summaryrefslogtreecommitdiffstats
path: root/src/c_huffman.c
blob: 60b0709c3b9ee139f337ea6e0ba768f868f663b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#include <stdlib.h>
#include <stdio.h>

#include "morecfg.h"
#include "jpeglib.h"

#include "c_huffman.h"

#include <string.h>
#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))


/*
 * In ANSI C, and indeed any rational implementation, size_t is also the
 * type returned by sizeof().  However, it seems there are some irrational
 * implementations out there, in which sizeof() returns an int even though
 * size_t is defined as long or unsigned long.  To ensure consistent results
 * we always use this SIZEOF() macro in place of using sizeof() directly.
 */

#define SIZEOF(object)	((size_t) sizeof(object))

void ERRORREPORT(void)
{
	printf("Error");
}

/* Expanded entropy encoder object for Huffman encoding.
 *
 * The savable_state subrecord contains fields that change within an MCU,
 * but must not be updated permanently until we complete the MCU.
 */
typedef struct {
	INT32 put_buffer;		/* current bit-accumulation buffer */
	int put_bits;			/* # of bits now in it */
	int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;

#define ASSIGN_STATE(dest,src)  ((dest) = (src))


/* Working state while writing an MCU.
 * This struct contains all the fields that are needed by subroutines.
 */

typedef struct {
	JOCTET * next_output_byte;	/* => next byte to write in buffer */
	size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
	savable_state cur;		/* Current bit buffer & DC state */
	//	j_compress_ptr cinfo;		/* dump_buffer needs access to this */
} working_state;


// ///////////////////////////////////////////
//     Huffman Tables allocated here
//
// //////////////////////////////////////////

JHUFF_TBL  dc_Huffman_Table[2];
JHUFF_TBL  ac_Huffman_Table[2];

c_derived_tbl	dc_derived_table;
c_derived_tbl	ac_derived_table;

/*
 * Huffman table setup routines
 */

	LOCAL(void)
add_huff_table (JHUFF_TBL *htblptr, const UINT8 *bits, const UINT8 *val)
	/* Define a Huffman table */
{
	int nsymbols, len;

	/* Copy the number-of-symbols-of-each-code-length counts */
	MEMCOPY((htblptr)->bits, bits, SIZEOF((htblptr)->bits));

	/* Validate the counts.  We do this here mainly so we can copy the right
	 * number of symbols from the val[] array, without risking marching off
	 * the end of memory.  jchuff.c will do a more thorough test later.
	 */
	nsymbols = 0;
	for (len = 1; len <= 16; len++)
		nsymbols += bits[len];
	if (nsymbols < 1 || nsymbols > 256)
	{
		perror("Bad Huffman code table entry");
		exit(0);
	}


	MEMCOPY((htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));

	/* Initialize sent_table FALSE so table will be written to JPEG file. */
	(htblptr)->sent_table = FALSE;
}


	LOCAL(void)
std_huff_tables ()
	/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
	/* IMPORTANT: these are only valid for 8-bit data precision! */
{
	static const UINT8 bits_dc_luminance[17] =
	{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
	static const UINT8 val_dc_luminance[] =
	{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

	static const UINT8 bits_dc_chrominance[17] =
	{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
	static const UINT8 val_dc_chrominance[] =
	{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

	static const UINT8 bits_ac_luminance[17] =
	{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
	static const UINT8 val_ac_luminance[] =
	{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
		0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
		0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
		0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
		0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
		0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
		0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
		0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
		0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
		0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
		0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
		0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
		0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
		0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
		0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
		0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
		0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
		0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
		0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
		0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
		0xf9, 0xfa };

	static const UINT8 bits_ac_chrominance[17] =
	{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
	static const UINT8 val_ac_chrominance[] =
	{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
		0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
		0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
		0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
		0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
		0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
		0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
		0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
		0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
		0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
		0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
		0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
		0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
		0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
		0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
		0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
		0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
		0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
		0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
		0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
		0xf9, 0xfa };

	add_huff_table(&dc_Huffman_Table[0], bits_dc_luminance, val_dc_luminance);
	add_huff_table(&ac_Huffman_Table[0], bits_ac_luminance, val_ac_luminance);
	add_huff_table(&dc_Huffman_Table[1], bits_dc_chrominance, val_dc_chrominance);
	add_huff_table(&dc_Huffman_Table[1], bits_ac_chrominance, val_ac_chrominance);
}


	GLOBAL(void)
jpeg_make_c_derived_tbl (JHUFF_TBL *htbl, boolean isDC, 
		c_derived_tbl * pdtbl)
{ 
	c_derived_tbl *dtbl;
	int p, i, l, lastp, si, maxsymbol;
	char huffsize[257];
	unsigned int huffcode[257];
	unsigned int code;

	/* Note that huffsize[] and huffcode[] are filled in code-length order,
	 * paralleling the order of the symbols themselves in htbl->huffval[].
	 */

	if (htbl == NULL)
		ERRORREPORT();


	dtbl = pdtbl;

	// Figure C.1: make table of Huffman code length for each symbol 

	p = 0;
	for (l = 1; l <= 16; l++) {
		i = (int) htbl->bits[l];
		if (i < 0 || p + i > 256)	/* protect against table overrun */
			ERRORREPORT();
		while (i--)
			huffsize[p++] = (char) l;
	}
	huffsize[p] = 0;
	lastp = p;

	// Figure C.2: generate the codes themselves 
	// We also validate that the counts represent a legal Huffman code tree. 
	//
	// 

	code = 0;
	si = huffsize[0];
	p = 0;
	while (huffsize[p]) {
		while (((int) huffsize[p]) == si) {
			huffcode[p++] = code;
			code++;
		}
		/* code is now 1 more than the last code used for codelength si; but
		 * it must still fit in si bits, since no code is allowed to be all ones.
		 */
		if (((INT32) code) >= (((INT32) 1) << si))
			ERRORREPORT();
		code <<= 1;
		si++;
	}

	/* Figure C.3: generate encoding tables */
	/* These are code and size indexed by symbol value */

	/* Set all codeless symbols to have code length 0;
	 * this lets us detect duplicate VAL entries here, and later
	 * allows emit_bits to detect any attempt to emit such symbols.
	 */
	MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));

	/* This is also a convenient place to check for out-of-range
	 * and duplicated VAL entries.  We allow 0..255 for AC symbols
	 * but only 0..15 for DC.  (We could constrain them further
	 * based on data depth and mode, but this seems enough.)
	 */
	maxsymbol = isDC ? 15 : 255;

	for (p = 0; p < lastp; p++) {
		i = htbl->huffval[p];
		if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
			ERRORREPORT();
		dtbl->ehufco[i] = huffcode[p];
		dtbl->ehufsi[i] = huffsize[p];
	}
}




/* Outputting bytes to the file */

/* Emit a byte, taking 'action' if must suspend. */
#define emit_byte(state,val,action)  \
{ *(state)->next_output_byte++ = (JOCTET) (val);  \
	if (--(state)->free_in_buffer == 0)  \
	if (! dump_buffer(state))  \
	{ action; } }


/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
static boolean dump_buffer(working_state * state) {
	// TODO
	// 
	/*
	   struct jpeg_destination_mgr * dest = state->cinfo->dest;

	   if (! (*dest->empty_output_buffer) (state->cinfo)) {
	   return FALSE;
	   }
	// After a successful buffer dump, must reset buffer pointers 
	state->next_output_byte = dest->next_output_byte;
	state->free_in_buffer = dest->free_in_buffer;
	return TRUE;

*/
	return TRUE;
}


/* Outputting bits to the file */

/* Only the right 24 bits of put_buffer are used; the valid bits are
 * left-justified in this part.  At most 16 bits can be passed to emit_bits
 * in one call, and we never retain more than 7 bits in put_buffer
 * between calls, so 24 bits are sufficient.
 */

/* Emit some bits; return TRUE if successful, FALSE if must suspend */
inline static boolean emit_bits(working_state * state, unsigned int code, int size) {
	/* This routine is heavily used, so it's worth coding tightly. */
	register INT32 put_buffer = (INT32) code;
	register int put_bits = state->cur.put_bits;

	/* if size is 0, caller used an invalid Huffman table entry */
	if (size == 0) {
		perror("Missing Huffman code table entry");
		exit(0);
		/* ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); */
	}

	put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */

	put_bits += size;		/* new number of bits in buffer */

	put_buffer <<= 24 - put_bits; /* align incoming bits */

	put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */

	while (put_bits >= 8) {
		int c = (int) ((put_buffer >> 16) & 0xFF);
		emit_byte(state, c, return FALSE);
		if (c == 0xFF) {		/* need to stuff a zero byte? */
			emit_byte(state, 0, return FALSE);
		}
		put_buffer <<= 8;
		put_bits -= 8;
	}

	state->cur.put_buffer = put_buffer; /* update state variables */
	state->cur.put_bits = put_bits;

	return TRUE;
}


	static boolean flush_bits (working_state * state) {
		if (! emit_bits(state, 0x7F, 7)) // fill any partial byte with ones 
			return FALSE;
		state->cur.put_buffer = 0;	// and reset bit-buffer to empty 
		state->cur.put_bits = 0;
		return TRUE;
	}


extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */

int  bitCounter;


int encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) {
	register int temp, temp2;
	register int nbits;
	register int k, r, i;

	bitCounter = 0; // TODEBUG
	/* Encode the DC coefficient difference per section F.1.2.1 */

	temp = temp2 = block[0] - last_dc_val;

	if (temp < 0) {
		temp = -temp;		/* temp is abs value of input */
		/* For a negative input, want temp2 = bitwise complement of abs(input) */
		/* This code assumes we are on a two's complement machine */
		temp2--;
	}

	/* Find the number of bits needed for the magnitude of the coefficient */
	nbits = 0;
	while (temp) {
		nbits++;
		temp >>= 1;
	}
	/* Check for out-of-range coefficient values.
	 * Since we're encoding a difference, the range limit is twice as much.
	 */
	if (nbits > MAX_COEF_BITS+1) {
		perror("DCT coefficient out of range");
		exit(0);
		/* ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); */
	}

	/* Emit the Huffman-coded symbol for the number of bits */
	if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) {
		return FALSE;
	}
	bitCounter += dctbl->ehufsi[nbits]; // TODEBUG

	/* Emit that number of bits of the value, if positive, */
	/* or the complement of its magnitude, if negative. */
	if (nbits) {			/* emit_bits rejects calls with size 0 */
		if (! emit_bits(state, (unsigned int) temp2, nbits)) {
			return FALSE;
		}
		bitCounter +=  nbits; // TODEBUG
	}

	/* Encode the AC coefficients per section F.1.2.2 */

	r = 0;			/* r = run length of zeros */

	for (k = 1; k < DCTSIZE2; k++) {
		if ((temp = block[jpeg_natural_order[k]]) == 0) {
			r++;
		} else {
			/* if run length > 15, must emit special run-length-16 codes (0xF0) */
			while (r > 15) {
				if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) {
					return FALSE;
				}
				r -= 16;
				bitCounter +=  actbl->ehufsi[0xF0]; // TODEBUG
			}

			temp2 = temp;
			if (temp < 0) {
				temp = -temp;		/* temp is abs value of input */
				/* This code assumes we are on a two's complement machine */
				temp2--;
			}

			/* Find the number of bits needed for the magnitude of the coefficient */
			nbits = 1;		/* there must be at least one 1 bit */
			while ((temp >>= 1)) {
				nbits++;
			}
			/* Check for out-of-range coefficient values */
			if (nbits > MAX_COEF_BITS) {
				perror("DCT coefficient out of range");
				exit(0);
				/* ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); */
			}

			/* Emit Huffman symbol for run length / number of bits */
			i = (r << 4) + nbits;
			if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) {
				return FALSE;
			}

			bitCounter += actbl->ehufsi[i]; // TODEBUG
			/* Emit that number of bits of the value, if positive, */
			/* or the complement of its magnitude, if negative. */
			if (! emit_bits(state, (unsigned int) temp2, nbits)) {
				return FALSE;
			}
			bitCounter += nbits; // TODEBUG
			r = 0;
		}
	}

	/* If the last coef(s) were zero, emit an end-of-block code */
	if (r > 0) {
		if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) {
			return FALSE;
		}
		printf("END");
	}
	printf("\n Bitcounter = %d (%d)",bitCounter,bitCounter/8);
	return TRUE;
}

/*
 * Emit a restart marker & resynchronize predictions.
 */

static boolean emit_restart (working_state * state, int restart_num) {
	int ci;

	if (! flush_bits(state))
		return FALSE;

	emit_byte(state, 0xFF, return FALSE);
	emit_byte(state, JPEG_RST0 + restart_num, return FALSE);

	// Re-initialize DC predictions to 0 
	for (ci = 0; ci < MAX_COMPS_IN_SCAN; ci++)
		state->cur.last_dc_val[ci] = 0;

	// The restart counter is not updated until we successfully write the MCU. 
	return TRUE;
}


/*
 * Encode and output one MCU's worth of Huffman-compressed coefficients.
 */
/*
   static boolean encode_mcu_huff ( j_compress_ptr cinfo ,  JBLOCKROW *MCU_data) {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   working_state state;
   int blkn, ci;
   jpeg_component_info * compptr;

// Load up working state 
state.next_output_byte = cinfo->dest->next_output_byte;
state.free_in_buffer = cinfo->dest->free_in_buffer;
ASSIGN_STATE(state.cur, entropy->saved);
state.cinfo = cinfo;

// Emit restart marker if needed 
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! emit_restart(&state, entropy->next_restart_num))
return FALSE;
}

// Encode the MCU data blocks 
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
if (! encode_one_block(&state,
MCU_data[blkn][0], state.cur.last_dc_val[ci],
entropy->dc_derived_tbls[compptr->dc_tbl_no],
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
return FALSE;
// Update last_dc_val 
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
}

// Completed MCU, so update state 
cinfo->dest->next_output_byte = state.next_output_byte;
cinfo->dest->free_in_buffer = state.free_in_buffer;
ASSIGN_STATE(entropy->saved, state.cur);

// Update restart-interval state too 
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}

return TRUE;
}
*/

/*
 * Finish up at the end of a Huffman-compressed scan.
 */
/*
   static void finish_pass_huff (j_compress_ptr cinfo) {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   working_state state;

// Load up working state ... flush_bits needs it 
state.next_output_byte = cinfo->dest->next_output_byte;
state.free_in_buffer = cinfo->dest->free_in_buffer;
ASSIGN_STATE(state.cur, entropy->saved);
state.cinfo = cinfo;

// Flush out the last data 
if (! flush_bits(&state))
perror("Suspension not allowed here");
exit(0);
// ERREXIT(cinfo, JERR_CANT_SUSPEND); 

// Update state 
cinfo->dest->next_output_byte = state.next_output_byte;
cinfo->dest->free_in_buffer = state.free_in_buffer;
ASSIGN_STATE(entropy->saved, state.cur);
}
*/




static int  lastDCValue;
static  working_state savedHuffstate;

unsigned char outputBufferHuffman[500];

void encode_huffBlock64_init(void)
{
	std_huff_tables();
	/* Compute derived values for Huffman tables */
	/* We may do this more than once for a table, but it's not expensive */
	jpeg_make_c_derived_tbl(dc_Huffman_Table, TRUE, 
			&dc_derived_table);
	jpeg_make_c_derived_tbl(ac_Huffman_Table, FALSE,
			&ac_derived_table);	
}


void encode_huffBlock64_start(void)
{
	lastDCValue = 0;
	// Initialise buffer 
	savedHuffstate.next_output_byte 	= outputBufferHuffman;
	savedHuffstate.free_in_buffer 		= 500;  // TODO:
	savedHuffstate.cur.put_buffer 		= 0;
	savedHuffstate.cur.put_bits 		= 0;

	//	savedHuffstate.cinfo 		= NULL;
}

void encode_huffBlock64(short * data)
{
	working_state state;

	// Load up working state ... flush_bits needs it 
	state.next_output_byte 	= savedHuffstate.next_output_byte;
	state.free_in_buffer 	= savedHuffstate.free_in_buffer;
	ASSIGN_STATE(state.cur, savedHuffstate.cur);

	encode_one_block(&state, data, savedHuffstate.cur.last_dc_val[0], &dc_derived_table, &ac_derived_table);

	// Update last_dc_val 
	savedHuffstate.cur.last_dc_val[0] = data[0];  // Different for YUV TODO if all colours used

	// Completed MCU, so update state 
	savedHuffstate.next_output_byte = state.next_output_byte;
	savedHuffstate.free_in_buffer = state.free_in_buffer;
	ASSIGN_STATE(savedHuffstate.cur, state.cur);



}
void encode_huffBlock64_end(void )
{
	working_state state;

	// Load up working state ... flush_bits needs it 
	savedHuffstate.next_output_byte = state.next_output_byte;
	savedHuffstate.free_in_buffer = state.free_in_buffer ;
	ASSIGN_STATE(savedHuffstate.cur, state.cur);

	if (! flush_bits(&state))
	{
		perror("Suspension not allowed here");
		exit(0);
	}
}

/*
   typedef struct {
   unsigned int ehufco[256];	// code for each symbol 
   char ehufsi[256];		// length of code for each symbol 
// If no code has been allocated for a symbol S, ehufsi[S] contains 0 
} c_derived_tbl;
*/
void dump_Table(void)
{
	int i,j;
	printf("\n DC Derived Table Code\n\n ");
	for (i=0; i < 32; i++)
	{
		for(j=0;j < 8; j++)
		{
			printf("%4x\t",dc_derived_table.ehufco[ ((i * 8) + j)]);
		}
		printf("\n");
	}
	printf("\n DC Derived Table Symbol\n\n ");
	for (i=0; i < 32; i++)
	{
		for(j=0;j < 8; j++)
		{
			printf("%d\t",dc_derived_table.ehufsi[ ((i * 8) + j)]);
		}
		printf("\n");
	}	
	printf("\n AC Derived Table Code\n\n");
	for (i=0; i < 32; i++)
	{
		for(j=0;j < 8; j++)
		{
			printf("%4x\t",ac_derived_table.ehufco[ ((i * 8) + j)]);
		}
		printf("\n");
	}
	printf("\n AC Derived Table Symbol\n\n ");
	for (i=0; i < 32; i++)
	{
		for(j=0;j < 8; j++)
		{
			printf("%d\t",ac_derived_table.ehufsi[ ((i * 8) + j)]);
		}
		printf("\n");
	}	

}

void dump_Encoded(void)
{
	int i,j;
	printf("\n Huffman coded\n\n ");
	for (i=0; i < 50; i++)
	{
		for(j=0;j < 10; j++)
		{
			printf("%4x\t",outputBufferHuffman[ ((i * 10) + j)]);
		}
		printf("\n");
	}
}

void Test_dhuffman(short * data)
{

	//	dump_Encoded();

	encode_huffBlock64_init();

	dump_Table();
	encode_huffBlock64_start();
	encode_huffBlock64(data);
	encode_huffBlock64_end();
	dump_Encoded();

}