summaryrefslogtreecommitdiffstats
path: root/uClinux-2.4.20-uc1/include/asm-armnommu/proc-armv/cache.h
blob: 5f23fd427769497bd04f67a038592385d7ee979d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
 *  linux/include/asm-arm/proc-armv/cache.h
 *
 *  Copyright (C) 1999-2001 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <asm/mman.h>

/*
 * Cache handling for 32-bit ARM processors.
 *
 * Note that on ARM, we have a more accurate specification than that
 * Linux's "flush".  We therefore do not use "flush" here, but instead
 * use:
 *
 * clean:      the act of pushing dirty cache entries out to memory.
 * invalidate: the act of discarding data held within the cache,
 *             whether it is dirty or not.
 */

/*
 * Generic I + D cache
 */
#define flush_cache_all()						\
	do {								\
		cpu_cache_clean_invalidate_all();			\
	} while (0)

/* This is always called for current->mm */
#define flush_cache_mm(_mm)						\
	do {								\
		if ((_mm) == current->active_mm)			\
			cpu_cache_clean_invalidate_all();		\
	} while (0)

#define flush_cache_range(_mm,_start,_end)				\
	do {								\
		if ((_mm) == current->mm)				\
			cpu_cache_clean_invalidate_range((_start), (_end), 1); \
	} while (0)

#define flush_cache_page(_vma,_vmaddr)					\
	do {								\
		if (1 /* DAVIDM (_vma)->vm_mm == current->mm */) {			\
			cpu_cache_clean_invalidate_range((_vmaddr),	\
				(_vmaddr) + PAGE_SIZE,			\
				((_vma)->vm_flags & VM_EXEC));		\
		} \
	} while (0)

/*
 * This flushes back any buffered write data.  We have to clean the entries
 * in the cache for this page.  This does not invalidate either I or D caches.
 */
static __inline__ void flush_page_to_ram(struct page *page)
{
	cpu_flush_ram_page(page_address(page));
}

/*
 * D cache only
 */

#define invalidate_dcache_range(_s,_e)	cpu_dcache_invalidate_range((_s),(_e))
#define clean_dcache_range(_s,_e)	cpu_dcache_clean_range((_s),(_e))
#define flush_dcache_range(_s,_e)	cpu_cache_clean_invalidate_range((_s),(_e),0)

/*
 * FIXME: We currently clean the dcache for this page.  Should we
 * also invalidate the Dcache?  And what about the Icache? -- rmk
 */
#define flush_dcache_page(page)		cpu_dcache_clean_page(page_address(page))

#define clean_dcache_entry(_s)		cpu_dcache_clean_entry((unsigned long)(_s))

/*
 * I cache only
 */
#define flush_icache_range(_s,_e)					\
	do {								\
		cpu_icache_invalidate_range((_s), (_e));		\
	} while (0)

/* DAVIDM - this could be better */
#define flush_icache_user_range(vma,pg,adr,len) flush_cache_all()

#define flush_icache_page(vma,pg)					\
	do {								\
		if ((vma)->vm_flags & PROT_EXEC)			\
			cpu_icache_invalidate_page(page_address(pg));	\
	} while (0)

/*
 * Old ARM MEMC stuff.  This supports the reversed mapping handling that
 * we have on the older 26-bit machines.  We don't have a MEMC chip, so...
 */
#define memc_update_all()		do { } while (0)
#define memc_update_mm(mm)		do { } while (0)
#define memc_update_addr(mm,pte,log)	do { } while (0)
#define memc_clear(mm,physaddr)		do { } while (0)

/*
 * TLB flushing.
 *
 *  - flush_tlb_all()			flushes all processes TLBs
 *  - flush_tlb_mm(mm)			flushes the specified mm context TLB's
 *  - flush_tlb_page(vma, vmaddr)	flushes TLB for specified page
 *  - flush_tlb_range(mm, start, end)	flushes TLB for specified range of pages
 *
 * We drain the write buffer in here to ensure that the page tables in ram
 * are really up to date.  It is more efficient to do this here...
 */

/*
 * Notes:
 *  current->active_mm is the currently active memory description.
 *  current->mm == NULL iff we are lazy.
 */
#define flush_tlb_all()							\
	do {								\
		cpu_tlb_invalidate_all();				\
	} while (0)

/*
 * Flush all user virtual address space translations described by `_mm'.
 *
 * Currently, this is always called for current->mm, which should be
 * the same as current->active_mm.  This is currently not be called for
 * the lazy TLB case.
 */
#define flush_tlb_mm(_mm)						\
	do {								\
		if ((_mm) == current->active_mm)			\
			cpu_tlb_invalidate_all();			\
	} while (0)

/*
 * Flush the specified range of user virtual address space translations.
 *
 * _mm may not be current->active_mm, but may not be NULL.
 */
#define flush_tlb_range(_mm,_start,_end)				\
	do {								\
		if ((_mm) == current->active_mm)			\
			cpu_tlb_invalidate_range((_start), (_end));	\
	} while (0)

/*
 * Flush the specified user virtual address space translation.
 */
#define flush_tlb_page(_vma,_page)					\
	do {								\
		if (1 /* DAVIDM (_vma)->vm_mm == current->active_mm */)		\
			cpu_tlb_invalidate_page((_page),		\
				 ((_vma)->vm_flags & VM_EXEC));		\
	} while (0)

/*
 * 32-bit ARM Processors don't have any MMU cache
 */
#define update_mmu_cache(vma,address,pte) do { } while (0)