highest_version,
+ je32_to_cpu(ri.ino));
});
- for (frag = f->fraglist; frag; frag = frag->next) {
+ /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
+ mark_ref_normal(new_fn->raw);
+
+ for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
+ frag; frag = frag_next(frag)) {
if (frag->ofs > fn->size + fn->ofs)
break;
if (frag->node == fn) {
@@ -532,59 +1104,156 @@ static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eras
printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
BUG();
}
-
+
jffs2_mark_node_obsolete(c, fn->raw);
jffs2_free_full_dnode(fn);
-
+
return 0;
}
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
- struct inode *inode, struct jffs2_full_dnode *fn,
- __u32 start, __u32 end)
+ struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
+ uint32_t start, uint32_t end)
{
- struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_full_dnode *new_fn;
struct jffs2_raw_inode ri;
- __u32 alloclen, phys_ofs, offset, orig_end;
+ uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
int ret = 0;
unsigned char *comprbuf = NULL, *writebuf;
- struct page *pg;
+ unsigned long pg;
unsigned char *pg_ptr;
-
memset(&ri, 0, sizeof(ri));
- D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%lu from offset 0x%x to 0x%x\n",
- inode->i_ino, start, end));
+ D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
+ f->inocache->ino, start, end));
orig_end = end;
+ orig_start = start;
+ if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
+ /* Attempt to do some merging. But only expand to cover logically
+ adjacent frags if the block containing them is already considered
+ to be dirty. Otherwise we end up with GC just going round in
+ circles dirtying the nodes it already wrote out, especially
+ on NAND where we have small eraseblocks and hence a much higher
+ chance of nodes having to be split to cross boundaries. */
+
+ struct jffs2_node_frag *frag;
+ uint32_t min, max;
+
+ min = start & ~(PAGE_CACHE_SIZE-1);
+ max = min + PAGE_CACHE_SIZE;
+
+ frag = jffs2_lookup_node_frag(&f->fragtree, start);
+
+ /* BUG_ON(!frag) but that'll happen anyway... */
+
+ BUG_ON(frag->ofs != start);
+
+ /* First grow down... */
+ while((frag = frag_prev(frag)) && frag->ofs >= min) {
+
+ /* If the previous frag doesn't even reach the beginning, there's
+ excessive fragmentation. Just merge. */
+ if (frag->ofs > min) {
+ D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
+ frag->ofs, frag->ofs+frag->size));
+ start = frag->ofs;
+ continue;
+ }
+ /* OK. This frag holds the first byte of the page. */
+ if (!frag->node || !frag->node->raw) {
+ D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
+ frag->ofs, frag->ofs+frag->size));
+ break;
+ } else {
+
+ /* OK, it's a frag which extends to the beginning of the page. Does it live
+ in a block which is still considered clean? If so, don't obsolete it.
+ If not, cover it anyway. */
+
+ struct jffs2_raw_node_ref *raw = frag->node->raw;
+ struct jffs2_eraseblock *jeb;
+
+ jeb = c->blocks[raw->flash_offset / c->sector_size];
+
+ if (jeb == c->gcblock) {
+ D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
+ frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
+ start = frag->ofs;
+ break;
+ }
+ if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
+ D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
+ frag->ofs, frag->ofs+frag->size, jeb->offset));
+ break;
+ }
+
+ D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
+ frag->ofs, frag->ofs+frag->size, jeb->offset));
+ start = frag->ofs;
+ break;
+ }
+ }
+
+ /* ... then up */
+
+ /* Find last frag which is actually part of the node we're to GC. */
+ frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
+
+ while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
+
+ /* If the previous frag doesn't even reach the beginning, there's lots
+ of fragmentation. Just merge. */
+ if (frag->ofs+frag->size < max) {
+ D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
+ frag->ofs, frag->ofs+frag->size));
+ end = frag->ofs + frag->size;
+ continue;
+ }
+
+ if (!frag->node || !frag->node->raw) {
+ D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
+ frag->ofs, frag->ofs+frag->size));
+ break;
+ } else {
+
+ /* OK, it's a frag which extends to the beginning of the page. Does it live
+ in a block which is still considered clean? If so, don't obsolete it.
+ If not, cover it anyway. */
+
+ struct jffs2_raw_node_ref *raw = frag->node->raw;
+ struct jffs2_eraseblock *jeb;
+
+ jeb = c->blocks[raw->flash_offset / c->sector_size];
+
+ if (jeb == c->gcblock) {
+ D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
+ frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
+ end = frag->ofs + frag->size;
+ break;
+ }
+ if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
+ D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
+ frag->ofs, frag->ofs+frag->size, jeb->offset));
+ break;
+ }
+
+ D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
+ frag->ofs, frag->ofs+frag->size, jeb->offset));
+ end = frag->ofs + frag->size;
+ break;
+ }
+ }
+ D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
+ orig_start, orig_end, start, end));
+
+ D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
+ BUG_ON(end < orig_end);
+ BUG_ON(start > orig_start);
+ }
- /* If we're looking at the last node in the block we're
- garbage-collecting, we allow ourselves to merge as if the
- block was already erasing. We're likely to be GC'ing a
- partial page, and the next block we GC is likely to have
- the other half of this page right at the beginning, which
- means we'd expand it _then_, as nr_erasing_blocks would have
- increased since we checked, and in doing so would obsolete
- the partial node which we'd have written here. Meaning that
- the GC would churn and churn, and just leave dirty blocks in
- it's wake.
- */
- if(c->nr_free_blocks + c->nr_erasing_blocks > JFFS2_RESERVED_BLOCKS_GCMERGE - (fn->raw->next_phys?0:1)) {
- /* Shitloads of space */
- /* FIXME: Integrate this properly with GC calculations */
- start &= ~(PAGE_CACHE_SIZE-1);
- end = min_t(__u32, start + PAGE_CACHE_SIZE, inode->i_size);
- D1(printk(KERN_DEBUG "Plenty of free space, so expanding to write from offset 0x%x to 0x%x\n",
- start, end));
- if (end < orig_end) {
- printk(KERN_WARNING "Eep. jffs2_garbage_collect_dnode extended node to write, but it got smaller: start 0x%x, orig_end 0x%x, end 0x%x\n", start, orig_end, end);
- end = orig_end;
- }
- }
-
/* First, use readpage() to read the appropriate page into the page cache */
/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
* triggered garbage collection in the first place?
@@ -592,63 +1261,59 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
* page OK. We'll actually write it out again in commit_write, which is a little
* suboptimal, but at least we're correct.
*/
- pg = read_cache_page(inode->i_mapping, start >> PAGE_CACHE_SHIFT, (void *)jffs2_do_readpage_unlock, inode);
+ pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
- if (IS_ERR(pg)) {
- printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg));
- return PTR_ERR(pg);
+ if (IS_ERR(pg_ptr)) {
+ printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
+ return PTR_ERR(pg_ptr);
}
- pg_ptr = (char *)kmap(pg);
- comprbuf = kmalloc(end - start, GFP_KERNEL);
offset = start;
while(offset < orig_end) {
- __u32 datalen;
- __u32 cdatalen;
- char comprtype = JFFS2_COMPR_NONE;
+ uint32_t datalen;
+ uint32_t cdatalen;
+ uint16_t comprtype = JFFS2_COMPR_NONE;
- ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
+ ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
+ &alloclen, JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
- printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_dnode failed: %d\n",
+ printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
break;
}
- cdatalen = min(alloclen - sizeof(ri), end - offset);
+ cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
datalen = end - offset;
writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
- if (comprbuf) {
- comprtype = jffs2_compress(writebuf, comprbuf, &datalen, &cdatalen);
- }
- if (comprtype) {
- writebuf = comprbuf;
- } else {
- datalen = cdatalen;
- }
- ri.magic = JFFS2_MAGIC_BITMASK;
- ri.nodetype = JFFS2_NODETYPE_INODE;
- ri.totlen = sizeof(ri) + cdatalen;
- ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);
-
- ri.ino = inode->i_ino;
- ri.version = ++f->highest_version;
- ri.mode = inode->i_mode;
- ri.uid = inode->i_uid;
- ri.gid = inode->i_gid;
- ri.isize = inode->i_size;
- ri.atime = inode->i_atime;
- ri.ctime = inode->i_ctime;
- ri.mtime = inode->i_mtime;
- ri.offset = offset;
- ri.csize = cdatalen;
- ri.dsize = datalen;
- ri.compr = comprtype;
- ri.node_crc = crc32(0, &ri, sizeof(ri)-8);
- ri.data_crc = crc32(0, writebuf, cdatalen);
-
- new_fn = jffs2_write_dnode(inode, &ri, writebuf, cdatalen, phys_ofs, NULL);
+ comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
+
+ ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+ ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
+ ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
+ ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
+
+ ri.ino = cpu_to_je32(f->inocache->ino);
+ ri.version = cpu_to_je32(++f->highest_version);
+ ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
+ ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
+ ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
+ ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
+ ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
+ ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
+ ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
+ ri.offset = cpu_to_je32(offset);
+ ri.csize = cpu_to_je32(cdatalen);
+ ri.dsize = cpu_to_je32(datalen);
+ ri.compr = comprtype & 0xff;
+ ri.usercompr = (comprtype >> 8) & 0xff;
+ ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
+ ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
+
+ new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
+
+ jffs2_free_comprbuf(comprbuf, writebuf);
if (IS_ERR(new_fn)) {
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
@@ -663,12 +1328,7 @@ static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_era
f->metadata = NULL;
}
}
- if (comprbuf) kfree(comprbuf);
- kunmap(pg);
- /* XXX: Does the page get freed automatically? */
- /* AAA: Judging by the unmount getting stuck in __wait_on_page, nope. */
- page_cache_release(pg);
+ jffs2_gc_release_page(c, pg_ptr, &pg);
return ret;
}
-