summaryrefslogtreecommitdiffstats
path: root/uClinux-2.4.31-uc0/fs/inode.c
blob: 22c49f2e024421ab3e2bb37468f7cac45d461dcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
/*
 * linux/fs/inode.c
 *
 * (C) 1997 Linus Torvalds
 */

#include <linux/config.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/quotaops.h>
#include <linux/slab.h>
#include <linux/cache.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/prefetch.h>
#include <linux/locks.h>

/*
 * New inode.c implementation.
 *
 * This implementation has the basic premise of trying
 * to be extremely low-overhead and SMP-safe, yet be
 * simple enough to be "obviously correct".
 *
 * Famous last words.
 */

/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */

/* #define INODE_PARANOIA 1 */
/* #define INODE_DEBUG 1 */

/*
 * Inode lookup is no longer as critical as it used to be:
 * most of the lookups are going to be through the dcache.
 */
#define I_HASHBITS	i_hash_shift
#define I_HASHMASK	i_hash_mask

static unsigned int i_hash_mask;
static unsigned int i_hash_shift;

/*
 * Each inode can be on two separate lists. One is
 * the hash list of the inode, used for lookups. The
 * other linked list is the "type" list:
 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
 *  "dirty"  - as "in_use" but also dirty
 *  "unused" - valid inode, i_count = 0, no pages in the pagecache
 *  "unused_pagecache" - valid inode, i_count = 0, data in the pagecache
 *
 * A "dirty" list is maintained for each super block,
 * allowing for low-overhead inode sync() operations.
 */

static LIST_HEAD(inode_in_use);
static LIST_HEAD(inode_unused);
static LIST_HEAD(inode_unused_pagecache);
static struct list_head *inode_hashtable;
static LIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */

/*
 * A simple spinlock to protect the list manipulations.
 *
 * NOTE! You also have to own the lock if you change
 * the i_state of an inode while it is in use..
 */
static spinlock_t inode_lock = SPIN_LOCK_UNLOCKED;

/*
 * Statistics gathering..
 */
struct inodes_stat_t inodes_stat;

static kmem_cache_t * inode_cachep;

static struct inode *alloc_inode(struct super_block *sb)
{
	static struct address_space_operations empty_aops;
	static struct inode_operations empty_iops;
	static struct file_operations empty_fops;
	struct inode *inode;

	if (sb->s_op->alloc_inode)
		inode = sb->s_op->alloc_inode(sb);
	else {
		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
		/* will die */
		if (inode)
			memset(&inode->u, 0, sizeof(inode->u));
	}

	if (inode) {
		struct address_space * const mapping = &inode->i_data;

		inode->i_sb = sb;
		inode->i_dev = sb->s_dev;
		inode->i_blkbits = sb->s_blocksize_bits;
		inode->i_flags = 0;
		atomic_set(&inode->i_count, 1);
		inode->i_sock = 0;
		inode->i_op = &empty_iops;
		inode->i_fop = &empty_fops;
		inode->i_nlink = 1;
		atomic_set(&inode->i_writecount, 0);
		inode->i_size = 0;
		inode->i_blocks = 0;
		inode->i_bytes = 0;
		inode->i_generation = 0;
		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
		inode->i_pipe = NULL;
		inode->i_bdev = NULL;
		inode->i_cdev = NULL;

		mapping->a_ops = &empty_aops;
		mapping->host = inode;
		mapping->gfp_mask = GFP_HIGHUSER;
		inode->i_mapping = mapping;
	}
	return inode;
}

static void destroy_inode(struct inode *inode) 
{
	if (inode_has_buffers(inode))
		BUG();
	/* Reinitialise the waitqueue head because __wait_on_freeing_inode()
	   may have left stale entries on it which it can't remove (since
	   it knows we're freeing the inode right now */
	init_waitqueue_head(&inode->i_wait);
	if (inode->i_sb->s_op->destroy_inode)
		inode->i_sb->s_op->destroy_inode(inode);
	else
		kmem_cache_free(inode_cachep, inode);
}


/*
 * These are initializations that only need to be done
 * once, because the fields are idempotent across use
 * of the inode, so let the slab aware of that.
 */
void inode_init_once(struct inode *inode)
{
	memset(inode, 0, sizeof(*inode));
	__inode_init_once(inode);
}

void __inode_init_once(struct inode *inode)
{
	init_waitqueue_head(&inode->i_wait);
	INIT_LIST_HEAD(&inode->i_hash);
	INIT_LIST_HEAD(&inode->i_data.clean_pages);
	INIT_LIST_HEAD(&inode->i_data.dirty_pages);
	INIT_LIST_HEAD(&inode->i_data.locked_pages);
	INIT_LIST_HEAD(&inode->i_dentry);
	INIT_LIST_HEAD(&inode->i_dirty_buffers);
	INIT_LIST_HEAD(&inode->i_dirty_data_buffers);
	INIT_LIST_HEAD(&inode->i_devices);
	sema_init(&inode->i_sem, 1);
	sema_init(&inode->i_zombie, 1);
	init_rwsem(&inode->i_alloc_sem);
	spin_lock_init(&inode->i_data.i_shared_lock);
}

static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	struct inode * inode = (struct inode *) foo;

	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR)
		inode_init_once(inode);
}

/*
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but
 * move it onto the dirty list only if it is hashed.
 * If it was not hashed, it will never be added to
 * the dirty list even if it is later hashed, as it
 * will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_
 * you start marking them dirty..
 */
 
/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
 */
 
void __mark_inode_dirty(struct inode *inode, int flags)
{
	struct super_block * sb = inode->i_sb;

	if (!sb)
		return;

	/* Don't do this for I_DIRTY_PAGES - that doesn't actually dirty the inode itself */
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
		if (sb->s_op && sb->s_op->dirty_inode)
			sb->s_op->dirty_inode(inode);
	}

	/* avoid the locking if we can */
	if ((inode->i_state & flags) == flags)
		return;

	spin_lock(&inode_lock);
	if ((inode->i_state & flags) != flags) {
		inode->i_state |= flags;
		/* Only add valid (ie hashed) inodes to the dirty list */
		if (!(inode->i_state & (I_LOCK|I_FREEING|I_CLEAR)) &&
		    !list_empty(&inode->i_hash)) {
			list_del(&inode->i_list);
			list_add(&inode->i_list, &sb->s_dirty);
		}
	}
	spin_unlock(&inode_lock);
}

static void __wait_on_inode(struct inode * inode)
{
	DECLARE_WAITQUEUE(wait, current);

	add_wait_queue(&inode->i_wait, &wait);
repeat:
	set_current_state(TASK_UNINTERRUPTIBLE);
	if (inode->i_state & I_LOCK) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&inode->i_wait, &wait);
	current->state = TASK_RUNNING;
}

static inline void wait_on_inode(struct inode *inode)
{
	if (inode->i_state & I_LOCK)
		__wait_on_inode(inode);
}

/*
 * If we try to find an inode in the inode hash while it is being deleted, we
 * have to wait until the filesystem completes its deletion before reporting
 * that it isn't found.  This is because iget will immediately call
 * ->read_inode, and we want to be sure that evidence of the deletion is found
 * by ->read_inode.
 *
 * Unlike the 2.6 version, this call call cannot return early, since inodes
 * do not share wait queue. Therefore, we don't call remove_wait_queue(); it
 * would be dangerous to do so since the inode may have already been freed, 
 * and it's unnecessary, since the inode is definitely going to get freed.
 *
 * This is called with inode_lock held.
 */
static void __wait_on_freeing_inode(struct inode *inode)
{
        DECLARE_WAITQUEUE(wait, current);

        add_wait_queue(&inode->i_wait, &wait);
        set_current_state(TASK_UNINTERRUPTIBLE);
        spin_unlock(&inode_lock);
        schedule();

        spin_lock(&inode_lock);
}

static inline void write_inode(struct inode *inode, int sync)
{
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
		inode->i_sb->s_op->write_inode(inode, sync);
}

static inline void __iget(struct inode * inode)
{
	if (atomic_read(&inode->i_count)) {
		atomic_inc(&inode->i_count);
		return;
	}
	atomic_inc(&inode->i_count);
	if (!(inode->i_state & (I_DIRTY|I_LOCK))) {
		list_del(&inode->i_list);
		list_add(&inode->i_list, &inode_in_use);
	}
	inodes_stat.nr_unused--;
}

static inline void __refile_inode(struct inode *inode)
{
	struct list_head *to;

	if (inode->i_state & I_FREEING)
		return;
	if (list_empty(&inode->i_hash))
		return;

	if (inode->i_state & I_DIRTY)
		to = &inode->i_sb->s_dirty;
	else if (atomic_read(&inode->i_count))
		to = &inode_in_use;
	else if (inode->i_data.nrpages)
		to = &inode_unused_pagecache;
	else
		to = &inode_unused;
	list_del(&inode->i_list);
	list_add(&inode->i_list, to);
}

void refile_inode(struct inode *inode)
{
	if (!inode)
		return;
	spin_lock(&inode_lock);
	if (!(inode->i_state & I_LOCK))
		__refile_inode(inode);
	spin_unlock(&inode_lock);
}

static inline void __sync_one(struct inode *inode, int sync)
{
	unsigned dirty;

	list_del(&inode->i_list);
	list_add(&inode->i_list, &inode->i_sb->s_locked_inodes);

	if (inode->i_state & (I_LOCK|I_FREEING))
		BUG();

	/* Set I_LOCK, reset I_DIRTY */
	dirty = inode->i_state & I_DIRTY;
	inode->i_state |= I_LOCK;
	inode->i_state &= ~I_DIRTY;
	spin_unlock(&inode_lock);

	filemap_fdatasync(inode->i_mapping);

	/* Don't write the inode if only I_DIRTY_PAGES was set */
	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC))
		write_inode(inode, sync);

	filemap_fdatawait(inode->i_mapping);

	spin_lock(&inode_lock);
	inode->i_state &= ~I_LOCK;
	__refile_inode(inode);
	wake_up(&inode->i_wait);
}

static inline void sync_one(struct inode *inode, int sync)
{
	while (inode->i_state & I_LOCK) {
		__iget(inode);
		spin_unlock(&inode_lock);
		__wait_on_inode(inode);
		iput(inode);
		spin_lock(&inode_lock);
	}

	__sync_one(inode, sync);
}

static inline void sync_list(struct list_head *head)
{
	struct list_head * tmp;

	while ((tmp = head->prev) != head) 
		__sync_one(list_entry(tmp, struct inode, i_list), 0);
}

static inline void wait_on_locked(struct list_head *head)
{
	struct list_head * tmp;
	while ((tmp = head->prev) != head) {
		struct inode *inode = list_entry(tmp, struct inode, i_list);
		__iget(inode);
		spin_unlock(&inode_lock);
		__wait_on_inode(inode);
		iput(inode);
		spin_lock(&inode_lock);
	}
}

static inline int try_to_sync_unused_list(struct list_head *head, int nr_inodes)
{
	struct list_head *tmp = head;
	struct inode *inode;

	while (nr_inodes && (tmp = tmp->prev) != head) {
		inode = list_entry(tmp, struct inode, i_list);

		if (!atomic_read(&inode->i_count)) {
			__sync_one(inode, 0);
			nr_inodes--;

			/* 
			 * __sync_one moved the inode to another list,
			 * so we have to start looking from the list head.
			 */
			tmp = head;
		}
	}

	return nr_inodes;
}

void sync_inodes_sb(struct super_block *sb)
{
	spin_lock(&inode_lock);
	while (!list_empty(&sb->s_dirty)||!list_empty(&sb->s_locked_inodes)) {
		sync_list(&sb->s_dirty);
		wait_on_locked(&sb->s_locked_inodes);
	}
	spin_unlock(&inode_lock);
}

/*
 * Note:
 * We don't need to grab a reference to superblock here. If it has non-empty
 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
 * past sync_inodes_sb() until both ->s_dirty and ->s_locked_inodes are
 * empty. Since __sync_one() regains inode_lock before it finally moves
 * inode from superblock lists we are OK.
 */

void sync_unlocked_inodes(void)
{
	struct super_block * sb;
	spin_lock(&inode_lock);
	spin_lock(&sb_lock);
	sb = sb_entry(super_blocks.next);
	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (!list_empty(&sb->s_dirty)) {
			spin_unlock(&sb_lock);
			sync_list(&sb->s_dirty);
			spin_lock(&sb_lock);
		}
	}
	spin_unlock(&sb_lock);
	spin_unlock(&inode_lock);
}

/*
 * Find a superblock with inodes that need to be synced
 */

static struct super_block *get_super_to_sync(void)
{
	struct list_head *p;
restart:
	spin_lock(&inode_lock);
	spin_lock(&sb_lock);
	list_for_each(p, &super_blocks) {
		struct super_block *s = list_entry(p,struct super_block,s_list);
		if (list_empty(&s->s_dirty) && list_empty(&s->s_locked_inodes))
			continue;
		s->s_count++;
		spin_unlock(&sb_lock);
		spin_unlock(&inode_lock);
		down_read(&s->s_umount);
		if (!s->s_root) {
			drop_super(s);
			goto restart;
		}
		return s;
	}
	spin_unlock(&sb_lock);
	spin_unlock(&inode_lock);
	return NULL;
}

/**
 *	sync_inodes
 *	@dev: device to sync the inodes from.
 *
 *	sync_inodes goes through the super block's dirty list, 
 *	writes them out, and puts them back on the normal list.
 */

void sync_inodes(kdev_t dev)
{
	struct super_block * s;

	/*
	 * Search the super_blocks array for the device(s) to sync.
	 */
	if (dev) {
		if ((s = get_super(dev)) != NULL) {
			sync_inodes_sb(s);
			drop_super(s);
		}
	} else {
		while ((s = get_super_to_sync()) != NULL) {
			sync_inodes_sb(s);
			drop_super(s);
		}
	}
}

static void try_to_sync_unused_inodes(void * arg)
{
	struct super_block * sb;
	int nr_inodes = inodes_stat.nr_unused;

	spin_lock(&inode_lock);
	spin_lock(&sb_lock);
	sb = sb_entry(super_blocks.next);
	for (; nr_inodes && sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (list_empty(&sb->s_dirty))
			continue;
		spin_unlock(&sb_lock);
		nr_inodes = try_to_sync_unused_list(&sb->s_dirty, nr_inodes);
		spin_lock(&sb_lock);
	}
	spin_unlock(&sb_lock);
	spin_unlock(&inode_lock);
}

static struct tq_struct unused_inodes_flush_task;

/**
 *	write_inode_now	-	write an inode to disk
 *	@inode: inode to write to disk
 *	@sync: whether the write should be synchronous or not
 *
 *	This function commits an inode to disk immediately if it is
 *	dirty. This is primarily needed by knfsd.
 */
 
void write_inode_now(struct inode *inode, int sync)
{
	struct super_block * sb = inode->i_sb;

	if (sb) {
		spin_lock(&inode_lock);
		while (inode->i_state & I_DIRTY)
			sync_one(inode, sync);
		spin_unlock(&inode_lock);
		if (sync)
			wait_on_inode(inode);
	}
	else
		printk(KERN_ERR "write_inode_now: no super block\n");
}

/**
 * generic_osync_inode - flush all dirty data for a given inode to disk
 * @inode: inode to write
 * @datasync: if set, don't bother flushing timestamps
 *
 * This can be called by file_write functions for files which have the
 * O_SYNC flag set, to flush dirty writes to disk.  
 */

int generic_osync_inode(struct inode *inode, int what)
{
	int err = 0, err2 = 0, need_write_inode_now = 0;
	
	/* 
	 * WARNING
	 *
	 * Currently, the filesystem write path does not pass the
	 * filp down to the low-level write functions.  Therefore it
	 * is impossible for (say) __block_commit_write to know if
	 * the operation is O_SYNC or not.
	 *
	 * Ideally, O_SYNC writes would have the filesystem call
	 * ll_rw_block as it went to kick-start the writes, and we
	 * could call osync_inode_buffers() here to wait only for
	 * those IOs which have already been submitted to the device
	 * driver layer.  As it stands, if we did this we'd not write
	 * anything to disk since our writes have not been queued by
	 * this point: they are still on the dirty LRU.
	 * 
	 * So, currently we will call fsync_inode_buffers() instead,
	 * to flush _all_ dirty buffers for this inode to disk on 
	 * every O_SYNC write, not just the synchronous I/Os.  --sct
	 */

	if (what & OSYNC_METADATA)
		err = fsync_inode_buffers(inode);
	if (what & OSYNC_DATA)
		err2 = fsync_inode_data_buffers(inode);
	if (!err)
		err = err2;

	spin_lock(&inode_lock);
	if ((inode->i_state & I_DIRTY) &&
	    ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
		need_write_inode_now = 1;
	spin_unlock(&inode_lock);

	if (need_write_inode_now)
		write_inode_now(inode, 1);
	else
		wait_on_inode(inode);

	return err;
}

/**
 * clear_inode - clear an inode
 * @inode: inode to clear
 *
 * This is called by the filesystem to tell us
 * that the inode is no longer useful. We just
 * terminate it with extreme prejudice.
 */
 
void clear_inode(struct inode *inode)
{
	invalidate_inode_buffers(inode);
       
	if (inode->i_data.nrpages)
		BUG();
	if (!(inode->i_state & I_FREEING))
		BUG();
	if (inode->i_state & I_CLEAR)
		BUG();
	wait_on_inode(inode);
	DQUOT_DROP(inode);
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode)
		inode->i_sb->s_op->clear_inode(inode);
	if (inode->i_bdev)
		bd_forget(inode);
	else if (inode->i_cdev) {
		cdput(inode->i_cdev);
		inode->i_cdev = NULL;
	}
	inode->i_state = I_CLEAR;
}

/*
 * Dispose-list gets a local list with local inodes in it, so it doesn't
 * need to worry about list corruption and SMP locks.
 */
static void dispose_list(struct list_head *head)
{
	int nr_disposed = 0;

	while (!list_empty(head)) {
		struct inode *inode;

		inode = list_entry(head->next, struct inode, i_list);
		list_del(&inode->i_list);

		if (inode->i_data.nrpages)
			truncate_inode_pages(&inode->i_data, 0);
		clear_inode(inode);
		spin_lock(&inode_lock);
		list_del(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_hash);
		spin_unlock(&inode_lock);
		wake_up(&inode->i_wait);
		destroy_inode(inode);
		nr_disposed++;
	}
	spin_lock(&inode_lock);
	inodes_stat.nr_inodes -= nr_disposed;
	spin_unlock(&inode_lock);
}

/*
 * Invalidate all inodes for a device.
 */
static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose)
{
	struct list_head *next;
	int busy = 0, count = 0;

	next = head->next;
	for (;;) {
		struct list_head * tmp = next;
		struct inode * inode;

		next = next->next;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_list);
		if (inode->i_sb != sb)
			continue;
		invalidate_inode_buffers(inode);
		if (!atomic_read(&inode->i_count)) {
			list_del_init(&inode->i_hash);
			list_del(&inode->i_list);
			list_add(&inode->i_list, dispose);
			inode->i_state |= I_FREEING;
			count++;
			continue;
		}
		busy = 1;
	}
	/* only unused inodes may be cached with i_count zero */
	inodes_stat.nr_unused -= count;
	return busy;
}

/*
 * This is a two-stage process. First we collect all
 * offending inodes onto the throw-away list, and in
 * the second stage we actually dispose of them. This
 * is because we don't want to sleep while messing
 * with the global lists..
 */
 
/**
 *	invalidate_inodes	- discard the inodes on a device
 *	@sb: superblock
 *
 *	Discard all of the inodes for a given superblock. If the discard
 *	fails because there are busy inodes then a non zero value is returned.
 *	If the discard is successful all the inodes have been discarded.
 */
 
int invalidate_inodes(struct super_block * sb)
{
	int busy;
	LIST_HEAD(throw_away);

	spin_lock(&inode_lock);
	busy = invalidate_list(&inode_in_use, sb, &throw_away);
	busy |= invalidate_list(&inode_unused, sb, &throw_away);
	busy |= invalidate_list(&inode_unused_pagecache, sb, &throw_away);
	busy |= invalidate_list(&sb->s_dirty, sb, &throw_away);
	busy |= invalidate_list(&sb->s_locked_inodes, sb, &throw_away);
	spin_unlock(&inode_lock);

	dispose_list(&throw_away);

	return busy;
}
 
int invalidate_device(kdev_t dev, int do_sync)
{
	struct super_block *sb;
	int res;

	if (do_sync)
		fsync_dev(dev);

	res = 0;
	sb = get_super(dev);
	if (sb) {
		/*
		 * no need to lock the super, get_super holds the
		 * read semaphore so the filesystem cannot go away
		 * under us (->put_super runs with the write lock
		 * hold).
		 */
		shrink_dcache_sb(sb);
		res = invalidate_inodes(sb);
		drop_super(sb);
	}
	invalidate_buffers(dev);
	return res;
}


/*
 * This is called with the inode lock held. It searches
 * the in-use for freeable inodes, which are moved to a
 * temporary list and then placed on the unused list by
 * dispose_list. 
 *
 * We don't expect to have to call this very often.
 *
 * We leave the inode in the inode hash table until *after* 
 * the filesystem's ->delete_inode (in dispose_list) completes.
 * This ensures that an iget (such as nfsd might instigate) will 
 * always find up-to-date information either in the hash or on disk.
 *
 * I_FREEING is set so that no-one will take a new reference
 * to the inode while it is being deleted.
 *
 * N.B. The spinlock is released during the call to
 *      dispose_list.
 */
#define CAN_UNUSE(inode) \
	((((inode)->i_state | (inode)->i_data.nrpages) == 0)  && \
	 !inode_has_buffers(inode))
#define INODE(entry)	(list_entry(entry, struct inode, i_list))

void prune_icache(int goal)
{
	LIST_HEAD(list);
	struct list_head *entry, *freeable = &list;
	int count;
#ifdef CONFIG_HIGHMEM
	int avg_pages;
#endif
	struct inode * inode;

	spin_lock(&inode_lock);

	count = 0;
	entry = inode_unused.prev;
	while (entry != &inode_unused)
	{
		struct list_head *tmp = entry;

		entry = entry->prev;
		inode = INODE(tmp);
		if (inode->i_state & (I_FREEING|I_CLEAR|I_LOCK))
			continue;
		if (!CAN_UNUSE(inode))
			continue;
		if (atomic_read(&inode->i_count))
			continue;
		list_del(tmp);
		list_add(tmp, freeable);
		inode->i_state |= I_FREEING;
		count++;
		if (--goal <= 0)
			break;
	}
	inodes_stat.nr_unused -= count;
	spin_unlock(&inode_lock);

	dispose_list(freeable);

	/* 
	 * If we didn't freed enough clean inodes schedule
	 * a sync of the dirty inodes, we cannot do it
	 * from here or we're either synchronously dogslow
	 * or we deadlock with oom.
	 */
	if (goal > 0)
		schedule_task(&unused_inodes_flush_task);

#ifdef CONFIG_HIGHMEM
	/*
	 * On highmem machines it is possible to have low memory
	 * filled with inodes that cannot be reclaimed because they
	 * have page cache pages in highmem attached to them.
	 * This could deadlock the system if the memory used by
	 * inodes is significant compared to the amount of freeable
	 * low memory.  In that case we forcefully remove the page
	 * cache pages from the inodes we want to reclaim.
	 *
	 * Note that this loop doesn't actually reclaim the inodes;
	 * once the last pagecache pages belonging to the inode is
	 * gone it will be placed on the inode_unused list and the
	 * loop above will prune it the next time prune_icache() is
	 * called.
	 */
	if (goal <= 0)
		return;
	if (inodes_stat.nr_unused * sizeof(struct inode) * 10 <
				freeable_lowmem() * PAGE_SIZE)
		return;

	wakeup_bdflush();

	avg_pages = page_cache_size;
	avg_pages -= atomic_read(&buffermem_pages) + swapper_space.nrpages;
	avg_pages = avg_pages / (inodes_stat.nr_inodes + 1);
	spin_lock(&inode_lock);
	while (goal-- > 0) {
		if (list_empty(&inode_unused_pagecache))
			break;
		entry = inode_unused_pagecache.prev;
		list_del(entry);
		list_add(entry, &inode_unused_pagecache);

		inode = INODE(entry);
		/* Don't nuke inodes with lots of page cache attached. */
		if (inode->i_mapping->nrpages > 5 * avg_pages)
			continue;
		/* Because of locking we grab the inode and unlock the list .*/
		if (inode->i_state & I_LOCK)
			continue;
		inode->i_state |= I_LOCK;
		spin_unlock(&inode_lock);

		/*
		 * If the inode has clean pages only, we can free all its
		 * pagecache memory; the inode will automagically be refiled
		 * onto the unused_list.  The wakeup_bdflush above makes
		 * sure that all inodes become clean eventually.
		 */
		if (list_empty(&inode->i_mapping->dirty_pages) &&
				!inode_has_buffers(inode))
			invalidate_inode_pages(inode);

		/* Release the inode again. */
		spin_lock(&inode_lock);
		inode->i_state &= ~I_LOCK;
		wake_up(&inode->i_wait);
	}
	spin_unlock(&inode_lock);
#endif /* CONFIG_HIGHMEM */
}

int shrink_icache_memory(int priority, int gfp_mask)
{
	int count = 0;

	/*
	 * Nasty deadlock avoidance..
	 *
	 * We may hold various FS locks, and we don't
	 * want to recurse into the FS that called us
	 * in clear_inode() and friends..
	 */
	if (!(gfp_mask & __GFP_FS))
		return 0;

	count = inodes_stat.nr_unused / priority;

	prune_icache(count);
	return kmem_cache_shrink(inode_cachep);
}

/*
 * Called with the inode lock held.
 * NOTE: we are not increasing the inode-refcount, you must call __iget()
 * by hand after calling find_inode now! This simplifies iunique and won't
 * add any additional branch in the common code.
 */
static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct list_head *tmp;
	struct inode * inode;

repeat:
	tmp = head;
	for (;;) {
		tmp = tmp->next;
		inode = NULL;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_hash);
		if (inode->i_ino != ino)
			continue;
		if (inode->i_sb != sb)
			continue;
		if (find_actor && !find_actor(inode, ino, opaque))
			continue;
		if (inode->i_state & (I_FREEING|I_CLEAR)) {
			__wait_on_freeing_inode(inode);
			goto repeat;
		}
		break;
	}
	return inode;
}

/**
 *	new_inode 	- obtain an inode
 *	@sb: superblock
 *
 *	Allocates a new inode for given superblock.
 */
 
struct inode * new_inode(struct super_block *sb)
{
	static unsigned long last_ino;
	struct inode * inode;

	spin_lock_prefetch(&inode_lock);
	
	inode = alloc_inode(sb);
	if (inode) {
		spin_lock(&inode_lock);
		inodes_stat.nr_inodes++;
		list_add(&inode->i_list, &inode_in_use);
		inode->i_ino = ++last_ino;
		inode->i_state = 0;
		spin_unlock(&inode_lock);
	}
	return inode;
}

void unlock_new_inode(struct inode *inode)
{
	/*
	 * This is special!  We do not need the spinlock
	 * when clearing I_LOCK, because we're guaranteed
	 * that nobody else tries to do anything about the
	 * state of the inode when it is locked, as we
	 * just created it (so there can be no old holders
	 * that haven't tested I_LOCK).
	 */
	inode->i_state &= ~(I_LOCK|I_NEW);
	wake_up(&inode->i_wait);
}

/*
 * This is called without the inode lock held.. Be careful.
 *
 * We no longer cache the sb_flags in i_flags - see fs.h
 *	-- rmk@arm.uk.linux.org
 */
static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct inode * inode;

	inode = alloc_inode(sb);
	if (inode) {
		struct inode * old;

		spin_lock(&inode_lock);
		/* We released the lock, so.. */
		old = find_inode(sb, ino, head, find_actor, opaque);
		if (!old) {
			inodes_stat.nr_inodes++;
			list_add(&inode->i_list, &inode_in_use);
			list_add(&inode->i_hash, head);
			inode->i_ino = ino;
			inode->i_state = I_LOCK|I_NEW;
			spin_unlock(&inode_lock);

			/*
			 * Return the locked inode with I_NEW set, the
			 * caller is responsible for filling in the contents
			 */
			return inode;
		}

		/*
		 * Uhhuh, somebody else created the same inode under
		 * us. Use the old inode instead of the one we just
		 * allocated.
		 */
		__iget(old);
		spin_unlock(&inode_lock);
		destroy_inode(inode);
		inode = old;
		wait_on_inode(inode);
	}
	return inode;
}

static inline unsigned long hash(struct super_block *sb, unsigned long i_ino)
{
	unsigned long tmp = i_ino + ((unsigned long) sb / L1_CACHE_BYTES);
	tmp = tmp + (tmp >> I_HASHBITS);
	return tmp & I_HASHMASK;
}

/* Yeah, I know about quadratic hash. Maybe, later. */

/**
 *	iunique - get a unique inode number
 *	@sb: superblock
 *	@max_reserved: highest reserved inode number
 *
 *	Obtain an inode number that is unique on the system for a given
 *	superblock. This is used by file systems that have no natural
 *	permanent inode numbering system. An inode number is returned that
 *	is higher than the reserved limit but unique.
 *
 *	BUGS:
 *	With a large number of inodes live on the file system this function
 *	currently becomes quite slow.
 */
 
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
	static ino_t counter = 0;
	struct inode *inode;
	struct list_head * head;
	ino_t res;
	spin_lock(&inode_lock);
retry:
	if (counter > max_reserved) {
		head = inode_hashtable + hash(sb,counter);
		inode = find_inode(sb, res = counter++, head, NULL, NULL);
		if (!inode) {
			spin_unlock(&inode_lock);
			return res;
		}
	} else {
		counter = max_reserved + 1;
	}
	goto retry;
	
}

/**
 *	ilookup - search for an inode in the inode cache
 *	@sb:         super block of file system to search
 *	@ino:        inode number to search for
 *
 *	If the inode is in the cache, the inode is returned with an
 *	incremented reference count.
 *
 *	Otherwise, %NULL is returned.
 *
 *	This is almost certainly not the function you are looking for.
 *	If you think you need to use this, consult an expert first.
 */
struct inode *ilookup(struct super_block *sb, unsigned long ino)
{
	struct list_head * head = inode_hashtable + hash(sb,ino);
	struct inode * inode;

	spin_lock(&inode_lock);
	inode = find_inode(sb, ino, head, NULL, NULL);
	if (inode) {
		__iget(inode);
		spin_unlock(&inode_lock);
		wait_on_inode(inode);
		return inode;
	}
	spin_unlock(&inode_lock);

	return inode;
}

struct inode *igrab(struct inode *inode)
{
	spin_lock(&inode_lock);
	if (!(inode->i_state & I_FREEING))
		__iget(inode);
	else
		/*
		 * Handle the case where s_op->clear_inode is not been
		 * called yet, and somebody is calling igrab
		 * while the inode is getting freed.
		 */
		inode = NULL;
	spin_unlock(&inode_lock);
	return inode;
}

struct inode *iget4_locked(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque)
{
	struct list_head * head = inode_hashtable + hash(sb,ino);
	struct inode * inode;

	spin_lock(&inode_lock);
	inode = find_inode(sb, ino, head, find_actor, opaque);
	if (inode) {
		__iget(inode);
		spin_unlock(&inode_lock);
		wait_on_inode(inode);
		return inode;
	}
	spin_unlock(&inode_lock);

	/*
	 * get_new_inode() will do the right thing, re-trying the search
	 * in case it had to block at any point.
	 */
	return get_new_inode(sb, ino, head, find_actor, opaque);
}

/**
 *	insert_inode_hash - hash an inode
 *	@inode: unhashed inode
 *
 *	Add an inode to the inode hash for this superblock. If the inode
 *	has no superblock it is added to a separate anonymous chain.
 */
 
void insert_inode_hash(struct inode *inode)
{
	struct list_head *head = &anon_hash_chain;
	if (inode->i_sb)
		head = inode_hashtable + hash(inode->i_sb, inode->i_ino);
	spin_lock(&inode_lock);
	list_add(&inode->i_hash, head);
	spin_unlock(&inode_lock);
}

/**
 *	remove_inode_hash - remove an inode from the hash
 *	@inode: inode to unhash
 *
 *	Remove an inode from the superblock or anonymous hash.
 */
 
void remove_inode_hash(struct inode *inode)
{
	spin_lock(&inode_lock);
	list_del(&inode->i_hash);
	INIT_LIST_HEAD(&inode->i_hash);
	spin_unlock(&inode_lock);
}

/**
 *	iput	- put an inode 
 *	@inode: inode to put
 *
 *	Puts an inode, dropping its usage count. If the inode use count hits
 *	zero the inode is also then freed and may be destroyed.
 */
 
void iput(struct inode *inode)
{
	if (inode) {
		struct super_block *sb = inode->i_sb;
		struct super_operations *op = NULL;

		if (inode->i_state == I_CLEAR)
			BUG();

		if (sb && sb->s_op)
			op = sb->s_op;
		if (op && op->put_inode)
			op->put_inode(inode);

		if (!atomic_dec_and_lock(&inode->i_count, &inode_lock))
			return;

		if (!inode->i_nlink) {
			list_del(&inode->i_list);
			INIT_LIST_HEAD(&inode->i_list);
			inode->i_state|=I_FREEING;
			inodes_stat.nr_inodes--;
			spin_unlock(&inode_lock);

			if (inode->i_data.nrpages)
				truncate_inode_pages(&inode->i_data, 0);

			if (op && op->delete_inode) {
				void (*delete)(struct inode *) = op->delete_inode;
				if (!is_bad_inode(inode))
					DQUOT_INIT(inode);
				/* s_op->delete_inode internally recalls clear_inode() */
				delete(inode);
			} else
				clear_inode(inode);
			spin_lock(&inode_lock);
			list_del(&inode->i_hash);
			INIT_LIST_HEAD(&inode->i_hash);
			spin_unlock(&inode_lock);
			wake_up(&inode->i_wait);
			if (inode->i_state != I_CLEAR)
				BUG();
		} else {
			if (!list_empty(&inode->i_hash)) {
				if (!(inode->i_state & (I_DIRTY|I_LOCK))) 
					__refile_inode(inode);
				inodes_stat.nr_unused++;
				spin_unlock(&inode_lock);
				if (!sb || (sb->s_flags & MS_ACTIVE))
					return;
				write_inode_now(inode, 1);
				spin_lock(&inode_lock);
				inodes_stat.nr_unused--;
				list_del_init(&inode->i_hash);
			}
			list_del_init(&inode->i_list);
			inode->i_state|=I_FREEING;
			inodes_stat.nr_inodes--;
			spin_unlock(&inode_lock);
			if (inode->i_data.nrpages)
				truncate_inode_pages(&inode->i_data, 0);
			clear_inode(inode);
		}
		destroy_inode(inode);
	}
}

void force_delete(struct inode *inode)
{
	/*
	 * Kill off unused inodes ... iput() will unhash and
	 * delete the inode if we set i_nlink to zero.
	 */
	if (atomic_read(&inode->i_count) == 1)
		inode->i_nlink = 0;
}

/**
 *	bmap	- find a block number in a file
 *	@inode: inode of file
 *	@block: block to find
 *
 *	Returns the block number on the device holding the inode that
 *	is the disk block number for the block of the file requested.
 *	That is, asked for block 4 of inode 1 the function will return the
 *	disk block relative to the disk start that holds that block of the 
 *	file.
 */
 
int bmap(struct inode * inode, int block)
{
	int res = 0;
	if (inode->i_mapping->a_ops->bmap)
		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
	return res;
}

/*
 * Initialize the hash tables.
 */
void __init inode_init(unsigned long mempages)
{
	struct list_head *head;
	unsigned long order;
	unsigned int nr_hash;
	int i;

	mempages >>= (14 - PAGE_SHIFT);
	mempages *= sizeof(struct list_head);
	for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
		;

	do {
		unsigned long tmp;

		nr_hash = (1UL << order) * PAGE_SIZE /
			sizeof(struct list_head);
		i_hash_mask = (nr_hash - 1);

		tmp = nr_hash;
		i_hash_shift = 0;
		while ((tmp >>= 1UL) != 0UL)
			i_hash_shift++;

		inode_hashtable = (struct list_head *)
			__get_free_pages(GFP_ATOMIC, order);
	} while (inode_hashtable == NULL && --order >= 0);

	printk(KERN_INFO "Inode cache hash table entries: %d (order: %ld, %ld bytes)\n",
			nr_hash, order, (PAGE_SIZE << order));

	if (!inode_hashtable)
		panic("Failed to allocate inode hash table\n");

	head = inode_hashtable;
	i = nr_hash;
	do {
		INIT_LIST_HEAD(head);
		head++;
		i--;
	} while (i);

	/* inode slab cache */
	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
					 0, SLAB_HWCACHE_ALIGN, init_once,
					 NULL);
	if (!inode_cachep)
		panic("cannot create inode slab cache");

	unused_inodes_flush_task.routine = try_to_sync_unused_inodes;
}

/**
 *	update_atime	-	update the access time
 *	@inode: inode accessed
 *
 *	Update the accessed time on an inode and mark it for writeback.
 *	This function automatically handles read only file systems and media,
 *	as well as the "noatime" flag and inode specific "noatime" markers.
 */
 
void update_atime (struct inode *inode)
{
	if (inode->i_atime == CURRENT_TIME)
		return;
	if (IS_NOATIME(inode))
		return;
	if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode)) 
		return;
	if (IS_RDONLY(inode)) 
		return;
	inode->i_atime = CURRENT_TIME;
	mark_inode_dirty_sync (inode);
}

/**
 *	update_mctime	-	update the mtime and ctime
 *	@inode: inode accessed
 *
 *	Update the modified and changed times on an inode for writes to special
 *	files such as fifos.  No change is forced if the timestamps are already
 *	up-to-date or if the filesystem is readonly.
 */
 
void update_mctime (struct inode *inode)
{
	if (inode->i_mtime == CURRENT_TIME && inode->i_ctime == CURRENT_TIME)
		return;
	if (IS_RDONLY(inode))
		return;
	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
	mark_inode_dirty (inode);
}


/*
 *	Quota functions that want to walk the inode lists..
 */
#ifdef CONFIG_QUOTA

/* Functions back in dquot.c */
void put_dquot_list(struct list_head *);
int remove_inode_dquot_ref(struct inode *, short, struct list_head *);

void remove_dquot_ref(struct super_block *sb, short type)
{
	struct inode *inode;
	struct list_head *act_head;
	LIST_HEAD(tofree_head);

	if (!sb->dq_op)
		return;	/* nothing to do */
	/* We have to be protected against other CPUs */
	lock_kernel();		/* This lock is for quota code */
	spin_lock(&inode_lock);	/* This lock is for inodes code */
 
	list_for_each(act_head, &inode_in_use) {
		inode = list_entry(act_head, struct inode, i_list);
		if (inode->i_sb == sb && IS_QUOTAINIT(inode))
			remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	list_for_each(act_head, &inode_unused) {
		inode = list_entry(act_head, struct inode, i_list);
		if (inode->i_sb == sb && IS_QUOTAINIT(inode))
			remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	list_for_each(act_head, &inode_unused_pagecache) {
		inode = list_entry(act_head, struct inode, i_list);
		if (inode->i_sb == sb && IS_QUOTAINIT(inode))
			remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	list_for_each(act_head, &sb->s_dirty) {
		inode = list_entry(act_head, struct inode, i_list);
		if (IS_QUOTAINIT(inode))
			remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	list_for_each(act_head, &sb->s_locked_inodes) {
		inode = list_entry(act_head, struct inode, i_list);
		if (IS_QUOTAINIT(inode))
			remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	spin_unlock(&inode_lock);
	unlock_kernel();

	put_dquot_list(&tofree_head);
}

#endif