summaryrefslogtreecommitdiffstats
path: root/uClinux-2.4.20-uc1/drivers/net/netarmeth.c
blob: 6a8e7a4fd1328016afcfb7f93c003bdc8f540a9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
/*
 * drivers/net/netarmeth.c
 *
 * Copyright (C) 2000 NETsilicon, Inc.
 * Copyright (C) 2000 WireSpeed Communications Corporation
 * Copyright (C) 2001 IMMS gGmbH
 *
 * This software is copyrighted by WireSpeed. LICENSEE agrees that
 * it will not delete this copyright notice, trademarks or protective
 * notices from any copy made by LICENSEE.
 *
 * This software is provided "AS-IS" and any express or implied 
 * warranties or conditions, including but not limited to any
 * implied warranties of merchantability and fitness for a particular
 * purpose regarding this software. In no event shall WireSpeed
 * be liable for any indirect, consequential, or incidental damages,
 * loss of profits or revenue, loss of use or data, or interruption
 * of business, whether the alleged damages are labeled in contract,
 * tort, or indemnity.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * author(s) : Jackie Smith Cashion and David Smith
 *             Rolf Peukert (Kernel 2.4.x adaption in progress,
 *                           added support for AMD 79C901 HomePHY)
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/init.h>

#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>

/* Include hardware definitions */
#include <asm/arch/netarm_registers.h>
#include "netarmeth.h"

/* Function Prototypes (used internally in this module) */

static void na_disable_eth_irqs(void);
static void na_enable_eth_irqs(void);
static void na_get_mac_addr(struct net_device *dev);
static void na_rx_fifo_reset(unsigned long ldev);
static void na_enable_timer(struct net_device *dev);
static void na_disable_timer(struct net_device *dev);
static void na_reset_rx_fifo(struct netarmeth_dev *na_dev);
static void na_load_mca_hash_table(struct dev_mc_list *mc_list);

/* Static Global Variables */

static const char *cardname = "netarmeth"; // Interface Name


/*--------------------------------------------------------------------*
	Utility Functions
 *--------------------------------------------------------------------*/

/* Enable and disable functions for DMA interrupts.
   The ethernet service interrupts are not needed in DMA mode. */

static void
na_disable_eth_irqs(void)
{
  NA_PRINTK("na_disable_eth_irqs\n");

  disable_irq(IRQ_DMA01);
  disable_irq(IRQ_DMA02);
}

static void
na_enable_eth_irqs(void)
{
  NA_PRINTK("na_enable_eth_irqs\n");

  enable_irq(IRQ_DMA01);
  enable_irq(IRQ_DMA02);
}


// The Ethernet controller contains three station address registers.  Each
// 32 bit register contains 16 bits of the 48 bit MAC address. Ignore the high
// 16 bits of each register.

static void
na_get_mac_addr(struct net_device *dev)
{
  unsigned short *p;

  NA_PRINTK("na_get_mac_addr\n");

  p = (unsigned short *) dev->dev_addr;
  p[0] = (unsigned short) inl_t(get_eth_reg_addr(NETARM_ETH_SAL_STATION_ADDR_1));
  p[1] = (unsigned short) inl_t(get_eth_reg_addr(NETARM_ETH_SAL_STATION_ADDR_2));
  p[2] = (unsigned short) inl_t(get_eth_reg_addr(NETARM_ETH_SAL_STATION_ADDR_3));

  NA_PRINTK2("  %X %X %X %X %X %X\n",
    dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
    dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}


static void
na_rx_fifo_reset(unsigned long ldev)
{
  struct net_device *dev = (struct net_device *)ldev;
  struct netarmeth_dev *na_dev = dev->priv;

  /* If we're still receiving packets, keep going. */
  if (na_dev->stats.rx_packets != na_dev->rx_fifo_packets) {
    na_dev->rx_fifo_packets = na_dev->stats.rx_packets;
    NA_PRINTK2("na_rx_fifo_reset 1\n");
  }
  else if (inl_t(get_eth_reg_addr(NETARM_ETH_GEN_CTRL)) & NETARM_ETH_GCR_ERXDMA
	   && !(inl_t(get_dma_reg_addr(NETARM_DMA1A_STATUS)) & 0xdf000000)
	   && ((inl_t(get_eth_reg_addr(NETARM_ETH_GEN_STAT)) & 0x0a000000)
	       == 0x02000000)) { 
      na_reset_rx_fifo(na_dev);	    
  }
  na_enable_timer(dev);
}

static void
na_enable_timer(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;

  na_dev = dev->priv;
    
  na_dev->rx_fifo_packets = na_dev->stats.rx_packets;
  init_timer(&na_dev->rx_fifo_timer);
  na_dev->rx_fifo_timer.function = na_rx_fifo_reset;
  na_dev->rx_fifo_timer.data = (unsigned long) dev;
  na_dev->rx_fifo_timer.expires = jiffies + (HZ >> 3);
  add_timer(&na_dev->rx_fifo_timer);
}

static void
na_disable_timer(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;

  na_dev = dev->priv;    
  del_timer(&na_dev->rx_fifo_timer);
}

static void
na_reset_rx_fifo(struct netarmeth_dev *na_dev)
{
  unsigned long reg;
  int           i;

  NA_PRINTK("na_reset_rx_fifo\n");

  // Disable receive DMA.

  outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_GEN_CTRL))
	  & ~NETARM_ETH_GCR_ERXDMA),
	 get_eth_reg_addr(NETARM_ETH_GEN_CTRL));

  // Disable receive FIFO.

  outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_GEN_CTRL)) & ~NETARM_ETH_GCR_ERX),
	 get_eth_reg_addr(NETARM_ETH_GEN_CTRL));

  // Disable DMA

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1A_CONTROL)) & 0x7ffffc00),
	 get_dma_reg_addr(NETARM_DMA1A_CONTROL));

  // Delay 20 microsconds.

  udelay(20);

  // If NRIP or CAIP is set, reset them.
  
  reg = inl_t(get_dma_reg_addr(NETARM_DMA1A_CONTROL));
  if (reg & 0x20000000) {
    reg &= 0x20f00000;
    outl_t(reg, get_dma_reg_addr(NETARM_DMA1A_CONTROL));
  }

  // Reset DMA descriptors

  for (i = 0; i < NA_MAX_RX_BUF; i++) {
    na_dev->rx_dma_desc[i].src_buf_ptr  = (unsigned long) virt_to_bus(na_dev->rx_skb[i]->data);
    na_dev->rx_dma_desc[i].src_buf_ptr &= ~(NETARM_DMA_BD0_LAST
					    | NETARM_DMA_BD0_IDONE);
    na_dev->rx_dma_desc[i].buf_len      = NA_MAX_ETH_FRAME;
    na_dev->rx_dma_desc[i].stat         = 0;
    // Clear the F bit.
    na_dev->rx_dma_desc[i].buf_len     &= ~NETARM_DMA_BD1_FULL;
  }
  na_dev->rx_dma_desc[NA_MAX_RX_BUF-1].src_buf_ptr |= NETARM_DMA_BD0_WRAP;
  na_dev->rx_sw_index = 0;

  // Reenable DMA

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1A_CONTROL)) | 0x80000000),
	 get_dma_reg_addr(NETARM_DMA1A_CONTROL));

  // Reenable receive FIFO.

  outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_GEN_CTRL)) | NETARM_ETH_GCR_ERX),
	 get_eth_reg_addr(NETARM_ETH_GEN_CTRL));

  // Reenable receive DMA.

  outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_GEN_CTRL))
	  | NETARM_ETH_GCR_ERXDMA),
	 get_eth_reg_addr(NETARM_ETH_GEN_CTRL));
}

static inline void
na_start_xmit(struct netarmeth_dev *na_dev)
{
  unsigned long reg;
  struct sk_buff *skb = skb_dequeue(&na_dev->tx_skb_queue);
    
  if (skb == NULL) return;

  // The skb will be free'd in na_tx_interrupt.

  na_dev->tx_skb = skb;

  // Set up the transmit DMA buffer descriptor.

  na_dev->tx_dma_desc.src_buf_ptr  = (unsigned long) virt_to_bus(skb->data);
  na_dev->tx_dma_desc.src_buf_ptr |= (NETARM_DMA_BD0_WRAP
				      | NETARM_DMA_BD0_IDONE
				      | NETARM_DMA_BD0_LAST);
  na_dev->tx_dma_desc.buf_len      = skb->len;
  na_dev->tx_dma_desc.stat         = 0;
  na_dev->tx_dma_desc.buf_len     |= NETARM_DMA_BD1_FULL;

  // Clear possible Not Ready interrupt and reactivate DMA channel.

  reg = (inl_t(get_dma_reg_addr(NETARM_DMA2_STATUS))
	 & NETARM_DMA_STAT_INT_EN_MASK) | NETARM_DMA_STAT_NR_INTPEN;
  outl_t(reg, get_dma_reg_addr(NETARM_DMA2_STATUS));
}


/*--------------------------------------------------------------------*
  Functions for the Media Independent Interface (MII)

  These functions assume the current Ethernet controller configuration
  uses an ENABLE or Home PHY through the MII interface.
 *--------------------------------------------------------------------*/

static unsigned long
na_mii_poll_busy(void)
{
	unsigned long start_time, current_time;

	// Poll until the busy bit is clear or one second has elapsed.
	// (this is PHY-type-independent)

	start_time = current_time = jiffies;
	while ((current_time < start_time + NA_MII_POLL_BUSY_DELAY) &&
	       (inl_t(get_eth_reg_addr(NETARM_ETH_MII_IND)) &
	        NETARM_ETH_MIII_BUSY)) {
		current_time = jiffies;
	}
	if (current_time < start_time + NA_MII_POLL_BUSY_DELAY) {
		return (1);
	} else {
		NA_PRINTK("na_mii_poll_busy - one second elapsed.\n");
		return (0);
	}
}

// na_mii_identify_phy
//
// This function tries to identify the PHY chip in the current hardware
// configuration.
//
// Return Values:
//   NA_ENABLE_PHY (0)
//   NA_LEVEL1_PHY (1)
//   NA_HOME_PHY (2)	-> declared in netarmeth.h

static na_phy_type
na_mii_identify_phy(void)
{
	int id_reg_a, id_reg_b;

	NA_PRINTK("na_mii_identify_phy\n");

	/* check for Enable PHY */
	outl_t(0x402, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD)) | NETARM_ETH_MIIC_RSTAT),
	       get_eth_reg_addr(NETARM_ETH_MII_CMD));
	na_mii_poll_busy();
	id_reg_a = inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ));

	if (id_reg_a == 0x0043) {
		/* This must be an Enable or a Lucent LU3X31 PHY chip */
		NA_PRINTK("  Enable PHY\n");
		return (NA_ENABLE_PHY);
	}

	/* check for AMD 79C901 HomePHY */
	outl_t(0x102, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD)) | NETARM_ETH_MIIC_RSTAT),
	       get_eth_reg_addr(NETARM_ETH_MII_CMD));
	na_mii_poll_busy();
	id_reg_a = inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ));

	outl_t(0x103, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD)) | NETARM_ETH_MIIC_RSTAT),
	       get_eth_reg_addr(NETARM_ETH_MII_CMD));
	na_mii_poll_busy();
	id_reg_b = inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ));

	if ((id_reg_a == 0x0000) && (id_reg_b == 0x6b71)) {
		/* This must be an AMD Home PHY chip */
		NA_PRINTK("  Home PHY\n");
		return (NA_HOME_PHY);
	}

	/* else, i.e. default */
	NA_PRINTK("  Level 1 PHY\n");
	return (NA_LEVEL1_PHY);
}

static void
na_mii_reset(struct net_device *dev)
{
	struct netarmeth_dev *na_dev;

	NA_PRINTK("na_mii_reset\n");

	if (dev == NULL) {
		NA_PRINTK("na_mii_reset - NULL parameter\n");
		return;
	}
	na_dev = dev->priv;

	na_dev->phy_type = na_mii_identify_phy();
	if ((na_dev->phy_type != NA_ENABLE_PHY) &&
	    (na_dev->phy_type != NA_HOME_PHY)) {
		printk(KERN_WARNING "%s:  Found other than Enable, Lucent or Home PHY.\n", dev->name);
	}

	/* select appropriate Control register */
	if (na_dev->phy_type == NA_HOME_PHY)
		outl_t(0x100, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	else
		outl_t(0x400, get_eth_reg_addr(NETARM_ETH_MII_ADDR));

	outl_t(0x8000, get_eth_reg_addr(NETARM_ETH_MII_WRITE));
	na_mii_poll_busy();

	outl_t(0, get_eth_reg_addr(NETARM_ETH_MII_WRITE));
	na_mii_poll_busy();
}

static unsigned long
na_mii_negotiate(struct netarmeth_dev *na_dev)
{
	unsigned long start_time, current_time;
	unsigned long read_data;

	NA_PRINTK("na_mii_negotiate\n");

	/* Select Autonegotiation Advertisement register */
	if (na_dev->phy_type == NA_HOME_PHY)
		outl_t(0x101, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	else
		outl_t(0x404, get_eth_reg_addr(NETARM_ETH_MII_ADDR));

	/* Enable auto-negotiation */
	outl_t(0x01E1, get_eth_reg_addr(NETARM_ETH_MII_WRITE));
	na_mii_poll_busy();

	/* Select Control register */
	if (na_dev->phy_type == NA_HOME_PHY)
		outl_t(0x100, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
	else
		outl_t(0x400, get_eth_reg_addr(NETARM_ETH_MII_ADDR));

	/* Restart auto-negotiation */
	outl_t(0x1200, get_eth_reg_addr(NETARM_ETH_MII_WRITE));
	na_mii_poll_busy();

	// Wait for auto-negotiation to complete or for predefined delay to elapse.

	start_time = current_time = jiffies;
	do {
		/* Select Status register */
		if (na_dev->phy_type == NA_HOME_PHY)
			outl_t(0x101, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
		else
			outl_t(0x401, get_eth_reg_addr(NETARM_ETH_MII_ADDR));

		outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD))
		        | NETARM_ETH_MIIC_RSTAT),
		       get_eth_reg_addr(NETARM_ETH_MII_CMD));
		na_mii_poll_busy();

		read_data = inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ));
		if ((read_data & 0x0024) == 0x0024) {
			return (0);
		}
		current_time = jiffies;
	} while (current_time < start_time + NA_MII_NEGOTIATE_DELAY);

	NA_PRINTK("  MII negotiation delay elapsed\n");
	return (1);
}

// na_mii_check_speed
//
// Determine the operating speed of the Ethernet interface.
//
// Return Values:
//   NA_10MBPS  (0):   10 Mbps
//   NA_100MBPS (1):  100 Mbps

static unsigned long
na_mii_check_speed(struct netarmeth_dev *na_dev)
{
	// Check link status.  If 0, default to 100 Mbps.
	NA_PRINTK("na_mii_check_speed\n");

	if (na_dev->phy_type == NA_HOME_PHY) {
		/* The AMD Home PHY only supports 10 Mbps anyway */
		NA_PRINTK("  returning NA_10MBPS (HomePHY)\n");
		na_dev->media_100BaseT = NA_10MBPS;
	} else {
		/* Read Status register */
		outl_t(0x401, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
		outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD)) | NETARM_ETH_MIIC_RSTAT),
		       get_eth_reg_addr(NETARM_ETH_MII_CMD));
		na_mii_poll_busy();

		if ((inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ)) & 0x0004) == 0) {
			NA_PRINTK("  returning NA_100MBPS (link is down)\n");
			na_dev->media_100BaseT = NA_100MBPS;
		} else {
			/* Now it's OK to check the normal speed status */
			outl_t(0x417, get_eth_reg_addr(NETARM_ETH_MII_ADDR));
			outl_t((inl_t(get_eth_reg_addr(NETARM_ETH_MII_CMD)) | NETARM_ETH_MIIC_RSTAT),
			       get_eth_reg_addr(NETARM_ETH_MII_CMD));
			na_mii_poll_busy();

			if ((inl_t(get_eth_reg_addr(NETARM_ETH_MII_READ)) & 0x0200) != 0) {
				NA_PRINTK("  returning NA_100MBPS (b)\n");
				na_dev->media_100BaseT = NA_100MBPS;
			} else {
				NA_PRINTK("  returning NA_10MBPS\n");
				na_dev->media_100BaseT = NA_10MBPS;
			}
		}
	}
	return(na_dev->media_100BaseT);
}

/*--------------------------------------------------------------------*
	MULTICAST ADDRESS HASH TABLE FUNCTIONS
 *--------------------------------------------------------------------*/

static void
na_set_hash_bit(unsigned char *hash_table, int bit)
{
  int byte_index, bit_index;

  NA_PRINTK3("na_set_hash_bit\n");

  byte_index = bit >> 3;
  bit_index = bit & 7;
  hash_table[byte_index] |= (1 << bit_index);
}

// na_rotate
//
// Input arguments:
//   reg         value to rotate
//   direction   LEFT or RIGHT
//   bits        # of bits to rotate

static unsigned short
na_rotate (unsigned short reg, int direction, int bits)
{
  int index;

  NA_PRINTK3("na_rotate:  %X %s %d.\n",
    reg, ((direction == NA_LEFT) ? "LEFT" : "RIGHT"), bits);

  if (direction == NA_LEFT) {
    for (index = 0; index < bits; index++) {
      if (reg & 0x8000) {           // if high bit set
        reg = (reg << 1) | 1;       // shift left and or in 1
      } else {
        reg <<= 1;
      }
    }
  } else {                          // if ror
    for (index = 0; index < bits; index++) {
      if (reg & 1) {                // if low bit set
        reg = (reg >> 1) | 0x8000;  // shift right and or in hi bit
      } else {
        reg >>= 1;
      }
    }
  }
  NA_PRINTK3("  returning %X\n", reg);
  return (reg);
}

// na_calculate_hash_bit
//
// This routine calculates the bit to set in the CRC hash table
// to enable receipt of the specified multicast address.
//
// Return Value:  bit position to set in hash table

static int
na_calculate_hash_bit(unsigned char *mca)
{
  unsigned short  copy_mca[3];
  unsigned short *mcap, bp, bx;
  unsigned long   crc;
  int             result, mca_word, bit_index;

  NA_PRINTK3("na_calculate_hash_bit\n");

  memcpy (copy_mca, mca, sizeof(copy_mca));

  mcap = copy_mca;
  crc = 0xffffffffL;

  for (mca_word = 0; mca_word < 3; mca_word++) {
    bp = *mcap;                              // get word of address
    mcap++;

    for (bit_index = 0; bit_index < 16; bit_index++) {
      bx = (unsigned short) (crc >> 16);     // get high word of crc
      bx = na_rotate(bx, NA_LEFT, 1);        // bit 31 to lsb
      bx ^= bp;                              // combine with incoming
      crc <<= 1;                             // shift crc left 1 bit
      bx &= 1;                               // get control bit
      if (bx) {                              // if bit set
        crc ^= NA_POLYNOMIAL;                // xero crc with polynomial
      }
      crc |= bx;                             // or in control bit
      bp = na_rotate(bp, NA_RIGHT, 1);
    }
  }

  // CRC calculation done.  The 6-bit result resides in bits locations 28:23.

  result = (crc >> 23) & 0x3f;

  return (result);
}

// na_load_mca_hash_table
//
// This function generates the multicast address hash table from the
// multicast addresses contained in the provided linked list.  This function
// loads this table into the Ethernet controller.

static void
na_load_mca_hash_table(struct dev_mc_list *mc_list)
{
  unsigned short      hash_table[4];
  struct dev_mc_list *mc_list_entry;
  int                 bit_number;

  NA_PRINTK("na_load_mca_hash_table\n");

  // Generate the hash table.

  memset(hash_table, 0, sizeof(hash_table));

  for (mc_list_entry = mc_list;
       mc_list_entry != NULL;
       mc_list_entry = mc_list_entry->next)
  {
    NA_PRINTK("  multicast address:  %X %X %X %X %X %X\n",
      mc_list_entry->dmi_addr[0], mc_list_entry->dmi_addr[1],
      mc_list_entry->dmi_addr[2], mc_list_entry->dmi_addr[3],
      mc_list_entry->dmi_addr[4], mc_list_entry->dmi_addr[5]);

    bit_number = na_calculate_hash_bit(mc_list_entry->dmi_addr);
    na_set_hash_bit((unsigned char *) hash_table, bit_number);
  }
  NA_PRINTK("  hash table:  %X %X %X %X\n",
    hash_table[0], hash_table[1], hash_table[2], hash_table[3]);    

  // Load the hash table into the Ethernet controller.

  outl_t(hash_table[0], get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_1));
  outl_t(hash_table[1], get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_2));
  outl_t(hash_table[2], get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_3));
  outl_t(hash_table[3], get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_4));
}


/*--------------------------------------------------------------------*
	Interrupt Functions
 *--------------------------------------------------------------------*/

static void
netarmeth_rx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
  struct net_device    *dev;
  struct netarmeth_dev *na_dev;
  unsigned long         status_reg, reg;
  struct sk_buff       *current_skb, *new_skb;
  int                   hw_index;

  NA_PRINTK2("netarmeth_rx_interrupt\n");

  dev = dev_id;
  if (dev == NULL) {
    printk(KERN_WARNING "Ethernet receive interrupt, null device structure.\n");

    status_reg = inl_t(get_dma_reg_addr(NETARM_DMA1A_STATUS));
    status_reg &= (NETARM_DMA_STAT_INTPEN_MASK | NETARM_DMA_STAT_INT_EN_MASK);
    // Acknowledge the pending interrupts.
    outl_t(status_reg, get_dma_reg_addr(NETARM_DMA1A_STATUS));
    return;
  }
  na_dev = dev->priv;
/*
  if (na_dev->rx_interrupt) {
    // Normally this can not happen, but I want to make sure.
    NA_PRINTK("rx irq recursion\n");
    return;
  }
*/
  na_dev->rx_interrupt = 1;

  // Determine which receive interrupts are pending.  Acknowledge the
  // pending interrupts by setting the interrupt pending bits in the
  // DMA Status Register.  If a Normal Completion or Buffer Not Ready
  // interrupt is pending process the received buffer(s) from the
  // receive DMA descriptor ring.

  status_reg = inl_t(get_dma_reg_addr(NETARM_DMA1A_STATUS));
  NA_PRINTK2("  DMA 1A status: %lX\n", status_reg);

  status_reg &= (NETARM_DMA_STAT_INTPEN_MASK | NETARM_DMA_STAT_INT_EN_MASK);
  // Acknowledge the pending interrupts.
  outl_t(status_reg, get_dma_reg_addr(NETARM_DMA1A_STATUS));

  if (status_reg & (NETARM_DMA_STAT_NC_INTPEN | NETARM_DMA_STAT_NR_INTPEN))
  {
    if (status_reg & NETARM_DMA_STAT_NR_INTPEN)
    {
	/* "F" bit in DMA buffer descriptor in incorrect state */
	NA_PRINTK("  *** NR interrupt ***\n");
    }

    // Process all the receive DMA buffer descriptors that have the
    // "full" bit set until the descriptor indicated by the hardware
    // DMA descriptor index is processed.

    reg = inl_t(get_dma_reg_addr(NETARM_DMA1A_CONTROL));
    hw_index = NETARM_DMA_CTL_INDEX(reg) >> 3; // Bytes / 8
    NA_PRINTK2("  hw_index: %lX, %d.\n", reg, hw_index);

    do
    {
      NA_PRINTK2("  sw_index: %d.\n", na_dev->rx_sw_index);

      if (na_dev->rx_dma_desc[na_dev->rx_sw_index].buf_len
	  & NETARM_DMA_BD1_FULL) {

        reg = na_dev->rx_dma_desc[na_dev->rx_sw_index].stat;
        NA_PRINTK2(" RX desc[%d] stat: %lX\n", na_dev->rx_sw_index, reg);

        if ((reg & NA_RXSTAT_ERR_MASK) || ((reg & NA_RXSTAT_RXOK) == 0))
	{
          // Receive Error.
          NA_PRINTK("  Receive error.\n");
          na_dev->stats.rx_errors++;

          // If an overrun has occurred, the receive FIFO must be reset.
          if (reg & NA_RXSTAT_ROVER)
	  {
            NA_PRINTK("  Reset receive FIFO.\n");
            na_dev->stats.rx_fifo_errors++;
            na_reset_rx_fifo(na_dev);
          }
          new_skb = na_dev->rx_skb[na_dev->rx_sw_index];
        }
	else if (reg & NA_RXSTAT_RXOK)
	{
          // Good Frame.
          NA_PRINTK2("  Good Frame.\n");

          // Save the current skb (receive buffer).
          current_skb = na_dev->rx_skb[na_dev->rx_sw_index];

          // Allocate a new skb to replace the one consumed by the current
          // frame.  If a new new skb cannot be allocated, ignore (discard)
          // this frame and reuse the original skb for a future frame.

          new_skb = dev_alloc_skb(NA_MAX_ETH_FRAME + 2);
          if (new_skb == NULL)
	  {
            NA_PRINTK("  dev_alloc_skb failure.\n");
            na_dev->stats.rx_dropped++;
            new_skb = na_dev->rx_skb[na_dev->rx_sw_index];
	  } 
	  else
	  {
	    // Pass the frame up.
	    na_dev->stats.rx_packets++;

	    reg = na_dev->rx_dma_desc[na_dev->rx_sw_index].buf_len
		& ~NETARM_DMA_BD1_FULL;
            NA_PRINTK3("  buf_len: %ld.\n", reg);
            NA_PRINTK3("  %X %X %X %X %X %X %X %X %X %X %X %X %X %X\n",
              current_skb->data[0], current_skb->data[1],
              current_skb->data[2], current_skb->data[3],
              current_skb->data[4], current_skb->data[5],
              current_skb->data[6], current_skb->data[7],
              current_skb->data[8], current_skb->data[9],
              current_skb->data[10], current_skb->data[11],
              current_skb->data[12], current_skb->data[13]);

            skb_put(current_skb, reg);
            current_skb->dev       = dev;
            current_skb->protocol  = eth_type_trans(current_skb, dev);
//            current_skb->ip_summed = CHECKSUM_UNNECESSARY;
	    skb_pull(current_skb, 2);

            netif_rx(current_skb);
	  }
        } 
	else
	{
          // Discard frame.
          NA_PRINTK("  RX unexpected receive status\n");
          na_dev->stats.rx_errors++;
          new_skb = na_dev->rx_skb[na_dev->rx_sw_index];
	}

        // Re-initialize the receive DMA descriptor.
        na_dev->rx_skb[na_dev->rx_sw_index] = new_skb;
        na_dev->rx_dma_desc[na_dev->rx_sw_index].src_buf_ptr =
          (unsigned long) virt_to_bus(new_skb->data);

        if (na_dev->rx_sw_index == NA_MAX_RX_BUF-1) {
          na_dev->rx_dma_desc[NA_MAX_RX_BUF-1].src_buf_ptr
	      |= NETARM_DMA_BD0_WRAP;
        }
        na_dev->rx_dma_desc[na_dev->rx_sw_index].buf_len  = NA_MAX_ETH_FRAME;
        na_dev->rx_dma_desc[na_dev->rx_sw_index].stat     = 0;
        na_dev->rx_dma_desc[na_dev->rx_sw_index].buf_len &= ~NETARM_DMA_BD1_FULL;

        // Clear possible Not Ready interrupt and reactivate the DMA channel.
	status_reg &= (NETARM_DMA_STAT_INTPEN_MASK
		       | NETARM_DMA_STAT_INT_EN_MASK);
	status_reg |= NETARM_DMA_STAT_NR_INTPEN;
	// Acknowledge the pending interrupts.
	outl_t(status_reg, get_dma_reg_addr(NETARM_DMA1A_STATUS));
      }
      else
      {
        // F bit is not set.
        NA_PRINTK("  RX skipping descriptor.\n");
      }

      // Increment the receive DMA descriptor index.
      na_dev->rx_sw_index++;
      if (na_dev->rx_sw_index >= NA_MAX_RX_BUF) {
        na_dev->rx_sw_index = 0;
      }
    } while (na_dev->rx_sw_index != hw_index);
  }
  else
  {
    NA_PRINTK("  RX Error Completion Interrupt\n");
    na_dev->stats.rx_errors++;
  }
  na_dev->rx_interrupt = 0;
}


static void
netarmeth_tx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
  struct net_device    *dev;
  struct netarmeth_dev *na_dev;
  unsigned long         status_reg;

  NA_PRINTK2("netarmeth_tx_interrupt\n");

  dev = dev_id;
  if (dev == NULL) {
    printk(KERN_WARNING "Ethernet transmit interrupt, null device structure.\n");

    status_reg = inl_t(get_dma_reg_addr(NETARM_DMA2_STATUS));
    status_reg &= (NETARM_DMA_STAT_INTPEN_MASK | NETARM_DMA_STAT_INT_EN_MASK);
    // Acknowledge the pending interrupts.
    outl_t(status_reg, get_dma_reg_addr(NETARM_DMA2_STATUS));

    return;
  }

  na_dev = dev->priv;
/*
  if (na_dev->tx_interrupt) {
    // Normally this can not happen, but I want to make sure.
    NA_PRINTK("tx irq recursion\n");
    return;
  }
*/
  na_dev->tx_interrupt = 1;

  // Determine which receive interrupts are pending.  Acknowledge the pending
  // interrupts by setting the interrupt pending bits in the DMA Status
  // Register.

  status_reg = inl_t(get_dma_reg_addr(NETARM_DMA2_STATUS));
  NA_PRINTK2("  DMA 2 status: %lX\n", status_reg);

  status_reg &= (NETARM_DMA_STAT_INTPEN_MASK | NETARM_DMA_STAT_INT_EN_MASK);
  // Acknowledge the pending interrupts.
  outl_t(status_reg, get_dma_reg_addr(NETARM_DMA2_STATUS));

  if (status_reg & NETARM_DMA_STAT_NC_INTPEN) {
    na_dev->stats.tx_packets++;
  } else {
    na_dev->stats.tx_errors++;
  }
  if (na_dev->tx_skb) {
    dev_kfree_skb_irq(na_dev->tx_skb); /* was FREE_WRITE */
    /* fixed? calling dev_kfree_skb() from an interrupt caused a warning */
    na_dev->tx_skb = NULL;
  }
  if (! skb_queue_empty(&na_dev->tx_skb_queue)) {
    na_start_xmit(na_dev);  
  }
  else {
    na_dev->tbusy = 0;
  }
  // mark_bh(NET_BH); not longer available, instead using
  netif_wake_queue(dev);
  na_dev->tx_interrupt = 0;
}


/*--------------------------------------------------------------------*
	Hardware Initialization Functions
 *--------------------------------------------------------------------*/

static void
na_reset_dma(void)
{
  NA_PRINTK("na_reset_dma\n");

  /* Disable each channel, clear buffer pointer and interrupt bits */
  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1A_CONTROL)) &
	  ~NETARM_DMA_CTL_ENABLE), get_dma_reg_addr(NETARM_DMA1A_CONTROL));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1A_BFR_DESCRPTOR_PTR));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1A_STATUS));

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1B_CONTROL)) &
	  ~NETARM_DMA_CTL_ENABLE), get_dma_reg_addr(NETARM_DMA1B_CONTROL));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1B_BFR_DESCRPTOR_PTR));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1B_STATUS));

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1C_CONTROL)) &
	  ~NETARM_DMA_CTL_ENABLE), get_dma_reg_addr(NETARM_DMA1C_CONTROL));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1C_BFR_DESCRPTOR_PTR));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1C_STATUS));

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA1D_CONTROL)) &
	  ~NETARM_DMA_CTL_ENABLE), get_dma_reg_addr(NETARM_DMA1D_CONTROL));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1D_BFR_DESCRPTOR_PTR));
  outl_t(0, get_dma_reg_addr(NETARM_DMA1D_STATUS));

  outl_t((inl_t(get_dma_reg_addr(NETARM_DMA2_CONTROL)) &
	  ~NETARM_DMA_CTL_ENABLE), get_dma_reg_addr(NETARM_DMA2_CONTROL));
  outl_t(0, get_dma_reg_addr(NETARM_DMA2_BFR_DESCRPTOR_PTR));
  outl_t(0, get_dma_reg_addr(NETARM_DMA2_STATUS));
}

// na_enable_dma

static void
na_enable_dma(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;
  unsigned long         reg;

  NA_PRINTK("na_enable_dma\n");

  na_dev = dev->priv;  

  // Configure the DMA channels for transmit and receive.

  outl_t((unsigned long) virt_to_bus(na_dev->rx_dma_desc),
	 get_dma_reg_addr(NETARM_DMA1A_BFR_DESCRPTOR_PTR));
  outl_t((NETARM_DMA_STAT_NC_INT_EN | NETARM_DMA_STAT_EC_INT_EN
	  | NETARM_DMA_STAT_NR_INT_EN | NETARM_DMA_STAT_CA_INT_EN),
	 get_dma_reg_addr(NETARM_DMA1A_STATUS));

  outl_t((unsigned long) virt_to_bus(&na_dev->tx_dma_desc),
	 get_dma_reg_addr(NETARM_DMA2_BFR_DESCRPTOR_PTR));
  outl_t((NETARM_DMA_STAT_NC_INT_EN | NETARM_DMA_STAT_EC_INT_EN),
	 get_dma_reg_addr(NETARM_DMA2_STATUS));

  // Turn on each channel.

  reg = NETARM_DMA_CTL_ENABLE | NETARM_DMA_CTL_BUS_100_PERCENT |
        NETARM_DMA_CTL_MODE_FB_TO_MEM | NETARM_DMA_CTL_BURST_16_BYTE;
  outl_t(reg, get_dma_reg_addr(NETARM_DMA1A_CONTROL));

  if (na_dev->media_100BaseT) {
    reg = NETARM_DMA_CTL_ENABLE | NETARM_DMA_CTL_BUS_100_PERCENT |
          NETARM_DMA_CTL_MODE_FB_FROM_MEM | NETARM_DMA_CTL_BURST_16_BYTE;
  } else {
    reg = NETARM_DMA_CTL_ENABLE | NETARM_DMA_CTL_BUS_100_PERCENT |
	  NETARM_DMA_CTL_MODE_FB_FROM_MEM;
  }
  outl_t(reg, get_dma_reg_addr(NETARM_DMA2_CONTROL));
}


// This function assumes the current Ethernet controller configuration uses
// the ENABLE PHY through the MII interface.  The original vxWorks NET+ARM
// Ethernet driver, upon which this driver initialization code is modeled,
// also only supports the MII PHY but describes the initialization of the
// ENDEC PHY.  (See eth_chip_reset() in NccEthCtrl.c from the NET+ARM vxWorks
// source.)

static void
na_reset_eth(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;

  NA_PRINTK("na_reset_eth\n");

  na_dev = dev->priv;

  na_mii_reset(dev);

  // Since this driver is designed for the NET+ARM-40, assume the NET+ARM clock
  // is set to 25Mhz.

  outl_t((NETARM_ETH_PCSC_CLKS_25M | NETARM_ETH_PCSC_ENJAB |
	  NETARM_ETH_PCSC_NOCFR), get_eth_reg_addr(NETARM_ETH_PCS_CFG));

  na_mii_negotiate(na_dev);
  na_mii_check_speed(na_dev);

  // Delay after resetting the chip before attempting to read/clear the
  // statistics counters.

  udelay(1000); // Delay 1 millisecond.  (Maybe this should be 1 second.)

  // Turn receive on.
  // Enable statistics register autozero on read.
  // Do not insert MAC address on transmit.
  // Do not enable special test modes.

  outl_t((NETARM_ETH_STLC_AUTOZ | NETARM_ETH_STLC_RXEN),
	 get_eth_reg_addr(NETARM_ETH_STL_CFG));

  // Read MIB statistics counters to zero them.

  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_LCC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_EDC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_MCC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_CRCEC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_AEC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_CEC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_LFC));
  inl_t(get_eth_reg_addr(NETARM_ETH_MIB_SFC));
}

// na_enable_eth

static void
na_enable_eth(struct net_device *dev)
{
  unsigned long reg;

  NA_PRINTK("na_enable_eth\n");

  // Set the inter-packet gap delay to 0.96us for MII.
  // The NET+ARM H/W Reference Guide indicates that the Back-to-back IPG
  // Gap Timer Register should be set to 0x15 and the Non Back-to-back IPG
  // Gap Timer Register should be set to 0x00000C12 for the MII PHY.

  outl_t(0x15, get_eth_reg_addr(NETARM_ETH_B2B_IPG_GAP_TMR));
  outl_t(0x00000C12, get_eth_reg_addr(NETARM_ETH_NB2B_IPG_GAP_TMR));

  // Add CRC to end of packets.
  // Pad packets to minimum length of 64 bytes.
  // Allow unlimited length transmit packets.
  // Receive all broadcast packets.
  //
  // NOTE:  Multicast addressing is NOT enabled here currently.

  outl_t((NETARM_ETH_MACC_CRCEN | NETARM_ETH_MACC_PADEN
	  | NETARM_ETH_MACC_HUGEN), get_eth_reg_addr(NETARM_ETH_MAC_CFG));
  outl_t(NETARM_ETH_SALF_BROAD, get_eth_reg_addr(NETARM_ETH_SAL_FILTER));
  
  // JSC - Determine how ifconfig passes in a special MAC address.
  // Set it here.
  na_get_mac_addr(dev); // JSC !!!

  NA_PRINTK("  MCA Hash Table: %lX %lX %lX %lX\n",
	    inl_t(get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_1)),
	    inl_t(get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_2)),
	    inl_t(get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_3)),
	    inl_t(get_eth_reg_addr(NETARM_ETH_SAL_HASH_TBL_4)));

  // Clear any outstanding Ethernet DMA interrupts.

  // Receive
  outl_t(NETARM_DMA_STAT_INTPEN_MASK, get_dma_reg_addr(NETARM_DMA1A_STATUS));
  // Transmit
  outl_t(NETARM_DMA_STAT_INTPEN_MASK, get_dma_reg_addr(NETARM_DMA2_STATUS));

  // Configure the Ethernet DMA channels.

  na_enable_dma(dev);

  // Associate the Ethernet DMA IRQs with the appropriate interrupt service
  // routines.  No need to call request_dma.  The DMA controller assignments
  // are hardwired.

  if (request_irq(IRQ_DMA01, netarmeth_rx_interrupt, 0, cardname, dev)) {
    printk(KERN_WARNING "%s:  request_irq(IRQ_DMA01) failure.\n", dev->name);
  }
  if (request_irq(IRQ_DMA02, netarmeth_tx_interrupt, 0, cardname, dev)) {
    printk(KERN_WARNING "%s:  request_irq(IRQ_DMA02) failure.\n", dev->name);
  }

  // Autozero statistics registers after reading.
  // Enable packet receiver.
  // (This was already set in na_reset_eth.)

  outl_t((NETARM_ETH_STLC_AUTOZ | NETARM_ETH_STLC_RXEN),
	 get_eth_reg_addr(NETARM_ETH_STL_CFG));

  // Enable receive FIFO.  Enable receive DMA.
  // Enable transmit FIFO. Enable transmit DMA.

  reg = NETARM_ETH_GCR_ERX | NETARM_ETH_GCR_ERXDMA | NETARM_ETH_GCR_ETX
      | NETARM_ETH_GCR_ETXDMA | NETARM_ETH_GCR_PNA;
  outl_t(reg, get_eth_reg_addr(NETARM_ETH_GEN_CTRL));
}


/*--------------------------------------------------------------------*
	Exported Functions
 *--------------------------------------------------------------------*/

// netarmeth_open
//
// This function is typically called by ifconfig during system startup.
// The Ethernet and DMA controllers are initialized and enabled here.

static int
netarmeth_open(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;

  NA_PRINTK("netarmeth_open\n");

  na_dev = dev->priv;

  // Disable interrupts from the Ethernet DMA channels.

  na_disable_eth_irqs();

  // Reset the Ethernet DMA channels.

  na_reset_dma();

  // Reset the Ethernet controller, and determine the line speed.

  na_reset_eth(dev);

  // Enable the Ethernet controller and the DMA channels.
  // na_enable_eth calls na_enable_dma.

  na_enable_eth(dev);

  // Enable Ethernet and DMA interrupts.

  na_dev->tbusy = 0;
  na_dev->tx_interrupt = 0;
  na_dev->rx_interrupt = 0;
  na_enable_eth_irqs();

  // Enable timer
  na_enable_timer(dev);

  na_dev->start = 1;

  return (0);
}


static int
netarmeth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
  struct netarmeth_dev *na_dev;

  NA_PRINTK2("netarmeth_start_xmit\n");

  na_dev = dev->priv;

  // Put skb on the queue
  skb_queue_tail(&na_dev->tx_skb_queue, skb);
  
  if (test_and_set_bit(0, (void *) &na_dev->tbusy) == 0) {
    NA_PRINTK2("%s:  Transmit idle, sending packet.\n", dev->name);
    na_start_xmit(na_dev);
  }
  return (0);
}


static int
netarmeth_close(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;
  struct sk_buff *skb;

  NA_PRINTK("netarmeth_close\n");

  na_dev = dev->priv;
  na_dev->tbusy = 1;
  na_dev->start = 0;

  // Disable interrupts from the Ethernet DMA channels.

  na_disable_eth_irqs();

  // Reset the Ethernet DMA channels.

  na_reset_dma();

  // Clear any outstanding Ethernet DMA interrupts.

  // Receive
  outl_t(NETARM_DMA_STAT_INTPEN_MASK, get_dma_reg_addr(NETARM_DMA1A_STATUS));
  // Transmit
  outl_t(NETARM_DMA_STAT_INTPEN_MASK, get_dma_reg_addr(NETARM_DMA2_STATUS));

  // Release the Ethernet DMA IRQs.

  free_irq(IRQ_DMA01, dev);
  free_irq(IRQ_DMA02, dev);

  // Disable the timer.

  na_disable_timer(dev);

  // Free any buffers left in the hardware transmit queue

  while ((skb = skb_dequeue(&na_dev->tx_skb_queue))) {
    dev_kfree_skb(skb);  /* was FREE_WRITE */
  }
  return (0);
}


static struct net_device_stats *
netarmeth_get_stats(struct net_device *dev)
{
  struct netarmeth_dev *na_dev;
  unsigned long         flags;

  NA_PRINTK("netarmeth_get_stats\n");

  na_dev = dev->priv;

  save_flags_cli(flags);

  // CRC Errors
  na_dev->stats.rx_crc_errors += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_CRCEC));
  // Alignment Errors
  na_dev->stats.rx_frame_errors += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_AEC));
  // Long Frames
  na_dev->stats.rx_length_errors
      += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_LFC));
  // Short Frames
  na_dev->stats.rx_length_errors
      += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_SFC));
  // Late Collisions
  na_dev->stats.tx_aborted_errors
      += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_LCC));
  // Excessive Deferrals
  na_dev->stats.tx_aborted_errors
      += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_EDC));
  // Maximum Collisions
  na_dev->stats.tx_aborted_errors
      += inl_t(get_eth_reg_addr(NETARM_ETH_MIB_MCC));

  restore_flags(flags);
  return (&na_dev->stats);
}

// netarmeth_set_multicast_list
//
// Always accept all broadcast frames.

static void
netarmeth_set_multicast_list(struct net_device *dev)
{
  NA_PRINTK("netarmeth_set_multicast_list\n");

  if (dev->flags & IFF_PROMISC)
  {
    // Enable promiscuous mode.
    NA_PRINTK("  Enable promiscuous mode.\n");
    outl_t(NETARM_ETH_SALF_PRO, get_eth_reg_addr(NETARM_ETH_SAL_FILTER));
  }
  else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > NA_MAX_MCA)
  {
    // Accept all multicast packets.
    NA_PRINTK("  Accept all multicast packets.\n");
    outl_t((NETARM_ETH_SALF_PRM | NETARM_ETH_SALF_BROAD),
	   get_eth_reg_addr(NETARM_ETH_SAL_FILTER));
  }
  else if (dev->mc_count)
  {
    // Accept multicast packets using the hash table.
    NA_PRINTK("  Accept multicast packets.  Load hash table.\n");
    na_load_mca_hash_table(dev->mc_list);
    outl_t((NETARM_ETH_SALF_PRA | NETARM_ETH_SALF_BROAD),
	   get_eth_reg_addr(NETARM_ETH_SAL_FILTER));
  }
  else
  {
    // Accept frames addressed to this station.
    NA_PRINTK("  Accept frames addressed to this station.\n");
    outl_t(NETARM_ETH_SALF_BROAD, get_eth_reg_addr(NETARM_ETH_SAL_FILTER));
  }
  NA_PRINTK("  returning.\n");
}

// netarmeth_timeout
//
// copied from the am79c961 driver

static void netarmeth_timeout(struct net_device *dev)
{
	NA_PRINTK("%s: transmit timed out, network cable problem?\n", dev->name);

	/* FIXME: shouldn't we shutdown and restart the transmitter? */

	netif_wake_queue(dev);
}


// netarmeth_init
//
// The NET+ARM Ethernet controller is an integral part of the NET+ARM chip.
// The CSRs are located at fixed addresses.  The Ethernet controller always
// uses DMA channels 1 and 2.  Therefore, this probe routine does not need
// to locate the Ethernet controller.  This routine simply initializes the
// device structure and the DMA buffer descriptors and registers the interrupt
// service routines with LINUX.

static int __init
netarmeth_init(void)
{
  struct net_device    *dev;
  struct netarmeth_dev *na_dev;
  int                   i, j;

  
  NA_PRINTK("netarmeth_init() entered\n");

  // Initialize the Device Structure.

  // Allocate a device structure.  Device structures are allocated
  // in Space.c for "built in" drivers.  Do not allocate the private data
  // area at this time. (why not? --rp)

  dev  = init_etherdev( NULL, sizeof(struct netarmeth_dev));
  if (dev == NULL) {
      return (-ENOMEM);
  }
  NA_PRINTK("  dev: %X, dev->name: %s\n", (unsigned int) dev, dev->name);

  SET_MODULE_OWNER(dev);

  // Initialize the private data area.

  na_dev = dev->priv;
  memset(na_dev, 0, sizeof(struct netarmeth_dev));

  // ether_setup initializes the device structure with standard
  // Ethernet values.

  ether_setup(dev);

  // No need to call request_region.  The Ethernet (and DMA) controller CSR
  // addresses are hardwired.

  dev->base_addr = NETARM_ETH_MODULE_BASE;

  // Get the MAC address from the Ethernet controller.

  na_get_mac_addr(dev); // this sets dev->dev_addr

  // Specify the exported driver functions.

  dev->open               = netarmeth_open;
  dev->stop               = netarmeth_close;
  dev->hard_start_xmit    = netarmeth_start_xmit;
  dev->get_stats          = netarmeth_get_stats;
  dev->set_multicast_list = netarmeth_set_multicast_list;
  dev->tx_timeout         = netarmeth_timeout;

  // Initialize the transmit DMA buffer descriptor.

  NA_PRINTK2("  tx_dma_desc: %X\n", (unsigned int)&na_dev->tx_dma_desc);

  na_dev->tx_dma_desc.src_buf_ptr = 0;
  na_dev->tx_dma_desc.buf_len = 0;
  na_dev->tx_dma_desc.stat = 0;

  skb_queue_head_init(&na_dev->tx_skb_queue);

  // Initialize the receive DMA buffer descriptors.  Allocate an skb
  // (receive buffer) for each descriptor.

  for (i = 0; i < NA_MAX_RX_BUF; i++) {
    na_dev->rx_skb[i] = dev_alloc_skb(NA_MAX_ETH_FRAME + 2);
    if (na_dev->rx_skb[i] == NULL) {
      for (j = 0; j < i; j++) {
        dev_kfree_skb(na_dev->rx_skb[j]); /* was FREE_READ */
        na_dev->rx_skb[j] = NULL;
      }
      return (-ENOMEM);
    }    
  }

  NA_PRINTK2("  rx_dma_desc[0]: %X\n", (unsigned int)&na_dev->rx_dma_desc[0]);

  for (i = 0; i < NA_MAX_RX_BUF; i++) {
    na_dev->rx_dma_desc[i].src_buf_ptr = 
      (unsigned long) virt_to_bus(na_dev->rx_skb[i]->data);
    na_dev->rx_dma_desc[i].buf_len     = NA_MAX_ETH_FRAME + 2;
    na_dev->rx_dma_desc[i].stat        = 0;
    // Clear the F bit.
    na_dev->rx_dma_desc[i].buf_len     &= ~NETARM_DMA_BD1_FULL;
  }
  na_dev->rx_dma_desc[NA_MAX_RX_BUF-1].src_buf_ptr |= NETARM_DMA_BD0_WRAP;
  na_dev->rx_sw_index = 0;

  NA_PRINTK("netarmeth_init: returning 0\n");
  return (0);
}

module_init(netarmeth_init);
MODULE_DESCRIPTION("NET+ARM ethernet driver");
MODULE_AUTHOR("Rolf Peukert <peukert@imms.de>");