summaryrefslogtreecommitdiffstats
path: root/src/d_huffman.c
blob: f9edca6b62f7fa7f6b43b507d1eb5a80df2f214b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#include <stdlib.h>
#include <stdio.h>

#include "config.h"
#include "morecfg.h"

#include "jpeglib.h"
#include "jpegint.h"

#include "d_huffman.h"
#include <string.h>


#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))


/*
 * In ANSI C, and indeed any rational implementation, size_t is also the
 * type returned by sizeof().  However, it seems there are some irrational
 * implementations out there, in which sizeof() returns an int even though
 * size_t is defined as long or unsigned long.  To ensure consistent results
 * we always use this SIZEOF() macro in place of using sizeof() directly.
 */

#define SIZEOF(object)	((size_t) sizeof(object))


/*
 * Expanded entropy decoder object for Huffman decoding.
 *
 * The savable_state subrecord contains fields that change within an MCU,
 * but must not be updated permanently until we complete the MCU.
 */

typedef struct {
  int last_dc_val[1]; /* last DC coef for each component we have only one */
} savable_state;


JHUFF_TBL  dc_Huffman_Table[2];
JHUFF_TBL  ac_Huffman_Table[2];

d_derived_tbl  dc_derived_table;
d_derived_tbl  ac_derived_table;

/*
 * Initialize for a Huffman-compressed scan.
 */

/*

METHODDEF(void)
start_pass_huff_decoder (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci, blkn, dctbl, actbl;
  jpeg_component_info * compptr;

   // Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
   // This ought to be an error condition, but we make it a warning because
   // there are some baseline files out there with all zeroes in these bytes.

    // Compute derived values for Huffman tables 
    // We may do this more than once for a table, but it's not expensive 
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
			    & entropy->dc_derived_tbls[dctbl]);
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
			    & entropy->ac_derived_tbls[actbl]);
    // Initialize DC predictions to 0 
    entropy->saved.last_dc_val[ci] = 0;


  // Initialize bitread state variables 
  entropy->bitstate.bits_left = 0;
  entropy->bitstate.get_buffer = 0; // unnecessary, but keeps Purify quiet 
  entropy->pub.insufficient_data = FALSE;

}
*/

/*
 * Compute the derived values for a Huffman table.
 * This routine also performs some validation checks on the table.
 *
 * Note this is also used by jdphuff.c.
 */

GLOBAL(void)
jpeg_make_d_derived_tbl (JHUFF_TBL *htbl, boolean isDC,
			 d_derived_tbl * pdtbl)
{
  d_derived_tbl *dtbl;
  int p, i, l, si, numsymbols;
  int lookbits, ctr;
  char huffsize[257];
  unsigned int huffcode[257];
  unsigned int code;

  /* Note that huffsize[] and huffcode[] are filled in code-length order,
   * paralleling the order of the symbols themselves in htbl->huffval[].
   */

  if (htbl == NULL)
    perror("JERR_NO_HUFF_TABLE");

  dtbl = pdtbl;
  dtbl->pub = htbl;		/* fill in back link */ 
  /* Figure C.1: make table of Huffman code length for each symbol */

  p = 0;
  for (l = 1; l <= 16; l++) {
    i = (int) htbl->bits[l];
    if (i < 0 || p + i > 256)	/* protect against table overrun */
      perror("JERR_BAD_HUFF_TABLE");
    while (i--)
      huffsize[p++] = (char) l;
  }
  huffsize[p] = 0;
  numsymbols = p;
  
  /* Figure C.2: generate the codes themselves */
  /* We also validate that the counts represent a legal Huffman code tree. */
  
  code = 0;
  si = huffsize[0];
  p = 0;
  while (huffsize[p]) {
    while (((int) huffsize[p]) == si) {
      huffcode[p++] = code;
      code++;
    }
    /* code is now 1 more than the last code used for codelength si; but
     * it must still fit in si bits, since no code is allowed to be all ones.
     */
    if (((INT32) code) >= (((INT32) 1) << si))
      perror("JERR_BAD_HUFF_TABLE");
    code <<= 1;
    si++;
  }

  /* Figure F.15: generate decoding tables for bit-sequential decoding */

  p = 0;
  for (l = 1; l <= 16; l++) {
    if (htbl->bits[l]) {
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
       * minus the minimum code of length l
       */
      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
      p += htbl->bits[l];
      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    } else {
      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    }
  }
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */

  /* Compute lookahead tables to speed up decoding.
   * First we set all the table entries to 0, indicating "too long";
   * then we iterate through the Huffman codes that are short enough and
   * fill in all the entries that correspond to bit sequences starting
   * with that code.
   */

  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));

  p = 0;
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
      /* Generate left-justified code followed by all possible bit sequences */
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
	dtbl->look_nbits[lookbits] = l;
	dtbl->look_sym[lookbits] = htbl->huffval[p];
	lookbits++;
      }
    }
  }

  /* Validate symbols as being reasonable.
   * For AC tables, we make no check, but accept all byte values 0..255.
   * For DC tables, we require the symbols to be in range 0..15.
   * (Tighter bounds could be applied depending on the data depth and mode,
   * but this is sufficient to ensure safe decoding.)
   */
  if (isDC) {
    for (i = 0; i < numsymbols; i++) {
      int sym = htbl->huffval[i];
      if (sym < 0 || sym > 15)
	perror("JERR_BAD_HUFF_TABLE");
    }
  }
}


/*
 * Out-of-line code for bit fetching (shared with jdphuff.c).
 * See jdhuff.h for info about usage.
 * Note: current values of get_buffer and bits_left are passed as parameters,
 * but are returned in the corresponding fields of the state struct.
 *
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 * of get_buffer to be used.  (On machines with wider words, an even larger
 * buffer could be used.)  However, on some machines 32-bit shifts are
 * quite slow and take time proportional to the number of places shifted.
 * (This is true with most PC compilers, for instance.)  In this case it may
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 */

#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS  15	/* minimum allowable value */
#else
#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
#endif


	GLOBAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
		register bit_buf_type get_buffer, register int bits_left,
		int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
	/* Copy heavily used state fields into locals (hopefully registers) */
	register const JOCTET * next_input_byte = state->next_input_byte;
	register size_t bytes_in_buffer = state->bytes_in_buffer;

	/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
	/* (It is assumed that no request will be for more than that many bits.) */
	/* We fail to do so only if we hit a marker or are forced to suspend. */

	if(1){	/* cannot advance past a marker */
		while (bits_left < MIN_GET_BITS) {
			register int c;

			/* Attempt to read a byte */
			if (bytes_in_buffer == 0) {	
				return FALSE;
			}
			bytes_in_buffer--;
			c = GETJOCTET(*next_input_byte++);
			printf("#%x",c);
			/* If it's 0xFF, check and discard stuffed zero byte */
			if (c == 0xFF) {
				/* Loop here to discard any padding FF's on terminating marker,
				 * so that we can save a valid unread_marker value.  NOTE: we will
				 * accept multiple FF's followed by a 0 as meaning a single FF data
				 * byte.  This data pattern is not valid according to the standard.
				 */
				do {
					if (bytes_in_buffer == 0) {
						return FALSE;
					}
					bytes_in_buffer--;
					c = GETJOCTET(*next_input_byte++);
				} while (c == 0xFF);

				if (c == 0) {
					/* Found FF/00, which represents an FF data byte */
					c = 0xFF;
				} else {
					/* Oops, it's actually a marker indicating end of compressed data.
					 * Save the marker code for later use.
					 * Fine point: it might appear that we should save the marker into
					 * bitread working state, not straight into permanent state.  But
					 * once we have hit a marker, we cannot need to suspend within the
					 * current MCU, because we will read no more bytes from the data
					 * source.  So it is OK to update permanent state right away.
					 */
					/* See if we need to insert some fake zero bits. */
					goto no_more_bytes;
				}
			}

			/* OK, load c into get_buffer */
			get_buffer = (get_buffer << 8) | c;
			bits_left += 8;
		} /* end while */
	} else {
no_more_bytes:
		/* We get here if we've read the marker that terminates the compressed
		 * data segment.  There should be enough bits in the buffer register
		 * to satisfy the request; if so, no problem.
		 */
		if (nbits > bits_left) {
			/* Uh-oh.  Report corrupted data to user and stuff zeroes into
			 * the data stream, so that we can produce some kind of image.
			 * We use a nonvolatile flag to ensure that only one warning message
			 * appears per data segment.
			 */
			perror("WARNING JWRN_HIT_MARKER");
		}
		/* Fill the buffer with zero bits */
		get_buffer <<= MIN_GET_BITS - bits_left;
		bits_left = MIN_GET_BITS;
	}


/* Unload the local registers */
state->next_input_byte = next_input_byte;
state->bytes_in_buffer = bytes_in_buffer;
state->get_buffer = get_buffer;
state->bits_left = bits_left;

return TRUE;
}


/*
 * Out-of-line code for Huffman code decoding.
 * See jdhuff.h for info about usage.
 */

	GLOBAL(int)
jpeg_huff_decode (bitread_working_state * state,
		register bit_buf_type get_buffer, register int bits_left,
		d_derived_tbl * htbl, int min_bits)
{
	register int l = min_bits;
	register INT32 code;

	/* HUFF_DECODE has determined that the code is at least min_bits */
	/* bits long, so fetch that many bits in one swoop. */

	CHECK_BIT_BUFFER(*state, l, return -1);
	code = GET_BITS(l);

	/* Collect the rest of the Huffman code one bit at a time. */
	/* This is per Figure F.16 in the JPEG spec. */

	while (code > htbl->maxcode[l]) {
		code <<= 1;
		CHECK_BIT_BUFFER(*state, 1, return -1);
		code |= GET_BITS(1);
		l++;
	}

	/* Unload the local registers */
	state->get_buffer = get_buffer;
	state->bits_left = bits_left;

	/* With garbage input we may reach the sentinel value l = 17. */

	if (l > 16) {
		perror("WARNING JWRN_HUFF_BAD_CODE");
		return 0;			/* fake a zero as the safest result */
	}

	return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
}


/*
 * Figure F.12: extend sign bit.
 * On some machines, a shift and add will be faster than a table lookup.
 */

#ifdef AVOID_TABLES

#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))

#else

#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))

									   static const int extend_test[16] =   /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };

static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
	((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
	((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
	((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };

#endif /* AVOID_TABLES */

/*
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
 * The coefficients are reordered from zigzag order into natural array order,
 * but are not dequantized.
 *
 *  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
 * (Wholesale zeroing is usually a little faster than retail...)
 *
 * Returns FALSE if data source requested suspension.  In that case no
 * changes have been made to permanent state.  (Exception: some output
 * coefficients may already have been assigned.  This is harmless for
 * this module, since we'll just re-assign them on the next call.)
 */

bitread_working_state 	gs_bitReadWorkingState;
bitread_perm_state	gs_PermState;
savable_state		gs_SavableState;

	METHODDEF(boolean)
decode_mcu ( JCOEFPTR block, d_derived_tbl * dctbl,d_derived_tbl * actbl )
{ 
	register bit_buf_type get_buffer;  
	register int bits_left;  
	bitread_working_state br_state;
	savable_state state;

	/* Load up working state */
	// BITREAD_LOAD_STATEM(cinfo,entropy->bitstate); 
	br_state.next_input_byte 	= gs_bitReadWorkingState.next_input_byte; 
	br_state.bytes_in_buffer 	= gs_bitReadWorkingState.bytes_in_buffer; 
	get_buffer 			= gs_PermState.get_buffer; 
	bits_left 			= gs_PermState.bits_left;

	// ASSIGN_STATE(state, entropy->saved);	
	state.last_dc_val[0] = gs_SavableState.last_dc_val[0];

	/* Outer loop handles each block in the MCU */
	{
		register int s, k, r;
		/* Decode a single block's worth of coefficients */
		/* Section F.2.2.1: decode the DC coefficient difference */
		HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
		if (s) {
			CHECK_BIT_BUFFER(br_state, s, return FALSE);
			r = GET_BITS(s);
			s = HUFF_EXTEND(r, s);
		}

		s += state.last_dc_val[0];
		state.last_dc_val[0] = s;
		/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
		(block)[0] = (JCOEF) s;
		{
			/* Section F.2.2.2: decode the AC coefficients */
			/* Since zeroes are skipped, output area must be cleared beforehand */
			for (k = 1; k < DCTSIZE2; k++) {
				HUFF_DECODE(s, br_state, actbl, return FALSE, label2);

				r = s >> 4;
				s &= 15;

				if (s) {
					k += r;
					CHECK_BIT_BUFFER(br_state, s, return FALSE);
					r = GET_BITS(s);
					s = HUFF_EXTEND(r, s);
					/* Output coefficient in natural (dezigzagged) order.
					 * Note: the extra entries in jpeg_natural_order[] will save us
					 * if k >= DCTSIZE2, which could happen if the data is corrupted.
					 */
					(block)[jpeg_natural_order[k]] = (JCOEF) s;
				} else {
					if (r != 15)
						break;
					k += 15;
				}
			}
		}
	}
	/* Completed MCU, so update state */
	//BITREAD_SAVE_STATEM(cinfo,entropy->bitstate);
	gs_bitReadWorkingState.next_input_byte = br_state.next_input_byte; 
	gs_bitReadWorkingState.bytes_in_buffer = br_state.bytes_in_buffer; 
	gs_PermState.get_buffer 		= get_buffer; 
	gs_PermState.bits_left 			= bits_left;

	//ASSIGN_STATE(entropy->saved, state);
	gs_SavableState.last_dc_val[0] =	state.last_dc_val[0];

	return TRUE;
}
extern unsigned char outputBufferHuffman[];

void Start_Huffman_decode(void)
{
	// Compute derived values for Huffman tables 
	// We may do this more than once for a table, but it's not expensive 
	jpeg_make_d_derived_tbl(dc_Huffman_Table, TRUE,		&dc_derived_table);
	jpeg_make_d_derived_tbl(ac_Huffman_Table, FALSE,	&ac_derived_table);
	// Initialize DC predictions to 0 


	gs_bitReadWorkingState.next_input_byte = outputBufferHuffman; 
	gs_bitReadWorkingState.bytes_in_buffer = 500; 
	gs_PermState.get_buffer 		= 0; 
	gs_PermState.bits_left 			=0;

	//ASSIGN_STATE(entropy->saved, state);
	gs_SavableState.last_dc_val[0] =	0;
}

void Test_Huffman_Decoder(short * data)
{
	Start_Huffman_decode();
	decode_mcu( data, &dc_derived_table,&ac_derived_table);
}