summaryrefslogtreecommitdiffstats
path: root/uClinux-2.4.20-uc1/fs/dcache.c
blob: ffc6dd458214802967897c69b95dae5a9bc1e8ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
/*
 * fs/dcache.c
 *
 * Complete reimplementation
 * (C) 1997 Thomas Schoebel-Theuer,
 * with heavy changes by Linus Torvalds
 */

/*
 * Notes on the allocation strategy:
 *
 * The dcache is a master of the icache - whenever a dcache entry
 * exists, the inode will always exist. "iput()" is done either when
 * the dcache entry is deleted or garbage collected.
 */

#include <linux/config.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/cache.h>
#include <linux/module.h>

#include <asm/uaccess.h>

#define DCACHE_PARANOIA 1
/* #define DCACHE_DEBUG 1 */

spinlock_t dcache_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;

/* Right now the dcache depends on the kernel lock */
#define check_lock()	if (!kernel_locked()) BUG()

static kmem_cache_t *dentry_cache; 

/*
 * This is the single most critical data structure when it comes
 * to the dcache: the hashtable for lookups. Somebody should try
 * to make this good - I've just made it work.
 *
 * This hash-function tries to avoid losing too many bits of hash
 * information, yet avoid using a prime hash-size or similar.
 */
#define D_HASHBITS     d_hash_shift
#define D_HASHMASK     d_hash_mask

static unsigned int d_hash_mask;
static unsigned int d_hash_shift;
static struct list_head *dentry_hashtable;
static LIST_HEAD(dentry_unused);

/* Statistics gathering. */
struct dentry_stat_t dentry_stat = {0, 0, 45, 0,};

/* no dcache_lock, please */
static inline void d_free(struct dentry *dentry)
{
	if (dentry->d_op && dentry->d_op->d_release)
		dentry->d_op->d_release(dentry);
	if (dname_external(dentry)) 
		kfree(dentry->d_name.name);
	kmem_cache_free(dentry_cache, dentry); 
	dentry_stat.nr_dentry--;
}

/*
 * Release the dentry's inode, using the filesystem
 * d_iput() operation if defined.
 * Called with dcache_lock held, drops it.
 */
static inline void dentry_iput(struct dentry * dentry)
{
	struct inode *inode = dentry->d_inode;
	if (inode) {
		dentry->d_inode = NULL;
		list_del_init(&dentry->d_alias);
		spin_unlock(&dcache_lock);
		if (dentry->d_op && dentry->d_op->d_iput)
			dentry->d_op->d_iput(dentry, inode);
		else
			iput(inode);
	} else
		spin_unlock(&dcache_lock);
}

/* 
 * This is dput
 *
 * This is complicated by the fact that we do not want to put
 * dentries that are no longer on any hash chain on the unused
 * list: we'd much rather just get rid of them immediately.
 *
 * However, that implies that we have to traverse the dentry
 * tree upwards to the parents which might _also_ now be
 * scheduled for deletion (it may have been only waiting for
 * its last child to go away).
 *
 * This tail recursion is done by hand as we don't want to depend
 * on the compiler to always get this right (gcc generally doesn't).
 * Real recursion would eat up our stack space.
 */

/*
 * dput - release a dentry
 * @dentry: dentry to release 
 *
 * Release a dentry. This will drop the usage count and if appropriate
 * call the dentry unlink method as well as removing it from the queues and
 * releasing its resources. If the parent dentries were scheduled for release
 * they too may now get deleted.
 *
 * no dcache lock, please.
 */

void dput(struct dentry *dentry)
{
	if (!dentry)
		return;

repeat:
	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
		return;

	/* dput on a free dentry? */
	if (!list_empty(&dentry->d_lru))
		BUG();
	/*
	 * AV: ->d_delete() is _NOT_ allowed to block now.
	 */
	if (dentry->d_op && dentry->d_op->d_delete) {
		if (dentry->d_op->d_delete(dentry))
			goto unhash_it;
	}
	/* Unreachable? Get rid of it */
	if (list_empty(&dentry->d_hash))
		goto kill_it;
	list_add(&dentry->d_lru, &dentry_unused);
	dentry_stat.nr_unused++;
	spin_unlock(&dcache_lock);
	return;

unhash_it:
	list_del_init(&dentry->d_hash);

kill_it: {
		struct dentry *parent;
		list_del(&dentry->d_child);
		/* drops the lock, at that point nobody can reach this dentry */
		dentry_iput(dentry);
		parent = dentry->d_parent;
		d_free(dentry);
		if (dentry == parent)
			return;
		dentry = parent;
		goto repeat;
	}
}

/**
 * d_invalidate - invalidate a dentry
 * @dentry: dentry to invalidate
 *
 * Try to invalidate the dentry if it turns out to be
 * possible. If there are other dentries that can be
 * reached through this one we can't delete it and we
 * return -EBUSY. On success we return 0.
 *
 * no dcache lock.
 */
 
int d_invalidate(struct dentry * dentry)
{
	/*
	 * If it's already been dropped, return OK.
	 */
	spin_lock(&dcache_lock);
	if (list_empty(&dentry->d_hash)) {
		spin_unlock(&dcache_lock);
		return 0;
	}
	/*
	 * Check whether to do a partial shrink_dcache
	 * to get rid of unused child entries.
	 */
	if (!list_empty(&dentry->d_subdirs)) {
		spin_unlock(&dcache_lock);
		shrink_dcache_parent(dentry);
		spin_lock(&dcache_lock);
	}

	/*
	 * Somebody else still using it?
	 *
	 * If it's a directory, we can't drop it
	 * for fear of somebody re-populating it
	 * with children (even though dropping it
	 * would make it unreachable from the root,
	 * we might still populate it if it was a
	 * working directory or similar).
	 */
	if (atomic_read(&dentry->d_count) > 1) {
		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
			spin_unlock(&dcache_lock);
			return -EBUSY;
		}
	}

	list_del_init(&dentry->d_hash);
	spin_unlock(&dcache_lock);
	return 0;
}

/* This should be called _only_ with dcache_lock held */

static inline struct dentry * __dget_locked(struct dentry *dentry)
{
	atomic_inc(&dentry->d_count);
	if (atomic_read(&dentry->d_count) == 1) {
		dentry_stat.nr_unused--;
		list_del_init(&dentry->d_lru);
	}
	return dentry;
}

struct dentry * dget_locked(struct dentry *dentry)
{
	return __dget_locked(dentry);
}

/**
 * d_find_alias - grab a hashed alias of inode
 * @inode: inode in question
 *
 * If inode has a hashed alias - acquire the reference to alias and
 * return it. Otherwise return NULL. Notice that if inode is a directory
 * there can be only one alias and it can be unhashed only if it has
 * no children.
 */

struct dentry * d_find_alias(struct inode *inode)
{
	struct list_head *head, *next, *tmp;
	struct dentry *alias;

	spin_lock(&dcache_lock);
	head = &inode->i_dentry;
	next = inode->i_dentry.next;
	while (next != head) {
		tmp = next;
		next = tmp->next;
		alias = list_entry(tmp, struct dentry, d_alias);
		if (!list_empty(&alias->d_hash)) {
			__dget_locked(alias);
			spin_unlock(&dcache_lock);
			return alias;
		}
	}
	spin_unlock(&dcache_lock);
	return NULL;
}

/*
 *	Try to kill dentries associated with this inode.
 * WARNING: you must own a reference to inode.
 */
void d_prune_aliases(struct inode *inode)
{
	struct list_head *tmp, *head = &inode->i_dentry;
restart:
	spin_lock(&dcache_lock);
	tmp = head;
	while ((tmp = tmp->next) != head) {
		struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
		if (!atomic_read(&dentry->d_count)) {
			__dget_locked(dentry);
			spin_unlock(&dcache_lock);
			d_drop(dentry);
			dput(dentry);
			goto restart;
		}
	}
	spin_unlock(&dcache_lock);
}

/*
 * Throw away a dentry - free the inode, dput the parent.
 * This requires that the LRU list has already been
 * removed.
 * Called with dcache_lock, drops it and then regains.
 */
static inline void prune_one_dentry(struct dentry * dentry)
{
	struct dentry * parent;

	list_del_init(&dentry->d_hash);
	list_del(&dentry->d_child);
	dentry_iput(dentry);
	parent = dentry->d_parent;
	d_free(dentry);
	if (parent != dentry)
		dput(parent);
	spin_lock(&dcache_lock);
}

/**
 * prune_dcache - shrink the dcache
 * @count: number of entries to try and free
 *
 * Shrink the dcache. This is done when we need
 * more memory, or simply when we need to unmount
 * something (at which point we need to unuse
 * all dentries).
 *
 * This function may fail to free any resources if
 * all the dentries are in use.
 */
 
void prune_dcache(int count)
{
	spin_lock(&dcache_lock);
	for (;;) {
		struct dentry *dentry;
		struct list_head *tmp;

		tmp = dentry_unused.prev;

		if (tmp == &dentry_unused)
			break;
		list_del_init(tmp);
		dentry = list_entry(tmp, struct dentry, d_lru);

		/* If the dentry was recently referenced, don't free it. */
		if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
			dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
			list_add(&dentry->d_lru, &dentry_unused);
			continue;
		}
		dentry_stat.nr_unused--;

		/* Unused dentry with a count? */
		if (atomic_read(&dentry->d_count))
			BUG();

		prune_one_dentry(dentry);
		if (!--count)
			break;
	}
	spin_unlock(&dcache_lock);
}

/*
 * Shrink the dcache for the specified super block.
 * This allows us to unmount a device without disturbing
 * the dcache for the other devices.
 *
 * This implementation makes just two traversals of the
 * unused list.  On the first pass we move the selected
 * dentries to the most recent end, and on the second
 * pass we free them.  The second pass must restart after
 * each dput(), but since the target dentries are all at
 * the end, it's really just a single traversal.
 */

/**
 * shrink_dcache_sb - shrink dcache for a superblock
 * @sb: superblock
 *
 * Shrink the dcache for the specified super block. This
 * is used to free the dcache before unmounting a file
 * system
 */

void shrink_dcache_sb(struct super_block * sb)
{
	struct list_head *tmp, *next;
	struct dentry *dentry;

	/*
	 * Pass one ... move the dentries for the specified
	 * superblock to the most recent end of the unused list.
	 */
	spin_lock(&dcache_lock);
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		list_del(tmp);
		list_add(tmp, &dentry_unused);
	}

	/*
	 * Pass two ... free the dentries for this superblock.
	 */
repeat:
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		if (atomic_read(&dentry->d_count))
			continue;
		dentry_stat.nr_unused--;
		list_del_init(tmp);
		prune_one_dentry(dentry);
		goto repeat;
	}
	spin_unlock(&dcache_lock);
}

/*
 * Search for at least 1 mount point in the dentry's subdirs.
 * We descend to the next level whenever the d_subdirs
 * list is non-empty and continue searching.
 */
 
/**
 * have_submounts - check for mounts over a dentry
 * @parent: dentry to check.
 *
 * Return true if the parent or its subdirectories contain
 * a mount point
 */
 
int have_submounts(struct dentry *parent)
{
	struct dentry *this_parent = parent;
	struct list_head *next;

	spin_lock(&dcache_lock);
	if (d_mountpoint(parent))
		goto positive;
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		/* Have we found a mount point ? */
		if (d_mountpoint(dentry))
			goto positive;
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
			goto repeat;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != parent) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
		goto resume;
	}
	spin_unlock(&dcache_lock);
	return 0; /* No mount points found in tree */
positive:
	spin_unlock(&dcache_lock);
	return 1;
}

/*
 * Search the dentry child list for the specified parent,
 * and move any unused dentries to the end of the unused
 * list for prune_dcache(). We descend to the next level
 * whenever the d_subdirs list is non-empty and continue
 * searching.
 */
static int select_parent(struct dentry * parent)
{
	struct dentry *this_parent = parent;
	struct list_head *next;
	int found = 0;

	spin_lock(&dcache_lock);
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		if (!atomic_read(&dentry->d_count)) {
			list_del(&dentry->d_lru);
			list_add(&dentry->d_lru, dentry_unused.prev);
			found++;
		}
		/*
		 * Descend a level if the d_subdirs list is non-empty.
		 */
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
dentry->d_parent->d_name.name, dentry->d_name.name, found);
#endif
			goto repeat;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != parent) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
#endif
		goto resume;
	}
	spin_unlock(&dcache_lock);
	return found;
}

/**
 * shrink_dcache_parent - prune dcache
 * @parent: parent of entries to prune
 *
 * Prune the dcache to remove unused children of the parent dentry.
 */
 
void shrink_dcache_parent(struct dentry * parent)
{
	int found;

	while ((found = select_parent(parent)) != 0)
		prune_dcache(found);
}

/*
 * This is called from kswapd when we think we need some
 * more memory, but aren't really sure how much. So we
 * carefully try to free a _bit_ of our dcache, but not
 * too much.
 *
 * Priority:
 *   0 - very urgent: shrink everything
 *  ...
 *   6 - base-level: try to shrink a bit.
 */
int shrink_dcache_memory(int priority, unsigned int gfp_mask)
{
	int count = 0;

	/*
	 * Nasty deadlock avoidance.
	 *
	 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
	 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->
	 * put_inode->ext2_discard_prealloc->ext2_free_blocks->lock_super->
	 * DEADLOCK.
	 *
	 * We should make sure we don't hold the superblock lock over
	 * block allocations, but for now:
	 */
	if (!(gfp_mask & __GFP_FS))
		return 0;

	count = dentry_stat.nr_unused / priority;

	prune_dcache(count);
	return kmem_cache_shrink(dentry_cache);
}

#define NAME_ALLOC_LEN(len)	((len+16) & ~15)

/**
 * d_alloc	-	allocate a dcache entry
 * @parent: parent of entry to allocate
 * @name: qstr of the name
 *
 * Allocates a dentry. It returns %NULL if there is insufficient memory
 * available. On a success the dentry is returned. The name passed in is
 * copied and the copy passed in may be reused after this call.
 */
 
struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)
{
	char * str;
	struct dentry *dentry;

	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 
	if (!dentry)
		return NULL;

	if (name->len > DNAME_INLINE_LEN-1) {
		str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL);
		if (!str) {
			kmem_cache_free(dentry_cache, dentry); 
			return NULL;
		}
	} else
		str = dentry->d_iname; 

	memcpy(str, name->name, name->len);
	str[name->len] = 0;

	atomic_set(&dentry->d_count, 1);
	dentry->d_vfs_flags = 0;
	dentry->d_flags = 0;
	dentry->d_inode = NULL;
	dentry->d_parent = NULL;
	dentry->d_sb = NULL;
	dentry->d_name.name = str;
	dentry->d_name.len = name->len;
	dentry->d_name.hash = name->hash;
	dentry->d_op = NULL;
	dentry->d_fsdata = NULL;
	dentry->d_mounted = 0;
	INIT_LIST_HEAD(&dentry->d_hash);
	INIT_LIST_HEAD(&dentry->d_lru);
	INIT_LIST_HEAD(&dentry->d_subdirs);
	INIT_LIST_HEAD(&dentry->d_alias);
	if (parent) {
		dentry->d_parent = dget(parent);
		dentry->d_sb = parent->d_sb;
		spin_lock(&dcache_lock);
		list_add(&dentry->d_child, &parent->d_subdirs);
		spin_unlock(&dcache_lock);
	} else
		INIT_LIST_HEAD(&dentry->d_child);

	dentry_stat.nr_dentry++;
	return dentry;
}

/**
 * d_instantiate - fill in inode information for a dentry
 * @entry: dentry to complete
 * @inode: inode to attach to this dentry
 *
 * Fill in inode information in the entry.
 *
 * This turns negative dentries into productive full members
 * of society.
 *
 * NOTE! This assumes that the inode count has been incremented
 * (or otherwise set) by the caller to indicate that it is now
 * in use by the dcache.
 */
 
void d_instantiate(struct dentry *entry, struct inode * inode)
{
	if (!list_empty(&entry->d_alias)) BUG();
	spin_lock(&dcache_lock);
	if (inode)
		list_add(&entry->d_alias, &inode->i_dentry);
	entry->d_inode = inode;
	spin_unlock(&dcache_lock);
}

/**
 * d_alloc_root - allocate root dentry
 * @root_inode: inode to allocate the root for
 *
 * Allocate a root ("/") dentry for the inode given. The inode is
 * instantiated and returned. %NULL is returned if there is insufficient
 * memory or the inode passed is %NULL.
 */
 
struct dentry * d_alloc_root(struct inode * root_inode)
{
	struct dentry *res = NULL;

	if (root_inode) {
		res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 });
		if (res) {
			res->d_sb = root_inode->i_sb;
			res->d_parent = res;
			d_instantiate(res, root_inode);
		}
	}
	return res;
}

static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash)
{
	hash += (unsigned long) parent / L1_CACHE_BYTES;
	hash = hash ^ (hash >> D_HASHBITS);
	return dentry_hashtable + (hash & D_HASHMASK);
}

/**
 * d_lookup - search for a dentry
 * @parent: parent dentry
 * @name: qstr of name we wish to find
 *
 * Searches the children of the parent dentry for the name in question. If
 * the dentry is found its reference count is incremented and the dentry
 * is returned. The caller must use d_put to free the entry when it has
 * finished using it. %NULL is returned on failure.
 */
 
struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
{
	unsigned int len = name->len;
	unsigned int hash = name->hash;
	const unsigned char *str = name->name;
	struct list_head *head = d_hash(parent,hash);
	struct list_head *tmp;

	spin_lock(&dcache_lock);
	tmp = head->next;
	for (;;) {
		struct dentry * dentry = list_entry(tmp, struct dentry, d_hash);
		if (tmp == head)
			break;
		tmp = tmp->next;
		if (dentry->d_name.hash != hash)
			continue;
		if (dentry->d_parent != parent)
			continue;
		if (parent->d_op && parent->d_op->d_compare) {
			if (parent->d_op->d_compare(parent, &dentry->d_name, name))
				continue;
		} else {
			if (dentry->d_name.len != len)
				continue;
			if (memcmp(dentry->d_name.name, str, len))
				continue;
		}
		__dget_locked(dentry);
		dentry->d_vfs_flags |= DCACHE_REFERENCED;
		spin_unlock(&dcache_lock);
		return dentry;
	}
	spin_unlock(&dcache_lock);
	return NULL;
}

/**
 * d_validate - verify dentry provided from insecure source
 * @dentry: The dentry alleged to be valid child of @dparent
 * @dparent: The parent dentry (known to be valid)
 * @hash: Hash of the dentry
 * @len: Length of the name
 *
 * An insecure source has sent us a dentry, here we verify it and dget() it.
 * This is used by ncpfs in its readdir implementation.
 * Zero is returned in the dentry is invalid.
 */
 
int d_validate(struct dentry *dentry, struct dentry *dparent)
{
	unsigned long dent_addr = (unsigned long) dentry;
	unsigned long min_addr = PAGE_OFFSET;
	unsigned long align_mask = 0x0F;
	struct list_head *base, *lhp;

	if (dent_addr < min_addr)
		goto out;
	if (dent_addr > (unsigned long)high_memory - sizeof(struct dentry))
		goto out;
	if (dent_addr & align_mask)
		goto out;
	if ((!kern_addr_valid(dent_addr)) || (!kern_addr_valid(dent_addr -1 +
						sizeof(struct dentry))))
		goto out;

	if (dentry->d_parent != dparent)
		goto out;

	spin_lock(&dcache_lock);
	lhp = base = d_hash(dparent, dentry->d_name.hash);
	while ((lhp = lhp->next) != base) {
		if (dentry == list_entry(lhp, struct dentry, d_hash)) {
			__dget_locked(dentry);
			spin_unlock(&dcache_lock);
			return 1;
		}
	}
	spin_unlock(&dcache_lock);
out:
	return 0;
}

/*
 * When a file is deleted, we have two options:
 * - turn this dentry into a negative dentry
 * - unhash this dentry and free it.
 *
 * Usually, we want to just turn this into
 * a negative dentry, but if anybody else is
 * currently using the dentry or the inode
 * we can't do that and we fall back on removing
 * it from the hash queues and waiting for
 * it to be deleted later when it has no users
 */
 
/**
 * d_delete - delete a dentry
 * @dentry: The dentry to delete
 *
 * Turn the dentry into a negative dentry if possible, otherwise
 * remove it from the hash queues so it can be deleted later
 */
 
void d_delete(struct dentry * dentry)
{
	/*
	 * Are we the only user?
	 */
	spin_lock(&dcache_lock);
	if (atomic_read(&dentry->d_count) == 1) {
		dentry_iput(dentry);
		return;
	}
	spin_unlock(&dcache_lock);

	/*
	 * If not, just drop the dentry and let dput
	 * pick up the tab..
	 */
	d_drop(dentry);
}

/**
 * d_rehash	- add an entry back to the hash
 * @entry: dentry to add to the hash
 *
 * Adds a dentry to the hash according to its name.
 */
 
void d_rehash(struct dentry * entry)
{
	struct list_head *list = d_hash(entry->d_parent, entry->d_name.hash);
	if (!list_empty(&entry->d_hash)) BUG();
	spin_lock(&dcache_lock);
	list_add(&entry->d_hash, list);
	spin_unlock(&dcache_lock);
}

#define do_switch(x,y) do { \
	__typeof__ (x) __tmp = x; \
	x = y; y = __tmp; } while (0)

/*
 * When switching names, the actual string doesn't strictly have to
 * be preserved in the target - because we're dropping the target
 * anyway. As such, we can just do a simple memcpy() to copy over
 * the new name before we switch.
 *
 * Note that we have to be a lot more careful about getting the hash
 * switched - we have to switch the hash value properly even if it
 * then no longer matches the actual (corrupted) string of the target.
 * The hash value has to match the hash queue that the dentry is on..
 */
static inline void switch_names(struct dentry * dentry, struct dentry * target)
{
	const unsigned char *old_name, *new_name;

	check_lock();
	memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN); 
	old_name = target->d_name.name;
	new_name = dentry->d_name.name;
	if (old_name == target->d_iname)
		old_name = dentry->d_iname;
	if (new_name == dentry->d_iname)
		new_name = target->d_iname;
	target->d_name.name = new_name;
	dentry->d_name.name = old_name;
}

/*
 * We cannibalize "target" when moving dentry on top of it,
 * because it's going to be thrown away anyway. We could be more
 * polite about it, though.
 *
 * This forceful removal will result in ugly /proc output if
 * somebody holds a file open that got deleted due to a rename.
 * We could be nicer about the deleted file, and let it show
 * up under the name it got deleted rather than the name that
 * deleted it.
 *
 * Careful with the hash switch. The hash switch depends on
 * the fact that any list-entry can be a head of the list.
 * Think about it.
 */
 
/**
 * d_move - move a dentry
 * @dentry: entry to move
 * @target: new dentry
 *
 * Update the dcache to reflect the move of a file name. Negative
 * dcache entries should not be moved in this way.
 */
  
void d_move(struct dentry * dentry, struct dentry * target)
{
	check_lock();

	if (!dentry->d_inode)
		printk(KERN_WARNING "VFS: moving negative dcache entry\n");

	spin_lock(&dcache_lock);
	/* Move the dentry to the target hash queue */
	list_del(&dentry->d_hash);
	list_add(&dentry->d_hash, &target->d_hash);

	/* Unhash the target: dput() will then get rid of it */
	list_del_init(&target->d_hash);

	list_del(&dentry->d_child);
	list_del(&target->d_child);

	/* Switch the parents and the names.. */
	switch_names(dentry, target);
	do_switch(dentry->d_parent, target->d_parent);
	do_switch(dentry->d_name.len, target->d_name.len);
	do_switch(dentry->d_name.hash, target->d_name.hash);

	/* And add them back to the (new) parent lists */
	list_add(&target->d_child, &target->d_parent->d_subdirs);
	list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
	spin_unlock(&dcache_lock);
}

/**
 * d_path - return the path of a dentry
 * @dentry: dentry to report
 * @vfsmnt: vfsmnt to which the dentry belongs
 * @root: root dentry
 * @rootmnt: vfsmnt to which the root dentry belongs
 * @buffer: buffer to return value in
 * @buflen: buffer length
 *
 * Convert a dentry into an ASCII path name. If the entry has been deleted
 * the string " (deleted)" is appended. Note that this is ambiguous. Returns
 * the buffer.
 *
 * "buflen" should be %PAGE_SIZE or more. Caller holds the dcache_lock.
 */
char * __d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
		struct dentry *root, struct vfsmount *rootmnt,
		char *buffer, int buflen)
{
	char * end = buffer+buflen;
	char * retval;
	int namelen;

	*--end = '\0';
	buflen--;
	if (!IS_ROOT(dentry) && list_empty(&dentry->d_hash)) {
		buflen -= 10;
		end -= 10;
		memcpy(end, " (deleted)", 10);
	}

	/* Get '/' right */
	retval = end-1;
	*retval = '/';

	for (;;) {
		struct dentry * parent;

		if (dentry == root && vfsmnt == rootmnt)
			break;
		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
			/* Global root? */
			if (vfsmnt->mnt_parent == vfsmnt)
				goto global_root;
			dentry = vfsmnt->mnt_mountpoint;
			vfsmnt = vfsmnt->mnt_parent;
			continue;
		}
		parent = dentry->d_parent;
		namelen = dentry->d_name.len;
		buflen -= namelen + 1;
		if (buflen < 0)
			break;
		end -= namelen;
		memcpy(end, dentry->d_name.name, namelen);
		*--end = '/';
		retval = end;
		dentry = parent;
	}
	return retval;
global_root:
	namelen = dentry->d_name.len;
	buflen -= namelen;
	if (buflen >= 0) {
		retval -= namelen-1;	/* hit the slash */
		memcpy(retval, dentry->d_name.name, namelen);
	}
	return retval;
}

/*
 * NOTE! The user-level library version returns a
 * character pointer. The kernel system call just
 * returns the length of the buffer filled (which
 * includes the ending '\0' character), or a negative
 * error value. So libc would do something like
 *
 *	char *getcwd(char * buf, size_t size)
 *	{
 *		int retval;
 *
 *		retval = sys_getcwd(buf, size);
 *		if (retval >= 0)
 *			return buf;
 *		errno = -retval;
 *		return NULL;
 *	}
 */
asmlinkage long sys_getcwd(char *buf, unsigned long size)
{
	int error;
	struct vfsmount *pwdmnt, *rootmnt;
	struct dentry *pwd, *root;
	char *page = (char *) __get_free_page(GFP_USER);

	if (!page)
		return -ENOMEM;

	read_lock(&current->fs->lock);
	pwdmnt = mntget(current->fs->pwdmnt);
	pwd = dget(current->fs->pwd);
	rootmnt = mntget(current->fs->rootmnt);
	root = dget(current->fs->root);
	read_unlock(&current->fs->lock);

	error = -ENOENT;
	/* Has the current directory has been unlinked? */
	spin_lock(&dcache_lock);
	if (pwd->d_parent == pwd || !list_empty(&pwd->d_hash)) {
		unsigned long len;
		char * cwd;

		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
		spin_unlock(&dcache_lock);

		error = -ERANGE;
		len = PAGE_SIZE + page - cwd;
		if (len <= size) {
			error = len;
			if (copy_to_user(buf, cwd, len))
				error = -EFAULT;
		}
	} else
		spin_unlock(&dcache_lock);
	dput(pwd);
	mntput(pwdmnt);
	dput(root);
	mntput(rootmnt);
	free_page((unsigned long) page);
	return error;
}

/*
 * Test whether new_dentry is a subdirectory of old_dentry.
 *
 * Trivially implemented using the dcache structure
 */

/**
 * is_subdir - is new dentry a subdirectory of old_dentry
 * @new_dentry: new dentry
 * @old_dentry: old dentry
 *
 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
 * Returns 0 otherwise.
 */
  
int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
{
	int result;

	result = 0;
	for (;;) {
		if (new_dentry != old_dentry) {
			struct dentry * parent = new_dentry->d_parent;
			if (parent == new_dentry)
				break;
			new_dentry = parent;
			continue;
		}
		result = 1;
		break;
	}
	return result;
}

void d_genocide(struct dentry *root)
{
	struct dentry *this_parent = root;
	struct list_head *next;

	spin_lock(&dcache_lock);
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		if (d_unhashed(dentry)||!dentry->d_inode)
			continue;
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
			goto repeat;
		}
		atomic_dec(&dentry->d_count);
	}
	if (this_parent != root) {
		next = this_parent->d_child.next; 
		atomic_dec(&this_parent->d_count);
		this_parent = this_parent->d_parent;
		goto resume;
	}
	spin_unlock(&dcache_lock);
}

/**
 * find_inode_number - check for dentry with name
 * @dir: directory to check
 * @name: Name to find.
 *
 * Check whether a dentry already exists for the given name,
 * and return the inode number if it has an inode. Otherwise
 * 0 is returned.
 *
 * This routine is used to post-process directory listings for
 * filesystems using synthetic inode numbers, and is necessary
 * to keep getcwd() working.
 */
 
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
	struct dentry * dentry;
	ino_t ino = 0;

	/*
	 * Check for a fs-specific hash function. Note that we must
	 * calculate the standard hash first, as the d_op->d_hash()
	 * routine may choose to leave the hash value unchanged.
	 */
	name->hash = full_name_hash(name->name, name->len);
	if (dir->d_op && dir->d_op->d_hash)
	{
		if (dir->d_op->d_hash(dir, name) != 0)
			goto out;
	}

	dentry = d_lookup(dir, name);
	if (dentry)
	{
		if (dentry->d_inode)
			ino = dentry->d_inode->i_ino;
		dput(dentry);
	}
out:
	return ino;
}

static void __init dcache_init(unsigned long mempages)
{
	struct list_head *d;
	unsigned long order;
	unsigned int nr_hash;
	int i;

	/* 
	 * A constructor could be added for stable state like the lists,
	 * but it is probably not worth it because of the cache nature
	 * of the dcache. 
	 * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN
	 * flag could be removed here, to hint to the allocator that
	 * it should not try to get multiple page regions.  
	 */
	dentry_cache = kmem_cache_create("dentry_cache",
					 sizeof(struct dentry),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL, NULL);
	if (!dentry_cache)
		panic("Cannot create dentry cache");

#if PAGE_SHIFT < 13
	mempages >>= (13 - PAGE_SHIFT);
#endif
	mempages *= sizeof(struct list_head);
	for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
		;

	do {
		unsigned long tmp;

		nr_hash = (1UL << order) * PAGE_SIZE /
			sizeof(struct list_head);
		d_hash_mask = (nr_hash - 1);

		tmp = nr_hash;
		d_hash_shift = 0;
		while ((tmp >>= 1UL) != 0UL)
			d_hash_shift++;

		dentry_hashtable = (struct list_head *)
			__get_free_pages(GFP_ATOMIC, order);
	} while (dentry_hashtable == NULL && --order >= 0);

	printk(KERN_INFO "Dentry cache hash table entries: %d (order: %ld, %ld bytes)\n",
			nr_hash, order, (PAGE_SIZE << order));

	if (!dentry_hashtable)
		panic("Failed to allocate dcache hash table\n");

	d = dentry_hashtable;
	i = nr_hash;
	do {
		INIT_LIST_HEAD(d);
		d++;
		i--;
	} while (i);
}

static void init_buffer_head(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR)
	{
		struct buffer_head * bh = (struct buffer_head *) foo;

		memset(bh, 0, sizeof(*bh));
		init_waitqueue_head(&bh->b_wait);
	}
}

/* SLAB cache for __getname() consumers */
kmem_cache_t *names_cachep;

/* SLAB cache for file structures */
kmem_cache_t *filp_cachep;

/* SLAB cache for dquot structures */
kmem_cache_t *dquot_cachep;

/* SLAB cache for buffer_head structures */
kmem_cache_t *bh_cachep;
EXPORT_SYMBOL(bh_cachep);

extern void bdev_cache_init(void);
extern void cdev_cache_init(void);
extern void iobuf_cache_init(void);

void __init vfs_caches_init(unsigned long mempages)
{
	bh_cachep = kmem_cache_create("buffer_head",
			sizeof(struct buffer_head), 0,
			SLAB_HWCACHE_ALIGN, init_buffer_head, NULL);
	if(!bh_cachep)
		panic("Cannot create buffer head SLAB cache");

	names_cachep = kmem_cache_create("names_cache", 
			PATH_MAX, 0, 
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (!names_cachep)
		panic("Cannot create names SLAB cache");

	filp_cachep = kmem_cache_create("filp", 
			sizeof(struct file), 0,
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if(!filp_cachep)
		panic("Cannot create filp SLAB cache");

#if defined (CONFIG_QUOTA)
	dquot_cachep = kmem_cache_create("dquot", 
			sizeof(struct dquot), sizeof(unsigned long) * 4,
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (!dquot_cachep)
		panic("Cannot create dquot SLAB cache");
#endif

	dcache_init(mempages);
	inode_init(mempages);
	files_init(mempages); 
	mnt_init(mempages);
	bdev_cache_init();
	cdev_cache_init();
	iobuf_cache_init();
}